УДК 532.54

СТАЦИОНАРНОЕ ОБТЕКАНИЕ БЕЗГРАНИЧНОЙ НЕНЬЮТОНОВСКОЙ ЖИДКОСТЬЮ СО СТЕПЕННЫМ РЕОЛОГИЧЕСКИМ ЗАКОНОМ ЦИЛИНДРА С КВАДРАТНЫМ ПОПЕРЕЧНЫМ СЕЧЕНИЕМ

А. Пантократорас

Инженерная школа Университета им. Демокрита Фракии, 67100 Ксанти, Греция E-mail: apantokr@civil.duth.gr

Рассматривается двумерная задача об обтекании неньютоновской жидкостью со степенным реологическим законом горизонтально расположенного цилиндра с квадратным поперечным сечением. Задача решается численно с использованием метода конечных объемов, коммерческого пакета программ Ansys Fluent, большой расчетной сетки для моделирования отсутствия границ (безграничной жидкости) при значениях показателя степени $0,1 \div 2,0$ и числа Рейнольдса $0,001 \div 45,000$. Установлено, что при малых значениях числа Рейнольдса и показателя степени ($n \leq 0,5$) коэффициент сопротивления удовлетворяет соотношению $C_D = A/$ Re. Также установлено, что величина A является степенной функцией. Показано, что коэффициент сопротивления практически не зависит от показателя степени при больших значениях числа Рейнольдса, а длина вихревого следа нелинейно зависит от числа Рейнольдса и показателя степени.

Ключевые слова: цилиндр с квадратным поперечным сечением, степенной закон, коэффициент сопротивления, вихревой след.

DOI: 10.15372/PMTF20160209

Введение. Течение несжимаемой жидкости вдоль неподвижного кругового цилиндра является классической проблемой гидродинамики. Сложная физика и прикладной характер задачи вызывают интерес исследователей на протяжении более 100 лет, поэтому существует большое количество теоретических и экспериментальных работ по данной теме. Несмотря на простую геометрию, обтекание кругового цилиндра считается базовым случаем более сложных течений [1]. Важной величиной, характеризующей течение жидкости по нормали к цилиндру, является коэффициент сопротивления, который был вычислен экспериментально и численно во многих работах по гидродинамике (см., например, [2. Р. 176; З. Р. 324]), в которых коэффициент сопротивления приводится для значений числа Рейнольдса от Re = 0.1, когда поток является ламинарным, до $\text{Re} = 10^6$, когда поток становится турбулентным. Следует отметить, что значения коэффициента сопротивления для кругового цилиндра вычислялись для неограниченного течения, т. е. для случая, когда цилиндр находится в жидкости, не имеющей границ. Однако для численного или экспериментального расчета коэффициента сопротивления наличие границ необходимо. Экспериментальные исследования проводятся в аэродинамических трубах, где границами являются стенки трубы; в численных расчетах границами являются границы расчетной

Рис. 1. Расчетная область и схема течения: 1 — цилиндр, 2 — вихри

области. При обтекании любого тела, погруженного в поток и ограниченного жесткими стенками, возникает блокирующее ограничение. Жесткие стенки препятствуют поперечному смещению потока и в окрестности стенок скорость больше, чем в безграничной жидкости. Насколько существенно влияние стенок и можно ли их расположить на таком расстоянии, чтобы считать жидкость безграничной, зависит от значения числа Рейнольдса. При Re = 0 это невозможно, при Re > 0 стенки можно отодвинуть настолько далеко, что это позволит рассматривать жидкость как безграничную [3. Р. 321]. Влияние стенок на поток при обтекании тела рассматривалось в работе [4]. Интерес к данной задаче обусловлен, возможно, наличием экспериментальных данных об обтекании наклонной пластины в аэродинамической трубе. В [4] исследовано влияние препятствия на образование следа позади плохообтекаемого тела и предложена теория, частично использующая модель Гельмгольца обтекания тела. Также в [4] предложена формула для вычисления коэффициента сопротивления ограниченного потока с использованием коэффициента сопротивления для неограниченного потока. В работе [5] предложена уточненная формула для вычисления коэффициента сопротивления. В работе [6] полученные в [4, 5] формулы использованы для корректировки результатов расчетов для ограниченных течений и вычисления коэффициентов сопротивления для неограниченных течений.

