РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

ФИЗИКО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ РАЗРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

2015 № 4

УДК 539.374

ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНЫХ ПАРАМЕТРОВ БОРТА КАРЬЕРА В РАМКАХ ОСЕСИММЕТРИЧНОЙ МОДЕЛИ ЖЕСТКО-ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ГОРНЫХ ПОРОД

А. И. Чанышев, Г. М. Подыминогин

Институт горного дела им. Н. А. Чинакала СО РАН, E-mail:a.i.chanyshev@gmail.com, Красный проспект, 54, 630091, г. Новосибирск, Россия

Предлагается математическая модель определения устойчивости борта карьера конусообразной выемки в рамках жестко-пластической схемы деформирования массива горных пород с отысканием максимально допустимой с точки зрения безопасности ведения горных работ глубины самого карьера.

Устойчивость, борт, карьер, массив пород, жестко-пластическая модель материала, глубина карьера

Горные породы — среды с разным сопротивлением при растяжении и сжатии, обладающие эффектом дилатансии. Существуют различные математические модели для описания поведения таких материалов при нагружении [1-5]. Однако предпочтение отдадим модели, изложенной в [6], в которой предполагается тензорный базис со следующими свойствами: по одному из ортов этого базиса связь между определенной комбинацией напряжений и такой же комбинацией деформаций является линейной (пропорциональной как в упругости, пластичности, так и при разрушении вплоть до разрушения материала на части), а по другому орту другая комбинация напряжений и такая же комбинация деформаций связаны единой зависимостью, причем такой, которая не зависит от того, как изменяются в процессе нагружения напряжения и деформации ("единая" кривая). Эта модель проверялась с использованием экспериментальных данных [7], она отражает эффект дилатансии и разносопротивляемость при растяжении и сжатии не только на стадии неупругих деформаций, но и упругих.

Постановка задачи: пусть имеется карьер с осесимметричной конусообразной формой (рис. 1), у которого основание в виде круга с радиусом $r_0 = OO_1$, борт карьера O_1A наклонен к горизонтальной плоскости под углом α . Есть верхнее основание, проходящее через точки N и L, высота карьера H (отрезок OM). Очевидно, что если увеличивать высоту H, то из-за веса вышележащих слоев, а также из-за веса техники, находящейся на верхнем основании карьера, произойдет обрушение борта. Нас интересует то минимальное значение H, ниже которого карьер будет еще оставаться в неразрушенном состоянии, однако при превышении которого он разрушится. Эту высоту, максимально допустимую с точки зрения безопасности ведения горных работ, будем называть предельной. Для ее определения будем исходить из следующих допущений.

Существуют обратимые и необратимые деформации. Разрушение — это в большей части необратимая деформация. Будем считать, что если область необратимых деформаций не выходит на поверхность обнажения карьера (линия O_1N , рис. 1), оставаясь где-то внутри, или касается ее в какой-то одной или нескольких точках, то это еще не разрушение карьера. Разрушение произойдет тогда, когда область разрушения выйдет полностью на обнажение карьера, начинаясь в какой-то точке O_1 и кончаясь в точке A (рис. 1).

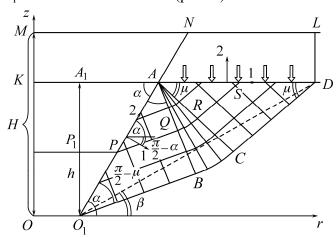


Рис. 1. Карьер с конической выемкой высотой H с радиусом основания OO_1 с изображенными полями простых напряженных состояний O_1AB , BAC, CAD

Учитывая эти обстоятельства, задачу определения максимально допустимой высоты H будем решать в следующей постановке: пренебрегаем рассмотрением упругих (обратимых) деформаций. Необратимую деформацию будем рассматривать в рамках математической модели идеальной пластичности горных пород [3, 8, 9].

