УДК 536.3, 532.529.2

ВЛИЯНИЕ ТЕПЛОВОГО ИЗЛУЧЕНИЯ НА СВОБОДНУЮ КОНВЕКЦИЮ В ПОТОКЕ НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ, ОБТЕКАЮЩЕМ ВЕРТИКАЛЬНЫЙ КОНУС, ПОГРУЖЕННЫЙ В ПОРИСТУЮ СРЕДУ, ПРИ НАЛИЧИИ ИСТОЧНИКА ТЕПЛА

М. А. А. Махмуд

Университет г. Бенха, 13518 Бенха, Египет E-mail: mostafabdelhameed@yahoo.com

Изучается влияние теплового излучения на свободную конвекцию в потоке неньютоновской жидкости, обтекающем вертикальный конус, погруженный в пористую среду, при наличии источника тепла. С помощью преобразования подобия определяющие уравнения задачи приводятся к системе нелинейных обыкновенных дифференциальных уравнений, которая решается численно. Результаты вычислений представлены в виде графиков. Анализируется влияние различных физических параметров и локального числа Нуссельта на скорость потока и температуру.

Ключевые слова: вертикальный конус, неньютоновская жидкость, источник тепла, тепловое излучение, пористая среда.

Введение. Изучению теплопередачи при естественной конвекции в жидкости, насыщающей пористую среду, уделяется большое внимание. Это явление встречается во многих задачах геофизики, таких как извлечение геотермического тепла, исследование потоков грунтовых вод, восстановление производительности нефтяных скважин, а также в различных технических приложениях, например хранение ядерных отходов, разработка способов термоизоляции, создание охлаждающих устройств электронных приборов, отливка и сварка в производственных технологиях, в керамической и химической промышленности.

Установившаяся свободная конвекция в насыщенной жидкостью пористой среде при обтекании вертикальной пластины изучалась в работах [1–6]. Установившаяся свободная конвекция вокруг вертикального цилиндра, погруженного в пористую среду, насыщенную жидкостью, анализировалась в [7]. В [8] исследован процесс теплопередачи от вертикального конуса с направленной вниз вершиной, помещенного в насыщенную жидкостью пористую среду.

Ламинарная свободная конвекция в ньютоновской жидкости при обтекании усеченного конуса изучалась в [9]. В [10] исследован тепломассоперенос при естественной конвекции вблизи усеченного конуса, погруженного в пористую среду, насыщенную жидкостью, при переменных температуре стенки конуса и концентрации жидкости. Тепломассоперенос при естественной конвекции вблизи рифленого конуса с постоянными температурой стенки и концентрацией жидкости изучался в работе [11]. В [12] рассмотрен тепломассоперенос вблизи проницаемого конуса при наличии магнитного поля и выделении или поглощении тепла. Известно, что при изменении температуры вязкость жидкости может существенно меняться. Поэтому, для того чтобы точно предсказать поведение жидкости, необходимо учитывать зависимость вязкости от температуры. В [13] обнаружено, что в этом случае характеристики потока существенно изменяются по сравнению со случаем постоянной вязкости. Влияние переменной вязкости на смешанную конвекцию в потоке вблизи вертикальной пластины изучалось в работах [14–17]. Свободная и смешанная конвекция в пограничном слое вблизи горизонтальной поверхности, погруженной в пористую среду, насыщенную жидкостью, с учетом переменной вязкости изучалась в [18]. В [19] рассмотрена вынужденная конвекция вблизи клина с учетом зависимости вязкости от температуры.

Во всех перечисленных выше работах исследовалось течение ньютоновской жидкости. Однако при решении ряда прикладных задач необходимо учитывать неньютоновский характер жидкости. В работе [20] с помощью численных методов изучался поток неньютоновской жидкости в пористой среде вблизи вертикальной изотермической поверхности. В [21] аналитически и численно исследован индуцированный плавучестью поток неньютоновской жидкости в пористой среде при обтекании вертикальной пластины и при воздействии на поверхность однородного теплового потока. В [22] получено автомодельное решение задачи о естественной конвекции в потоке неньютоновской жидкости вокруг горизонтальной поверхности, погруженной в пористую среду.