Несмотря на то что преобразование неограниченной области в ограниченную является некоторой аппроксимацией, это позволяет решить задачу [3]. В случае если область мала, можно получить только грубые оценки, если область большая, то точность результатов увеличивается. В большинстве численных исследований используются очень большие вычислительные области, с тем чтобы влиянием границ можно было пренебречь. Одной из первых работ, посвященных изучению обтекания круговых цилиндров, является работа [7]. В [8] использовалась вычислительная область, характерный размер которой равен 300 диаметрам цилиндра. Увеличение мощности компьютеров позволило увеличивать размеры расчетных областей. В [9] изучались импульс и теплоперенос при ламинарном поперечном обтекании цилиндра при $10^{-4} \leq \text{Re} \leq 200$. Для того чтобы погрешность составила менее 0,1 %, область расчета при Re < 1 (рис. 1) должна удовлетворять условию $H/D > 4000 \,\text{Re}^{-0,8}$, для того чтобы получить погрешность до 1 % — $H/D > 320 \,\text{Re}^{-0,8}$. Это означает, что при Re = 0,1 расчетная область должна удовлетворять условию $H/D > 25\,000$ (высокая точность), H/D > 2000 (погрешность приблизительно равна 1 %). В [10] для решения задачи об обтекании вращающегося кругового цилиндра использовалась расчетная область, удовлетворяющая условию 1000 $\leq H/D \leq$ 100 000 в зависимости от значения числа Рейнольдса. По мнению авторов [10], при уменьшении числа Рейнольдса размер расчетной области должен быть значительно увеличен. В [11] с помощью метода спектральных элементов при 5 \leq Re \leq 250 в расчетной области, удовлетворяющей условию H/D = 8000, исследовались течения, перпендикулярные круговому цилиндру. В [12] для исследования стационарного безграничного течения жидкости со степенным реологическим законом вокруг эллиптического цилиндра при 0,01 \leq Re \leq 40,00 использовалась расчетная область, удовлетворяющая условию H/D = 1200. В работе [13] расчетная область, удовлетворяющая условию H/D = 8000, применялась для исследования стационарного течения жидкости вокруг неподвижного кругового цилиндра при 6 \leq Re \leq 40. Во многих работах, посвященных изучению обтекания жидкостью кругового или эллиптического цилиндра, большие расчетные области используются для того, чтобы избежать влияния границ на результаты.

В работе [14] представлены результаты численных расчетов для цилиндра с квадратным поперечным сечением при $\text{Re} \leq 300, H/D = 12$. В [15] численно исследовано вихреобразование в области за цилиндром с квадратным поперечным сечением при H/D = 6. В [16] исследовалось обтекание цилиндра с квадратным поперечным сечением под углом при малых числах Рейнольдса. В этой работе приведены результаты 13 работ для областей 7 < H/D < 125, собственные результаты получены для расчетной области H/D = 40. В [17] исследованы теплопередача и гидродинамика при плоском ламинарном обтекании цилиндра с квадратным поперечным сечением в расчетной области размером H/D = 20. В работе [18], являющейся наиболее полным исследованием обтекания неньютоновской жидкостью со степенным реологическим законом цилиндра с квадратным поперечным сечением, вычислены коэффициент сопротивления и длина вихревого следа при показателе степени $n = 0.5 \div 2.0$, числе Рейнольдса $\text{Re} = 1 \div 45$ и размере области расчета H/D = 30. В [19] проведено исследование смешанной конвекции от нагретого цилиндра с квадратным поперечным сечением в ньютоновской и неньютоновской жидкостях в области размером H/D = 30. В [20] изучалось нестационарное обтекание жидкостью со степенным реологическим законом цилиндра с квадратным поперечным сечением в расчетной области размером H/D = 20. В работе [21] исследовался теплообмен при обтекании жидкостью цилиндра с квадратным поперечным сечением в расчетной области размером H/D = 120. В [22] исследовались установившееся течение и перенос тепла от наклонного цилиндра с квадратным поперечным сечением в жидкость со степенным реологическим законом в расчетной области размером H/D = 100. В работе [23] численно моделировалось течение жидкости вокруг цилиндра с квадратным поперечным сечением в расчетной области размером H/D = 12 и показано, что коэффициент сопротивления существенно зависит от размера расчетной области и экспоненциально увеличивается с его уменьшением. Влияние блокировки является более существенным при малых числах Рейнольдса [24]. При малом размере области (большом коэффициенте блокирования D/H) длина вихревого следа уменьшается [25].

Из сказанного выше следует, что ранее при решении задачи об обтекании цилиндра с квадратным поперечным сечением в основном использовались расчетные области малых размеров. Размер максимальной расчетной области в этом случае удовлетворял соотношению H/D = 120, в то время как в случае кругового цилиндра максимальная расчетная область достигала размера $H/D = 100\,000$. Очевидно, что малые расчетные области недостаточны для расчетов при малых числах Рейнольдса, т. е. задача о безграничном обтекании цилиндра с квадратным поперечным сечением при малых числах Рейнольдса до сих пор не решена.