Обратим внимание, что при потере устойчивости откосов, отвалов [10-13] на верхнем их основании образуется вертикальная трещина DL, которая раскрывается при обрушении борта карьера так, что блок ANLD на рис. 1 можно считать как некоторое независимое от разрушаемого массива пород тело, действующее своим весом и весом техники на площадке NL на площадку AD и на то, что находится под ней. Поэтому из всех возможных конфигураций блоков будем отыскивать такой блок, который будет создавать наибольшее давление на площадку AD. Определяя это давление и приравнивая его давлению, при котором область O_1ADCBO_1 переходит в неупругое состояние, найдем уравнение для отыскания максимально допустимой высоты H.

Вначале решаем первую задачу.

ПРЕДЕЛЬНАЯ НАГРУЗКА ПО СХЕМЕ ЖЕСТКО-ПЛАСТИЧЕСКОГО ТЕЛА ПРИ НАГРУЖЕНИИ БОРТА КАРЬЕРА

Рассматривается ситуация, изображенная на рис. 1. Имеется борт карьера с вертикальной нагрузкой (площадка AD). Требуется найти такое ее значение, при котором борт карьера перейдет в пластическое состояние. Для решения задачи имеем тензоры напряжений и деформаций в осесимметричном случае вида

$$T_{\sigma} = \begin{pmatrix} \sigma_{r} & \tau_{rz} & 0 \\ \tau_{rz} & \sigma_{z} & 0 \\ 0 & 0 & \sigma_{\varphi} \end{pmatrix}, \quad T_{\varepsilon} = \begin{pmatrix} \varepsilon_{r} & \varepsilon_{rz} & 0 \\ \varepsilon_{rz} & \varepsilon_{z} & 0 \\ 0 & 0 & \varepsilon_{\varphi} \end{pmatrix}, \tag{1}$$

уравнения равновесия

$$\begin{cases}
\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\varphi}}{r} = 0, \\
\frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = -\gamma_B,
\end{cases}$$
(2)

где γ_B — удельный вес.

Из (1) находим главные напряжения и деформации:

$$\begin{cases}
\sigma_1 = \sigma + \tau, & \sigma_2 = \sigma - \tau, & \sigma_3 = \sigma_{\varphi}, \\
\varepsilon_1 = \varepsilon + \gamma, & \varepsilon_2 = \varepsilon - \gamma, & \varepsilon_3 = \varepsilon_{\varphi},
\end{cases}$$
(3)

(предполагаем, что главные оси тензоров совпадают).

Отметим, что в (3) $\sigma = (\sigma_1 + \sigma_2)/2$, $\tau = (\sigma_1 - \sigma_2)/2$, $\varepsilon = (\varepsilon_1 + \varepsilon_2)/2$, $\gamma = (\varepsilon_1 - \varepsilon_2)/2$.

Далее принимается гипотеза полной пластичности [8, 3]: $\sigma_3 = \sigma_{\varphi} = \sigma_2$.

Относительно определяющих соотношений делается предположение о наличии связи между напряжениями и деформациями:

$$\begin{cases} \frac{\sigma_1 + \sigma_2}{2} \sin \varphi_* + \frac{\sigma_1 - \sigma_2}{2} \cos \varphi_* = f \left[\frac{\varepsilon_1 + \varepsilon_2}{2} \sin \varphi_* + \frac{\varepsilon_1 - \varepsilon_2}{2} \cos \varphi_* \right], \\ \frac{\sigma_1 + \sigma_2}{2} \cos \varphi_* - \frac{\sigma_1 - \sigma_2}{2} \sin \varphi_* = K \left[\frac{\varepsilon_1 + \varepsilon_2}{2} \sin \varphi_* - \frac{\varepsilon_1 - \varepsilon_2}{2} \cos \varphi_* \right], \end{cases}$$

где f — функция, не зависящая от вида нагружения; K — постоянная материала, определяется экспериментально; φ_* — угол поворота тензорного базиса, составленного из шарового тензора

$$T_1 = rac{1}{\sqrt{2}}egin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 и тензора-девиатора $T_2 = rac{1}{\sqrt{2}}egin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, вокруг некоторого начала O (параметр $\, \varphi_* \,$

определяется на основе экспериментов). Здесь 1, 2, 3 — главные оси тензора напряжений и деформаций, причем $\sigma_1 \ge \sigma_2 \ge \sigma_3$.