В работе [23] исследовано влияние однородного поперечного потока массы на естественную конвекцию в потоке неньютоновской жидкости, обтекающем вертикальный конус, погруженный в пористую насыщенную среду. В [24] изучено влияние такого потока массы на естественную конвекцию в потоке неньютоновской жидкости с определяющим степенным законом, обтекающем изотермический вертикальный конус, погруженный в пористую среду.

В работе [25] исследовано влияние зависимости вязкости от температуры на вынужденную конвекцию в потоке тепла от цилиндра при наличии поперечного потока жидкости с определяющим степенным законом. В [26] рассмотрено влияние переменной вязкости на двойную диффузионную конвекцию в пограничном слое вблизи вертикального усеченного конуса в насыщенной пористой среде при постоянных температуре стенки конуса и концентрации. В [27] изучено влияние переменной вязкости на свободную конвекцию в пограничном слое вблизи вертикального конуса, погруженного в пористую среду, насыщенную неньютоновской жидкостью с определяющим степенным законом.

Известно, что излучение оказывает значительное влияние на многие неизотермические процессы. В том случае, если при экструзии полимеров система помещается в термически контролируемую среду, излучение оказывает существенное влияние на процесс. Знание закономерностей теплопередачи вследствие излучения позволяет создавать устройства с необходимыми характеристиками. Влияние излучения на движение ньютоновской и неньютоновской жидкостей изучалось в работах [28–33].

В [34] исследовалась установившаяся свободная конвекция в пограничном слое вблизи вертикального конуса, погруженного в пористую среду, насыщенную неньютоновской жидкостью, при наличии внутреннего источника тепла с экспоненциальным законом затухания.

В настоящей работе, являющейся продолжением работы [34], изучается влияние переменной вязкости и теплового излучения на свободную конвекцию в пограничном слое неньютоновской жидкости со степенным определяющим законом, заполняющей пористую среду вблизи неизотермического вертикального полного конуса. По-видимому, эта задача, используемая во многих инженерных приложениях, например в нефтедобывающей промышленности и при изготовлении керамики, ранее не исследовалась.

Рис. 1. Схема задачи и система координат

1. Постановка задачи. Рассмотрим индуцированный плавучестью поток неньютоновской жидкости со степенным определяющим законом, заполняющий пористую среду и обтекающий вертикальный полный конус. В приближении Буссинеска с учетом предположений, используемых в теории пограничного слоя, основные уравнения задачи можно записать в виде

$$\frac{\partial ru}{\partial x} + \frac{\partial rv}{\partial y} = 0; \tag{1}$$

$$\frac{\partial u^n}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\rho g K \beta \cos \varphi}{\mu} \left(T - T_\infty \right) \right); \tag{2}$$

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha_m \frac{\partial^2 T}{\partial y^2} - \frac{1}{\rho c_p}\frac{\partial q_r}{\partial y} + \frac{q'''}{\rho c_p},\tag{3}$$

где $r = x \sin \varphi$ — радиус конуса; x, y — декартовы координаты вдоль образующей конуса и нормали к нему соответственно (рис. 1); u, v — компоненты вектора скорости в направлении осей x и y соответственно; β — коэффициент температурного расширения; g ускорение свободного падения; q_r — радиационный поток тепла; α_m — теплопроводность; q''' — внутренний источник тепла; c_p — удельная теплоемкость при постоянном давлении; ρ — плотность жидкости; μ — вязкость; T — температура жидкости; n — показатель в степенном законе; K — модифицированная проницаемость. При n = 1 жидкость является ньютоновской, при n < 1 и n > 1 — неньютоновской (случай n < 1 соответствует сжимающейся при сдвиге жидкости, случай n > 1 — расширяющейся при сдвиге жидкости).

Краевые условия имеют вид

$$y = 0$$
: $v = 0, T_w = T_\infty + Ax^\lambda, \quad y \to \infty$: $u \to 0, T \to T_\infty,$

где $\lambda > 0$ — показатель степени в законе распределения температуры по поверхности.

Выражение для радиационного потока тепла используется в приближении Росселанда [29]:

$$q_r = -\frac{4\sigma^*}{3k^*} \frac{\partial T^4}{\partial y}.$$
(4)

Здесь σ^* — константа Стефана — Больцмана; k^* — среднее значение коэффициента поглощения.