Целью настоящей работы является исследование течений ньютоновской и неньютоновской жидкостей вокруг цилиндра с квадратным поперечным сечением при малых числах Рейнольдса $\text{Re} = 0,001 \div 45,000$. Выбор данного диапазона значений числа Рейнольдса обусловлен тем, что при Re > 45 поток становится периодическим во времени [26]. В настоящей работе размер расчетной области удовлетворяет условию $H/D = 50\,000$ и жидкость можно считать неограниченной. В работе [27] приведены значения коэффициента сопротивления для тел различной формы, в том числе для цилиндров с круговым (при $\text{Re} = 0,1 \div 10^7$) и квадратным (при $\text{Re} = 10^4 \div 10^6$) поперечными сечениями. Поскольку для других значений числа Рейнольдса данные отсутствуют, целью настоящей работы является вычисление коэффициента сопротивления для обтекаемого безграничной жидкостью цилиндра с квадратным поперечным сечением, как это сделано для кругового цилиндра.

1. Математическая модель и ее численная реализация. Рассмотрим обтекание неньютоновской жидкостью со степенным реологическим законом горизонтально расположенного цилиндра с квадратным поперечным сечением (см. рис. 1). Полная система уравнений для данного течения включает следующие уравнения [28]:

— уравнение неразрывности

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

— уравнение импульсов в проекции на ось x

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y}$$

— уравнение импульсов в проекции на ось y

$$\rho\left(u\,\frac{\partial v}{\partial x} + v\,\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y}.$$

Тензор напряжений τ и тензор скоростей деформации S связаны соотношением

$$\tau_{ij} = 2\eta S_{ij},\tag{1}$$

где *η* — кажущаяся вязкость. Тензор деформации определяется следующим образом:

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right). \tag{2}$$

С учетом уравнений (1), (2) уравнения импульсов принимают следующий вид:

— в проекции на ось x

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + 2\frac{\partial}{\partial x}\left(\eta\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left[\eta\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right];$$

— в проекции на ось у

$$\rho\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x}\left[\eta\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right] + 2\frac{\partial}{\partial y}\left(\eta\frac{\partial v}{\partial y}\right).$$

Здесь x, y — горизонтальная и вертикальная координаты; u, v — горизонтальная и вертикальная скорости; p — давление; ρ — плотность жидкости. Кажущаяся вязкость находится из соотношения

$$\eta = K \left\{ 2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right\}^{(n-1)/2}$$

где n — показатель степени; K — коэффициент консистенции, который в случае ньютоновской жидкости имеет смысл динамической вязкости. Жидкость характеризуется как псевдопластическая при 0 < n < 1, дилатантная при n > 1 и ньютоновская при n = 1. К псевдопластическим жидкостям с малым показателем степени (n = 0,2) относятся, например, полимерный расплав и резина.

Течение зависит от числа Рейнольдса следующим образом:

$$\operatorname{Re} = \rho u_{\infty}^{2-n} D^n / K$$

 $(D - длина стороны цилиндра (см. рис. 1); <math>u_{\infty}$ — скорость набегающего потока). Коэффициент сопротивления определяется из выражения [18]

$$C_D = \frac{F}{\rho u_{\infty}^2 D/2} = \frac{1}{\rho u_{\infty}^2 D/2} \Big(\int_s p n_x \, dS + \int_s \tau n_x \, dS \Big), \tag{3}$$

где F — сила, действующая на цилиндр; S — площадь поверхности; n_x — компонента вектора нормали к поверхности цилиндра в направлении x. В правой части (3) первый интеграл по поверхности представляет собой силу давления, второй — силу реакции.

Численное исследование проводилось с помощью пакета программ Ansys Fluent (версия 12.0). Моделировалось двумерное стационарное ламинарное течение с использованием схемы Muscl третьего порядка для конвективных слагаемых в уравнении импульсов. Для определения давления и скорости использовалась связанная схема, для определения вязкости — степенная модель неньютоновской жидкости. Вычисления, проводившиеся с двойной точностью, заканчивались, если невязки в уравнениях неразрывности и движения были меньше 10^{-10} . Для вычислений использовался код CFD (computational fluid dynamics) [12, 29, 30].

Задавались следующие граничные условия:

— на границе АЕ

$$u = u_{\infty}, \qquad v = 0;$$

— на границе ВС

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = 0;$$

— на границах AB и EC

$$u = u_{\infty}, \qquad v = 0. \tag{4}$$

На сторонах цилиндра ставились условия непроскальзывания (прилипания). Для моделирования бесконечной области все границы располагались на большом ($25\,000D$, $H/D = 50\,000$) расстоянии от цилиндра. Для получения точных результатов расчетная сетка вблизи поверхности цилиндра сгущалась. Сетка такого размера применялась автором в работах [31, 32], в одной из которых рассматривалось течение неньютоновской жидкости со степенным реологическим законом. Для построения расчетной сетки на поверхности цилиндра использовалась специальная функция, встроенная в пакет Ansys Fluent.