Рассмотрим простейший случай, когда жесткость K значительна, а комбинация напряжений $\frac{\sigma_1+\sigma_2}{2}\sin \varphi_*+\frac{\sigma_1-\sigma_2}{2}\cos \varphi_*$ остается в процессе нагружения все время постоянной и равной константе материала $k/\sqrt{2}$. Решая уравнения равновесия (2) вместе с условием полной пластичности $\sigma_{\varphi}=\sigma_2$ и условием идеально-пластического состояния

$$\frac{\sigma_1 + \sigma_2}{2} \sin \varphi_* + \frac{\sigma_1 - \sigma_2}{2} \cos \varphi_* = \frac{k}{\sqrt{2}},\tag{4}$$

получаем гиперболическую систему уравнений с характеристиками

$$\left(\frac{dz}{dr}\right)_{1,2} = \lambda_{1,2} = \frac{\sin 2\Theta \pm \sqrt{1 - \lg^2 \varphi_*}}{\cos 2\Theta - \lg \varphi_*},$$
(5)

где Θ — угол между первым главным направлением для тензора напряжений T_{σ} (и деформаций T_{ε} !) и осью Or. Если воспользоваться введением нового параметра — угла ψ по формуле $\operatorname{tg} \varphi_* = \sin \psi$, то характеристики преобразятся в известные, полученные в [3]:

$$\lambda_1 = \operatorname{tg}\left(\Theta + \frac{\pi}{4} + \frac{\psi}{2}\right), \quad \lambda_2 = \operatorname{tg}\left(\Theta - \frac{\pi}{4} - \frac{\psi}{2}\right),$$

а соотношения на них соответственно примут вид:

$$2d\Theta - \frac{\cos\psi \, d\sigma}{\sigma \sin\psi - a} + \left[\frac{\sin 2\Theta + \cos\psi + \cos(2\Theta - \psi)}{r \left(\cos 2\Theta - \sin\psi\right)} - \gamma_B \frac{1 + \sin(2\Theta - \psi)}{\left(\sigma \sin\psi - a\right) \left(\cos 2\Theta - \sin\psi\right)} \right] dr = 0 ,$$

$$2d\Theta + \frac{\cos\psi \, d\sigma}{\sigma \sin\psi - a} + \left[\frac{\sin 2\Theta - \cos\psi - \cos(2\Theta + \psi)}{r \left(\cos 2\Theta - \sin\psi\right)} - \gamma_B \frac{1 - \sin(2\Theta + \psi)}{\left(\sigma \sin\psi - a\right) \left(\cos 2\Theta - \sin\psi\right)} \right] dr = 0 ,$$

$$2d\Theta + \frac{\cos\psi \, d\sigma}{\sigma \sin\psi - a} + \left[\frac{\sin 2\Theta - \cos\psi - \cos(2\Theta + \psi)}{r \left(\cos 2\Theta - \sin\psi\right)} - \gamma_B \frac{1 - \sin(2\Theta + \psi)}{(\sigma \sin\psi - a)(\cos 2\Theta - \sin\psi)} \right] dr = 0$$

где

$$a = \frac{k}{\sqrt{2}\cos\varphi_*} \, .$$

Далее удобно от ψ перейти к другой величине:

$$\mu = \frac{\pi}{4} + \frac{\psi}{2} \, .$$

Тогда полученные формулы упростятся:

$$\lambda_1 = \operatorname{tg}(\Theta + \mu), \quad \lambda_2 = \operatorname{tg}(\Theta - \mu).$$
 (6)

Соотношение на первой характеристике при этом станет равным

$$2d\Theta + \frac{\sin 2\mu \, d\sigma}{\sigma \cos 2\mu + a} + \left[\frac{2\cos\Theta \, \sin\mu}{r\cos(\Theta + \mu)} + \gamma_B \frac{\cos(\Theta - \mu)}{(\sigma\cos2\mu + a)\cos(\Theta + \mu)} \right] dr = 0, \tag{7}$$