В соответствии с работой [30] предполагается, что температура жидкости изменяется незначительно. Поэтому зависимость T^4 можно представить в виде линейной функции температуры. Разлагая T^4 в ряд Тейлора в окрестности T_{∞} и пренебрегая членами высшего порядка, получаем

$$T^4 \simeq 4T^3_{\infty}T - 3T^4_{\infty}.$$

Введем следующие безразмерные величины:

$$\eta = \sqrt{\mathcal{R}_x} \, \frac{y}{x}, \qquad \psi = \alpha_m r \sqrt{\mathcal{R}_x} \, f(\eta), \qquad \theta = \frac{T - T_\infty}{T_w - T_\infty}.$$
(5)

Здесь ψ — функция потока, удовлетворяющая условию неразрывности (1) и определяемая соотношениями

$$ru = \frac{\partial \psi}{\partial y}, \qquad rv = -\frac{\partial \psi}{\partial x}$$

R_x — модифицированное локальное число Рэлея:

$$\mathbf{R}_x = \left(\frac{g\rho\beta K\cos\varphi(T_w - T_\infty)x^n}{\mu_\infty\alpha_m}\right)^{1/n}$$

Зависимость вязкости от температуры принимается в виде

$$\mu(\theta) = \mu_{\infty} e^{-\alpha \theta},\tag{6}$$

где μ_{∞} — вязкость окружающей среды; α — параметр вязкости. Для того чтобы существовало автомодельное решение уравнений (1)–(3), выражение для источника тепла принимается в следующем виде [34]:

$$q''' = \frac{k_m (T_w - T_\infty)}{x^2} \ \mathcal{R}_x \, \mathrm{e}^{-\eta} \,.$$
(7)

Используя переменные (5) и уравнения (6), (7), получаем следующие нелинейные обыкновенные дифференциальные уравнения:

$$(f'^n - e^{\alpha\theta} \theta)' = 0, \qquad (1+R)\theta'' - \lambda f'\theta + \frac{3n+\lambda}{2n} f\theta' + \gamma e^{-\eta} = 0.$$
(8)

Краевые условия принимают следующий вид:

$$\eta = 0$$
: $f = 0, \quad \theta = 1, \qquad \eta \to \infty$: $f' \to 0, \quad \theta \to 0.$ (9)

Здесь $R = 16\sigma^* T_{\infty}^3/(3k^*\varkappa_{\infty})$ — параметр излучения; значение $\gamma = 1$ соответствует случаю наличия источника тепла, $\gamma = 0$ — случаю отсутствия источника тепла; штрих обозначает производную по параметру η .

Важным физическим параметром в данной задаче является локальное число Нуссельта

$$\operatorname{R}_x^{-1/2}\operatorname{Nu}_x = -\theta'(0).$$

2. Численное решение и обсуждение результатов. Система нелинейных дифференциальных уравнений (8) с краевыми условиями (9) решалась численно с использованием метода Рунге — Кутты четвертого порядка и метода стрельбы. Значения f'(0)и $\theta'(0)$ последовательно уточнялись, до тех пор пока значения на бесконечности $f'(\eta)$ и $\theta'(\eta)$ не начинали стремиться к нулю по экспоненциальному закону. Если краевые условия на бесконечности не выполнялись, для коррекции значений f'(0) и $\theta'(0)$ использовалась процедура Ньютона — Рафсона. Такая итерационная процедура повторялась до тех пор, пока не достигалась заданная погрешность порядка 10^{-5} .