2. Результаты исследования и их обсуждение. В табл. 1 приведены значения коэффициента сопротивления при обтекании цилиндра с квадратным поперечным сечением, полученные в работе [33] и настоящей работе для расчетной области одинакового размера (80 диаметров перед центром цилиндра, 100 диаметров за центром цилиндра, ширина области — 100*D*) (см. рис. 1, [33. § 6.2]) при идентичных граничных условиях. В работе [33] использовался метод конечных элементов, в то время как пакет Fluent основан на методе конечных объемов, при этом полученные результаты близки. Таким образом, при использовании различных методов для сеток одинакового размера с одними и теми же граничными условиями результаты идентичны. Это свидетельствует о надежности используемых

		чным сечением	Различие результатов, полученных в настоящей работе и работе [34], %	<1	2	≤ 1	≤ 1							
		круговым попере	Настоящая работа $(H/D = 50\ 000)$	2846,00	374,00	55,71	10,33							
		Цилиндр с	Paбora [34]	2821,00	381,00	56,12	10,32							
	Q		Различие результатов, полученных в настоящей работе при $H/D = 100$ и $H/D = 50000, \%$	147,0	87,0	29,0	7,0	4,0	3,0	2,0	1,8	1,6	1,2	1,3
	C	чным сечением	Настоящая работа $(H/D=50\ 000)$	2912,00	385,00	58,14	11,04	7,16	4,25	3,00	2,18	1,84	1,64	1,51
		о с квадратным попере	Различие результатов, полученных при $H/D = 100$ в настоящей работе и работе [33], %					\sim	\sim	0	≤ 1	0	1	
		Цилинд	Настоящая работа $(H/D=100)$	7203,00	720,00	74,82	11,78	7,46	4,38	3,06	2,22	1,87	1,66	1,53
			Работа [33] (формула (8), H/D = 100)					7,44	4,41	3,06	2,21	1,87	1,68	
		1	${ m Re}$	0,001	0,01	0,1	Ţ	2	2	10	20	30	40	50

Значения коэффициента сопротивления C_D для случая течения ньютоновской жидкости перпендикулярно цилиндрам с квадратным и круговым поперечными сечениями при различных значениях числа Рейнольдса

Таблица 1

		C_D		L/D					
Re	Работа [35]	Настоящая работа	Различие результатов, %	Работа [35]	Настоящая работа	Различие результатов, %			
1	9,66	9,75	<1	0,21	0,21	0			
5	3,75	3,78	<1	$0,\!65$	$0,\!65$	0			
10	2,75	2,75	0	1,16	$1,\!16$	0			
20	2,09	2,11	<1	$2,\!43$	$2,\!38$	2			
30	1,82	1,84	1	$3,\!89$	3,76	3			
40	$1,\!68$	1,68	0	$5,\!48$	5,25	4			
50	1,57	1,57	0	7,03	6,75	4			

Значения коэффициента сопротивления и длины вихревого следа для случая течения ньютоновских жидкостей, перпендикулярного плоской пластине при различных значениях числа Рейнольдса

методов. Также в табл. 1 приведены результаты, полученные в настоящей работе для сетки очень большого размера $H/D = 50\,000$ (практически безграничное течение). Сравнение результатов, полученных на сетках относительно небольшого размера и очень большого размера, показывает, что различие очень существенно при малых значениях числа Рейнольдса и уменьшается при больших значениях Re. Следовательно, для точного решения задачи при малых числах Рейнольдса необходимо использовать очень большую расчетную область. В настоящей работе вычислены значения коэффициента сопротивления для двух областей различного размера ($H/D = 100, H/D = 50\,000$). При Re = 0,001 погрешность составила 147 %. Полученные данные о том, что в небольшой расчетной области коэффициент сопротивления увеличивается, подтверждают результаты работы [11]. Из результатов, приведенных в табл. 1, следует, что коэффициент сопротивления C_D существенно зависит от размера расчетной области. Также в табл. 1 приведены результаты для кругового цилиндра при малых значениях числа Рейнольдса, полученные в настоящей работе и работе [34]. Эти результаты хорошо согласуются.