на второй характеристике

$$2d\Theta - \frac{\sin 2\mu d\sigma}{\sigma \cos 2\mu + a} + \left[-\frac{2\cos\Theta\sin\mu}{r\cos(\Theta - \mu)} + \gamma_B \frac{\cos(\Theta + \mu)}{(\sigma\cos2\mu + a)\cos(\Theta - \mu)} \right] dr = 0.$$
 (8)

Отметим, что интегралы от дифференциальных форм (7), (8) в общем случае зависят от пути интегрирования. Для того чтобы криволинейный интеграл II рода (по координатам) не зависел от пути интегрирования, необходимо, чтобы ротор соответствующей векторной функции был равен нулю [14]. В данном случае это условие из-за наличия в (7), (8) сомножителя $\sigma \cos 2\mu + a$ не выполняется. Требуется задавать путь интегрирования, от которого будет зависеть конечный результат. Заметим, что в теоретической механике возникают аналогичные вопросы: что раньше прикладывается к телу — вес или нагрузка? Ответ, как правило, всегда один — вес. Следуя этому примеру, будем также предполагать, что сначала прикладывается гравитационная сила, т. е. "работает" третье слагаемое в (7), (8). Другими словами, путь интегрирования в пространстве переменных Θ , σ , r, изображенном на рис. 2, из какой-то точки P в точку Q будем представлять в виде ломаной PTO, где на участке PT возрастает лишь переменная r и соответственно слагаемые в (7), (8), связанные с γ_B , на участке TQ изменяются переменные Θ и σ .

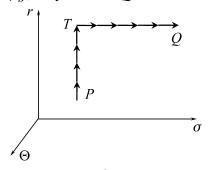


Рис. 2. Пространство независимых переменных Θ , σ , r и предлагаемый путь интегрирования PRQ

Приступим теперь к решению задачи. Вначале рассмотрим треугольник O_1AB на рис. 1. Предполагается, что борт карьера O_1A свободен от напряжений. Поскольку главные оси тензора напряжений 1, 2, 3 обозначены так, что $\sigma_1 \geq \sigma_2 \geq \sigma_3$, то очевидно, что на O_1A первое главное направление ориентировано перпендикулярно стороне O_1A треугольника O_1AB ($\sigma_1=0$ потому, что поверхность O_1A свободна от напряжений и отрезок O_1A находится в сжатом состоянии, т. е. здесь $\sigma_2=\sigma_3<0$), второе главное направление параллельно O_1A . Из этих рассуждений следует, что значение угла Θ на O_1A равно $\Theta|_{O_1A}=-\left(\pi/2-\alpha\right)$, где α — угол наклона борта карьера к оси Or. Далее предположим, что угол Θ сохраняет постоянное значение $-\left(\pi/2-\alpha\right)$ во всем треугольнике O_1AB , т. е. характеристики в нем — прямые линии с уравнениями

$$z = tg(\Theta + \mu) r + const$$
, $z = tg(\Theta - \mu) r + const$.

Поскольку $\mu = \pi/4 + \psi/2$, то характеристиками, параллельными O_1B на рис. 1, будут характеристики, отвечающие числу λ_1 . Вдоль этой характеристики имеем соотношение (7). Про-интегрируем его от произвольной точки P на рис. 1 до точки Q. В итоге имеем

$$2(\Theta_{Q} - \Theta_{P}) + \operatorname{tg} 2\mu \ln \left(\frac{\sigma_{Q} \cos 2\mu + a}{\sigma_{P} \cos 2\mu + a} \right) + \frac{2 \cos \Theta_{P} \sin \mu}{\cos(\Theta_{P} + \mu)} \ln \frac{r_{Q}}{r_{P}} +$$

$$+ \gamma_{B} \frac{\cos(\Theta_{P} - \mu)}{(\sigma_{P} \cos 2\mu + a) \cos(\Theta_{P} + \mu)} (r_{Q} - r_{P}) = 0.$$

$$(9)$$

Здесь Θ_P — значение Θ в точке $P,\ \Theta_Q = \Theta_P$ в силу предположения о прямолинейности характеристик.