	$\lambda = 0$			$\lambda = 1/3$		$\lambda = 1/2$	
n	Данные [26]	Данные [34]	Данные настоящей работы	Данные [34]	Данные настоящей работы	Данные [34]	Данные настоящей работы
$0,\!5$	$0,\!6522$	$0,\!6527$	$0,\!6527$	0,8172	0,8166	0,8828	0,8827
0,8	0,7339	0,7340	0,7339	0,8884	0,8884	0,9574	0,9574
1,0	0,7686	0,7686	0,7686	0,9211	0,9210	0,9897	0,9896
1,5	0,8233	0,8233	0,8233	0,9729	0,9729	1,0409	1,0409
2,0	0,8552	0,8552	0,8552	1,0033	1,0034	1,0710	1,0710

Значения локального числа Нуссельта $\operatorname{Nu}_x \operatorname{R}_x^{-1/2}$ в отсутствие источника тепла при $R=0, \, \alpha=0$ и различных значениях λ, n

Рис. 2. Зависимость температуры от параметра η при R = 1, $\lambda = 1/3$ и различных значениях α :

 $a-n=0.8,\, \delta-n=1.8;$ сплошные линии — $\gamma=0,$ штриховые — $\gamma=1;\, 1-\alpha=0.6,\, 2-\alpha=0.4,\, 3-\alpha=0.2,\, 4-\alpha=0$

Для проверки точности предлагаемого метода полученные значения локального числа Нуссельта сравнивались с результатами, полученными в работах [24, 34] при значениях $R = 0, \gamma = 0, \alpha = 0$ в уравнениях (8) (см. таблицу). Из таблицы следует, что эти результаты хорошо согласуются.

На рис. 2–5 представлены распределения температуры по поверхности конуса при различных значениях физических параметров n, λ, S, R, α . На рис. 2 видно, что и при n = 0.8, и при n = 1.8 с увеличением параметра вязкости α температура уменьшается. Это означает, что для жидкости с меньшей вязкостью, т. е. при больших значениях параметра вязкости, температура меньше. Также можно заметить, что при n = 0.8 влияние параметра α на распределение температуры более существенно, чем при n = 1.8.

Влияние параметра λ , характеризующего распределение температуры по поверхности конуса, на распределение температуры показано на рис. 3. Видно, что и при n = 0.8, и при n = 1.8 с увеличением λ температура уменьшается. Из результатов, приведенных на рис. 4, следует, что с увеличением параметра n в определяющем уравнении толщина пограничного слоя уменьшается.

Влияние параметра теплового излучения R на зависимость $\theta(\eta)$ показано на рис. 5. Из приведенных результатов следует, что и при n = 0.8, и при n = 1.8 с увеличением параметра R толщина теплового пограничного слоя в жидкости увеличивается. Увеличение параметра R приводит к увеличению температуры в пограничном слое. Это объясняет-

Рис. 3. Зависимость температуры от параметра η при R = 1, $\alpha = 0,2$ и различных значениях λ :

 $a-n=0,8,\ b-n=1,8;$ сплошные линии — $\gamma=0,$ штриховые — $\gamma=1;\ 1-\lambda=1,$ $2-\lambda=1/2,\ 3-\lambda=1/3,\ 4-\lambda=0$

Рис. 4. Зависимость температуры от параметра η при R=1, $\lambda=1/3,$ $\alpha=0,2$ и различных значениях n: сплошные линии — $\gamma=0,$ штриховые — $\gamma=1;$ 1 — n=1,8, 2 — n=1,2, 3 — n=1,0, 4 — n=0,8

Рис. 5. Зависимость температуры от параметра η при $\lambda = 1/3$, $\alpha = 0,2$ и различных значениях R:

 $a-n=0,8,\ b-n=1,8;$ сплошные линии — $\gamma=0,$ штриховые — $\gamma=1;\ 1-R=1,\ 2-R=5,\ 3-R=10$

Рис. 7. Зависимость локального числа Нуссельта от параметр
аR при $\lambda=1/3$ и различных значениях
 α :

a-n=0.8,~ 6-n=1.8;сплошные линии — $\gamma=0,$ штриховые — $\gamma=1;~ 1-\alpha=0,~ 2-\alpha=0.2,~ 3-\alpha=0.4$

ся тем, что при увеличении параметра R уменьшается среднее значение коэффициента поглощения Росселанда k^* при фиксированных значениях \varkappa , T_{∞} .

Таким образом, из уравнений (3), (4) следует, что с уменьшением k^* расходимость теплового потока $\partial q_r / \partial y$ увеличивается, следовательно, температура жидкости также увеличивается. Из результатов, приведенных на рис. 2–5, следует, что наличие источника тепла приводит к увеличению температуры жидкости и тем самым к увеличению толщины пограничного теплового слоя.