В табл. 2 представлены значения коэффициента сопротивления и длины вихревого следа для течения, нормального к плоской пластине, полученные в настоящей работе и работе [35]. (Плоскую пластину можно считать частным случаем цилиндра с квадратным поперечным сечением очень малой ширины.) Из табл. 2 следует, что приведенные результаты также хорошо согласуются. Следует отметить, что значения коэффициента сопротивления для цилиндра с квадратным поперечным сечением очень малой ширины.) Из табл. 2 следует, что приведенные результаты также хорошо согласуются. Следует отметить, что значения коэффициента сопротивления для цилиндра с квадратным поперечным сечением и для плоской пластины (см. табл. 1, 2) близки при Re ≈ 30 и различаются при Re < 30.

В табл. 3 приведены значения коэффициента сопротивления для неньютоновских жидкостей, свидетельствующие о надежности используемого кода.

В табл. 4 приведены результаты для случая обтекания неньютоновской жидкостью цилиндра с квадратным поперечным сечением для очень большой области расчета при малых и больших значениях числа Рейнольдса.

С учетом сказанного выше можно предположить, что значения коэффициента сопротивления, полученные в настоящей работе, будут меньше, чем полученные в работах с небольшой расчетной областью (в случае малой расчетной области коэффициент сопротивления увеличивается). Например, при Re = 1, n = 0.6 $C_D = 18,79$ (настоящая работа), $C_D = 28,95$ (работа [18]). Различие составляет 54 %. При Re = 0,1, n = 1 (ньютоновская жидкость) $C_D = 58,1400;71,3064$ в настоящей работе и работе [21] соответственно (см. табл. 3) (различие — 23 %). При Re = 5, n = 1 (ньютоновская жидкость) $C_D = 4,25;$

n												
		$\mathrm{Re} = 1$		Re = 10								
	Работа [12] (H/D = 1200)	Настоящая работа (H/D = 50000)	Различие результатов, %	Работа [12] (H/D = 1200)	Настоящая работа (H/D = 50000)	Различие результатов, %						
0,2	26,91	26,86	<1	$3,\!25$	$3,\!16$	3						
$0,\!6$	17,24	17,19	<1	2,85	$2,\!90$	2						
$1,\!0$	10,36	10,28	<1	2,73	2,75	<1						
$1,\!4$	7,38	7,35	<1	$2,\!64$	$2,\!64$	0						
18	5 85	5.84	<1	2.57	2.56	<1						

Значения коэффициента сопротивления для случая обтекания неньютоновской жидкостью со степенным реологическим законом кругового цилиндра при различных значениях показателя степени *n*

Рис. 2. Зависимость коэффициента $A (C_D = A/\text{Re})$ от показателя степени n

4,90 в настоящей работе и работе [17] соответственно (различие — 15 %). Во всех случаях при малых числах Рейнольдса значения коэффициента сопротивления в неограниченном потоке меньше, чем полученные в других работах.

Результаты, представленные в табл. 4, получены при малых значениях числа Рейнольдса, для которых до настоящего времени данных не существовало. Из табл. 4 следует, что при малых значениях числа Рейнольдса (Re ≤ 1) и показателя степени ($n \leq 0.5$) коэффициент сопротивления удовлетворяет закону $C_D = A/$ Re. Значения константы A (при n = 0.1 A = 31.14, при n = 0.2 A = 30.83, при n = 0.3 A = 28.95, при n = 0.4 A = 25.82, при n = 0.5 A = 21.82) приведены на рис. 2, где через них проведен наилучший полином. Уравнение полинома с наилучшим приближением для указанных значений имеет вид

$$A = 30,493 + 13,335\,714n - 61,642\,857n^2.$$

В табл. 5 приведены значения длины вихревого следа для течения неньютоновской жидкости, перпендикулярного цилиндру с квадратным поперечным сечением. Эти значения больше, чем вычисленные в меньших областях. Например, длина вихревого следа при Re = 10, n = 1, рассчитанная в данной работе, равна L/D = 0,6063, в то время как в работе [18] (см. уравнение (6)) при H/D = 8 L/D = 0,4898 (различие составляет 19 %).

	$\mathrm{Re} = 45$	1,471	1,357	1,340	1,359	1,392	1,428	1,502	1,567	1,622	1,667	1,701	1,727	1,745
	$\mathrm{Re} = 40$	1,505	1,422	1,411	1,433	1,466	1,503	1,575	1,639	1,691	1,732	1,765	1,788	1,804
	$\mathrm{Re} = 35$	1,564	1,517	1,511	1,532	1,564	1,599	1,669	1,729	1,777	1,814	1,841	1,861	1,873
	$\mathrm{Re} = 30$	1,718	1,667	1,655	1,669	1,690	1,724	1,788	1,838	1,879	1,910	1,934	1,946	1,954
	$\mathrm{Re} = 25$	1,907	1,859	1,839	1,844	1,865	1,890	1,941	1,983	2,015	2,038	2,051	2,058	2,058
	$\mathrm{Re} = 20$	2,217	2,161	2,125	2,111	2,119	2,130	2,160	2,179	2,195	2,202	2,203	2,199	2,191
	$\mathrm{Re} = 15$	2,731	2,667	2,594	2,542	2,521	2,508	2,492	2,479	2,465	2,447	2,428	2,407	2,381
C_I	Re = 10	3,76	3,67	3,52	3,38	3,28	3,20	3,09	3,00	2,93	2,87	2,79	2,73	2,68
	$\mathrm{Re} = 5$	6,86	6,64	6,28	5,83	$5,\!43$	5,10	4,61	4,25	3,97	3,76	3,59	3,46	3,31
	Re = 2	15,94	15,65	14,72	13,30	11,68	10,36	8,45	7,16	6,26	5,61	5,12	4,74	4,44
	$\mathrm{Re} = 1$	31,46	30,98	29,10	26,06	22,28	18,79	13,99	11,04	9,12	7,79	6,86	6,16	5,63
	$\mathrm{Re}=0,1$	311,46	308, 31	289,53	258, 22	218, 22	172,69	97, 45	58,14	38,10	27,10	20,55	16,38	13,56
	Re = 0.01	3114,00	3081,00	2895,00	2582,00	2181,70	1722,00	848,14	384,80	194,24	111,53	71,23	49,41	36,52
	Re = 0,001	31134,0	30824,0	28961,0	25827,0	21817,0	17243,0	8227,0	2912,0	1113,0	507, 3	269,3	161,0	105,4
5	<i>11</i>	0,1	0,2	0,3	0,4	0,5	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0

Значения коэффициента сопротивления для случая обтекания неньютоновской жидкостью

со степенным реологическим законом цилиндра с квадратным поперечным сечением при $H/D=50\,000$ и различных значениях показателя степени и числа Рейнольдса

							(/ /				
n	L/D										
	$\mathrm{Re} = 1$	Re = 2	$\mathrm{Re} = 5$	$\mathrm{Re} = 10$	Re = 20	Re = 30	Re = 40				
$0,\!1$	0,0798	0,0825	0,1287	0,2141	$0,\!4277$	1,4089	2,9424				
$_{0,2}$	0,0539	0,0707	0,1119	$0,\!1958$	0,4476	1,0472	2,1489				
$_{0,3}$	0,0280	0,0432	0,0966	$0,\!1989$	$0,\!4842$	0,9969	1,8438				
0,4		0,0188	0,0829	0,2141	0,5574	1,0701	1,8254				
0,5			0,0814	0,2507	$0,\!6398$	1,1800	1,9109				
$0,\!6$			0,0997	0,3011	0,7497	$1,\!2761$	2,0208				
0,7			0,1302	0,3636	0,8550	1,4043	2,1611				
0,8			$0,\!1775$	$0,\!4308$	0,9694	1,5554	2,3259				
0,9			0,2309	0,5086	1,1113	1,7934	2,5273				
$1,\!0$		0,0707	0,2919	$0,\!6063$	1,2624	1,9994	2,7227				
1,2	0,0569	0,1683	$0,\!4323$	0,8199	1,5813	2,4114	$3,\!1987$				
1,4	0,1454	0,2782	0,5849	1,0625	1,9902	2,9012	$3,\!6748$				
$1,\!6$	0,2401	0,4033	0,7772	1,3188	$2,\!4755$	$3,\!4505$	$4,\!1570$				
$1,\!8$	0,3499	0,5468	0,9740	$1,\!6942$	2,9698	4,0227	5,0847				
$2,\!0$	$0,\!4735$	0,7177	1,2548	2,0757	$3,\!5741$	$4,\!6514$	5,7943				

Значения длины вихревого следа L/D для случая, когда течение неньютоновской жидкости со степенным реологическим законом перпендикулярно цилиндру с квадратным поперечным сечением ($H/D = 50\,000$)

На рис. 3, 4 приведены зависимости коэффициента сопротивления от числа Рейнольдса и показателя степени. Видно, что коэффициент сопротивления уменьшается при увеличении числа Рейнольдса и перестает зависеть от показателя степени. При Re = 20 коэффициент сопротивления практически не зависит от показателя степени и приближенно равен коэффициенту сопротивления ньютоновской жидкости. Заметим, что при Re ≤ 1 кривые зависимостей, соответствующие значениям n = 0,1, n = 0,5, параллельны (см. рис. 3), в случае если справедливо соотношение $C_D = A/$ Re.

На рис. 5 приведена зависимость длины вихревого следа от показателя степени. Видно, что при Re = 1; 2, $n_1^* \leq n \leq n_2^*$, $n_1^{**} \leq n \leq n_2^{**}$ вихревой след отсутствует. Также на рис. 5 видно, что длина вихревого следа сначала уменьшается, а затем, достигнув минимума, начинает увеличиваться.