На рис. 6, 7 представлены зависимости локального числа Нуссельта от параметра Rдля различных значений параметра λ и параметра вязкости α при наличии источника тепла и в его отсутствие. Как при n < 1, так и при n > 1 локальное число Нуссельта уменьшается с увеличением параметра R и увеличивается с увеличением параметра λ или α . Также из приведенных результатов следует, что и при n < 1, и при n > 1 в случае $\gamma = 0$ (в отсутствие теплового источника) значение локального числа Нуссельта больше, чем в случае $\gamma = 1$ (при наличии теплового источника). Однако и при n < 1, и при n > 1локальное число Нуссельта для изотермической поверхности ($\lambda = 0$) меньше, чем для неизотермической поверхности ($\lambda \neq 0$). Заключение. Проведено исследование свободной конвекции в неньютоновской жидкости со степенным определяющим законом вблизи полного вертикального конуса, погруженного в пористую среду, с учетом переменной вязкости, наличия источника тепла и теплового излучения. Преобразованные нелинейные обыкновенные дифференциальные уравнения решались методом Рунге — Кутты с использованием метода стрельбы. Показано, что и в случае уменьшения толщины слоя жидкости (n < 1), и в случае ее увеличения (n > 1) при сдвиговых деформациях с увеличением параметра вязкости или параметра, характеризующего распределение поверхностной температуры, локальное число Нуссельта увеличивается. Также показано, что и при n < 1, и при n > 1 с увеличением параметра теплового излучения локальное число Нуссельта уменьшается. Такая тенденция имеет место как в случае отсутствия источника тепла, так и в случае его наличия.

ЛИТЕРАТУРА

- 1. Cheng P., Minkowycz W. J. Free convection about a vertical flat plate embedded in a porous media with application to heat transfer from a dike // J. Geophys. Res. 1977. V. 82. P. 2040–2044.
- 2. Johnson C. H., Cheng P. Possible similarity solutions for free convection boundary layers adjacent to flat plates in porous media // Intern. J. Heat Mass Transfer. 1978. V. 21. P. 709–718.
- Hung C.-I., Chen C.-H., Chen C.-B. Non-Darcy free convection along a nonisothermal vertical surface in a thermally stratified porous medium // Intern. J. Engng Sci. 1999. V. 37. P. 477–495.
- Mahmood T., Merkin J. H. The convective flow on a reacting surface in a porous medium // Transport Porous Media. 1998. V. 32. P. 285–298.
- 5. Rees D. A. S., Pop I. Vertical free convection in a porous medium with variable permeability effects // Intern. J. Heat Mass Transfer. 2000. V. 34. P. 2565–2571.
- Bejan A., Khair K. R. Heat and mass transfer by natural convection in a porous medium // Intern. J. Heat Mass Transfer. 1985. V. 28. P. 909–918.
- Minkowycz W. J., Cheng P. Free convection about a vertical cylinder embedded in a porous medium // Intern. J. Heat Mass Transfer. 1976. V. 19. P. 805–813.
- Cheng P., Le T. T., Pop I. Natural convection of a Darcian fluid about a cone // Intern. Comm. Heat Mass Transfer. 1985. V. 12. P. 705–717.
- Na T. Y., Chiou J. P. Laminar natural convection over a slender vertical frustum of a cone with constant wall heat flux // Wfirme- und Stofffibertragung. 1980. Bd 13. S. 73–80.
- Cheng C. Y. An integral approach for heat and mass transfer by natural convection from truncated cones in porous media with variable wall temperature and concentration // Intern. Comm. Heat Mass Transfer. 2000. V. 27. P. 537–548.
- 11. Cheng C. Y. Natural convection heat and mass transfer near a wavy cone with constant wall temperature and concentration in a porous medium // Mech. Res. Comm. 2000. V. 27. P. 613–620.
- Chamkha A. J., Quadri M. M. A. Combined heat and mass transfer by hydromagnetic natural convection over a cone embedded in a non-Darcian porous medium with heat generation/absorption effects // Heat Mass Transfer. 2002. V. 38. P. 487–495.
- Mehta K. N., Sood S. Transient free convection flow with temperature dependent viscosity in a fluid saturated porous medium // Intern. J. Engng Sci. 1992. V. 30. P. 1083–1087.
- Kafoussias N. G., Williams E. W. The effect of temperature-dependent viscosity on freeforced convective laminar boundary layer flow past a vertical isothermal flat plate // Acta Mech. 1995. V. 110. P. 123–137.
- Hady F. M., Bakier A. Y., Gorla R. S. R. Mixed convection boundary layer flow on a continuous flat plate with variable viscosity // Heat Mass Transfer. 1996. V. 31. P. 169–172.
- Kafoussias N. G., Rees D. A. S., Daskalakis J. E. Numerical study of the combined free-forced convective laminar boundary layer flow past a vertical isothermal flat plate with temperature-dependent viscosity // Acta Mech. 1998. V. 127. P. 39–50.