На рис. 6 показана зависимость длины вихревого следа от числа Рейнольдса при различных значениях показателя степени. Полученные результаты свидетельствуют о том, что зависимость длины вихревого следа от числа Рейнольдса линейна в случае ньютоновской жидкости и нелинейна в случае неньютоновской жидкости. Нелинейность зависимости L/D(Re) существенна при малых значениях показателя степени (n = 0,1), уменьшается при $n \approx 1$ и исчезает при n = 1. При дальнейшем увеличении показателя степени нелинейность вновь возрастает. На рис. 5, 6 видно, что при изменении Re и n длина вихревого следа меняется нелинейно.

Заключение. В работе исследована задача об обтекании неньютоновской безграничной жидкостью цилиндра с квадратным поперечным сечением. Получены следующие результаты.

Для расчета обтекания безграничной жидкостью при малых значениях числах Рейнольдса необходима большая вычислительная область. Использование небольшой вычислительной области приводит к завышенным значениям коэффициента сопротивления и заниженным значениям длины вихревого следа.

При $\text{Re} \leq 1$, $n \leq 0.5$ коэффициент сопротивления удовлетворяет закону $C_D = A/\text{Re}$.

Рис. 3

Рис. 3. Зависимость коэффициента сопротивления от числа Рейнольдса при различных значениях показателя степени:

1 - n = 0,1, 2 - n = 0,5, 3 - n = 1,0, 4 - n = 1,6, 5 - n = 2,0

Рис. 4. Зависимость коэффициента сопротивления от показателя степени при различных значениях числа Рейнольдса:

 $1 - \operatorname{Re} = 1, \, 2 - \operatorname{Re} = 2, \, 3 - \operatorname{Re} = 5, \, 4 - \operatorname{Re} = 10, \, 5 - \operatorname{Re} = 20, \, 6 - \operatorname{Re} = 40$

Рис. 5

Рис. 6

Рис. 5. Зависимость длины вихревого следа от показателя степени при различных числах Рейнольдса:

1 - Re = 1, 2 - Re = 2, 3 - Re = 5, 4 - Re = 10, 5 - Re = 20, 6 - Re = 40

Рис. 6. Зависимость длины вихревого следа от числа Рейнольдса при различных значениях показателя степени:

1 - n = 0,1, 2 - n = 0,5, 3 - n = 1,0, 4 - n = 1,6, 5 - n = 2,0

Влияние показателя степени на коэффициент сопротивления уменьшается при увеличении числа Рейнольдса, при Re = 20 коэффициент сопротивления перестает зависеть от показателя степени.

Длина вихревого следа нелинейно зависит от числа Рейнольдса и показателя степени.

ЛИТЕРАТУРА

- 1. Zdravkovich M. M. Flow around circular cylinders. Oxford: Oxford Univ. Press, 1997. V. 1.
- 2. White F. Viscous fluid flow. 3rd ed. N. Y.: McGraw-Hill, 2006.
- 3. Panton R. L. Incompressible flow. 3rd ed. New Jersey: Wiley, 2005.
- Glauert H. Wind tunnel interference on wings, bodies and airscrews // Aeronaut. Res. Counc. Repts Mem. 1933. N 1566.
- Maskell E. C. A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel // Aeronaut. Res. Counc. Repts Mem. 1963. N 3400.
- Najjar F. M., Vanka S. P. Simulations of the unsteady separated flow past a normal flat plate // Intern. J. Numer. Methods Fluids. 1995. V. 21. P. 525–547.
- Babenko K. I., Vedenskaya N. D., Orlova M. G. Calculation of stationary viscous liquid flow past a circular cylinder // Comput. Math. Math. Phys. 1975. V. 15, N 1.
- Fornberg B. A numerical study of steady viscous flow past a circular cylinder // J. Fluid Mech. 1980. V. 98. P. 819–855.
- Lange C. F., Durst F., Breuer M. Momentum and heat transfer from cylinders in laminar cross flow at 10⁻⁴ ≤ Re ≤ 200 // Intern. J. Heat Mass Transfer. 1998. V. 41. P. 3409–3430.
- Stojkovich D., Breuer M., Durst F. Effect of high rotation rates on the laminar flow around a circular cylinder // Phys. Fluids. 2002. V. 14. P. 3160–3178.
- Posdziech O., Grundmann R. A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder // J. Fluids Structures. 2007. V. 23. P. 479–499.
- Sivakumar P., Bharti R. P., Chhabra R. P. Steady flow of power-law fluids across an unconfined elliptical cylinder // Chem. Engng Sci. 2007. V. 62. P. 1682–1702.
- Sen S., Mittal S., Biswas G. Steady separated flow past a circular cylinder at low Reynolds numbers // J. Fluid Mech. 2009. V. 620. P. 89–119.
- 14. Franke R., Rodi W., Schonung B. Numerical calculation of laminar vortex-shedding flow past cylinders // J. Wind Engng Industr. Aerodynam. 1990. V. 35. P. 237–257.
- Kelkar K. M., Patankar S. V. Numerical prediction of vortex shedding behind a square cylinder // Intern. J. Numer. Methods Fluids. 1992. V. 14. P. 327–341.
- Sohankar A., Norberg C., Davidson L. Low Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition // Intern. J. Numer. Methods Fluids. 1998. V. 26. P. 39–56.
- Sharma A., Eswaran V. Heat and fluid flow across a square cylinder in the two-dimensional laminar regime // Numer. Heat Transfer. 2004. V. 45. P. 247–269.
- Dhiman A. K., Chhabra R. P., Eswaran V. Steady flow of power-law fluids across a square cylinder // Chem. Engng Res. Design. 2006. V. 84. P. 300–310.
- Dhiman A. K., Anjaiah N., Chhabra R. P., Eswaran V. Mixed convection from a heated square cylinder to Newtonian and power law fluids // Trans. ASME. J. Fluids Engng. 2007. V. 129. P. 506–513.
- Sahu A. K., Chhabra R. P., Eswaran V. Two-dimensional unsteady laminar flow of a power law fluid across a square cylinder // J. Non-Newtonian Fluid Mech. 2009. V. 160. P. 157–167.

- Rao P. K., Sahu A. K., Chhabra R. P. Momentum and heat transfer from a square cylinder in power-law fluids // Intern. J. Heat Mass Transfer. 2011. V. 54. P. 390–403.
- Rao P. K., Sasmal C., Sahu A. K., et al. Effect of power-law fluid behavior on momentum and heat transfer characteristics of an inclined square cylinder in steady flow regime // Intern. J. Heat Mass Transfer. 2011. V. 54. P. 2854–2867.
- Islam S. U., Zhou C. Y., Shah A., Xie P. Numerical simulation of flow past rectangular cylinders with different aspect ratios using the incompressible lattice Boltzmann method // J. Mech. Sci. Technol. 2012. V. 26. P. 1027–1041.
- Krishnan S., Kannan A. Effect of blockage ratio on drag and heat transfer from a centrally located sphere in pipe flow // Engng Appl. Comput. Fluid Mech. 2010. N 4. P. 396–414.
- Dhiman A. K., Chhabra R. P., Eswaran V. Flow and heat transfer across a confined square cylinder in the steady flow regime: Effect of Peclet number // Intern. J. Heat Mass Transfer. 2005. V. 48. P. 4598–4614.
- Yoon D-H., Yang K-S., Choi C-B. Flow past a square cylinder with an angle of incidence // Phys. Fluids. 2010. V. 22. 043603.
- 27. White F. Fluid mechanics. 4th ed. N. Y.: McGraw-Hill, 1998.
- Denier J. P., Dabrowski P. P. On the boundary-layer equations for power-law fluids // Proc. Roy. Soc. London. Ser. A. 2004. V. 460. P. 3143–3158.
- Sivakumar P., Bharti R. P., Chhabra R. P. Effect of power-law index on critical parameters for power-law flow across an unconfined circular cylinder // Chem. Engng Sci. 2006. V. 61. P. 6035– 6046.
- Wu B., Chen S. Simulation of non-Newtonian fluid flow in anaerobic digesters // Biotechnol. Bioengng. 2008. V. 99. P. 700–711.
- Pantokratoras A. Further results on non-Newtonian power-law flows past a two-dimensional flat plate with finite length // J. Mech. Sci. Technol. 2013. V. 27. P. 1995–2003.
- Pantokratoras A. Steady laminar assisted mixed convection normally to a heated horizontal plate with finite length // Intern. J. Thermal Sci. 2013. V. 65. P. 158–169.
- Sen S., Mittal S., Biswas G. Flow past a square cylinder at low Reynolds numbers // Intern. J. Numer. Methods Fluids. 2011. V. 67. P. 1160–1174.
- Beaudoin A., Huberson S., Rivoalen E. From Navier Stokes to Stokes by means of particle methods // J. Comput. Phys. 2006. V. 214. P. 264–283.
- Dennis S. C. R., Qiang W., Coutanceau M., Launay J. L. Viscous flow normal to a flat plate at moderate Reynolds numbers // J. Fluid Mech. 1993. V. 248. P. 605–635.

Поступила в редакцию 8/X 2013 г., в окончательном варианте — 20/I 2014 г.