- Mahmoud M. A. A. Thermal radiation effect on unsteady MHD free convection flow past a vertical plate with temperature-dependent viscosity // Canad. J. Chem. Engng. 2009. V. 87. P. 47–52.
- Kumari M. Variable viscosity effects on free and mixed convection boundary-layer flow from a horizontal surface in a saturated porous medium — variable heat flux // Mech. Res. Comm. 2001. V. 28. P. 339–348.
- Hossain M. A., Munir M. S., Rees D. A. S. Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux // Intern. J. Therm. Sci. 2000. V. 39. P. 635–644.
- Chen H. T., Chen C. K. Free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium // Trans. ASME. J. Heat Transfer. 1988. V. 110. P. 257–259.
- Mehta K. N., Rao K. N. Buoyancy induced flow of non-Newtonian fluids in a porous medium past a vertical flat plate with non uniform surface heat flux // Intern. J. Engng Sci. 1994. V. 32. P. 297–302.
- Chen H. T., Chen C. K. Natural convection of non Newtonian fluids about a horizontal surface in a porous medium // Trans. ASME. J. Energy Resources Technol. 1987. V. 109. P. 119–123.
- Kumari M., Jayanathi S. Uniform lateral mass flux on natural convection flow over a vertical cone embedded in a porous medium saturated with a non-Newtonian fluid // J. Porous Media. 2005. V. 8. P. 73–84.
- Yih K. A. Uniform lateral mass flux effect on natural convection of non-Newtonian fluids over a cone in porous media // Intern. Comm. Heat Mass Transfer. 1998. V. 25. P. 959–968.
- Soares A. A., Ferreira J. M., Caramelo L., et al. Effect of temperature-dependent viscosity on forced convection heat transfer from a cylinder in cross flow of power-law fluids // Intern. J. Heat Mass Transfer. 2010. V. 53. P. 4728–4740.
- Cheng C. Y. Nonsimilar boundary layer analysis of double-diffusive convection from a vertical truncated cone in a porous medium with variable viscosity // Appl. Math. Comput. 2009. V. 212. P. 185–193.
- Mahmoud M. A. A. Variable viscosity effect on free convection of a non-Newtonian power-law fluid over a vertical cone in a porous medium with variable heat flux // Eur. Phys. J. Plus. 2011. V. 126, N 1.
- Raptis A. Flow of a micropolar fluid past a continuously moving plate by the presence of radiation // Intern. J. Heat Mass Transfer. 1998. V. 41. P. 2865–2866.
- Raptis A. Radiation and viscoelastic flow // Intern. Comm. Heat Mass Transfer. 1999. V. 26. P. 889–895.
- Raptis A., Perdikis C., Takhar H. S. Effect of thermal radiation on MHD flow // Appl. Math. Comput. 2004. V. 153. P. 645–649.
- Mahmoud M. A. A. Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity // Physica A. 2007. V. 375. P. 401–410.
- Abel M. S., Mahesha N. Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation // Appl. Math. Modelling. 2008. V. 32. P. 1965–1983.
- Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium // Intern. J. Heat Mass Transfer. 2009. V. 52. P. 3261–3265.
- Grosan T., Postenlnicu A., Pop I. Free convection boundary layer over a vertical cone in a non-Newtonian fluid saturated porous medium with internal heat generation // Techn. Mechanik. 2004. Bd 24. S. 91–104.