Требуется вычислить значение σ_P для того, чтобы знать значение σ_Q . Учтем при этом, что $\sigma_1 = \sigma + \tau$, $\sigma_2 = \sigma - \tau$, где τ — максимальное касательное напряжение, $\sigma_1 = 0$ на O_1A . Тогда на O_1A $\sigma = -\tau$, т.е. σ отрицательно. Подставим это значение в (4), откуда следует $\sigma(\sin\psi - 1) = a$ или с учетом того, что $\psi = 2\mu - \pi/2$, получаем

$$\sigma|_{O_1A} = -\frac{a}{2\cos^2\mu}. (10)$$

Этим же выражением определяется значение $\,\sigma_P\,.$ Подстановка $\,\Theta_P=\alpha-\pi/2\,$ в (9) дает

$$tg 2\mu \ln \left(\frac{\sigma_Q \cos 2\mu + a}{\sigma_P \cos 2\mu + a}\right) = -\frac{2\sin \alpha \sin \mu}{\sin(\alpha + \mu)} \ln \frac{r_Q}{r_P} - \gamma_B \frac{\sin(\alpha - \mu)(r_Q - r_P)}{\sin(\alpha + \mu)(\sigma_P \cos 2\mu + a)}.$$
(11)

Предположим, что в криволинейном треугольнике BAC (криволинейность за счет дуги BC) реализуется центрированное поле характеристик. Чтобы записать их уравнения, введем в рассмотрение полярные координаты ρ и χ так, что

$$r = r_A + \rho \cos \chi$$
, $z = h + \rho \sin \chi$, (12)

где r_A — абсцисса точки A на рис. 1; h — ее ордината. Дифференцируя (12) и подставляя в (6), имеем:

$$[\sin \chi - \operatorname{tg}(\Theta + \mu)\cos \chi]d\rho = -\rho[\cos \chi + \operatorname{tg}(\Theta + \mu)\cdot \sin \chi]d\chi,$$

$$[\sin \chi - \operatorname{tg}(\Theta - \mu)\cos \chi]d\rho = -\rho[\cos \chi + \operatorname{tg}(\Theta - \mu)\sin \chi]d\chi.$$
(13)

Первое уравнение здесь соответствует характеристике $\lambda_1 = \operatorname{tg}(\Theta + \mu)$, второе — характеристике $\lambda_2 = \operatorname{tg}(\Theta - \mu)$.

Полагая, что одними из характеристик являются прямые линии с уравнениями $\chi={\rm const}$, выходящими из точки A — линии семейства $\lambda_2={\rm tg}(\Theta-\mu)$, то из второго уравнения (13) при $d\chi=0$ получаем необходимое условие: ${\rm tg}\chi={\rm tg}(\Theta-\mu)$, откуда имеем $\chi=\Theta-\mu+\pi n$, где $n\in Z$ (Z — множество целых чисел). Из рис. 1 видно, что здесь достаточно положить n=0, т. е. считать

$$\Theta = \chi + \mu \,, \tag{14}$$

где $\alpha - \mu - \pi/2 \le \chi \le -\mu$. Правая граница этого интервала $\chi = -\mu$ соответствует тому, что на стороне AC треугольника ACD и во всем этом треугольнике $\Theta = 0$, т. е. первое главное направление здесь совпадает с направлением оси Or. Это связано с тем, что на границе AD имеем $\tau_{rz} = 0$, $\sigma_z = -p$, отрезок AD сжат некоторым усилием σ_r , по абсолютной величине меньшим, чем p. Тогда угол $\Theta = 0$. Подставляя (14) в первое уравнение (13), получаем уравнение

$$\frac{d\rho}{\rho d\chi} = \operatorname{ctg} 2\mu.$$

Интегрируя, находим

$$\rho = \rho_0 e^{(\chi - \chi_0) \operatorname{ctg} 2\mu}.$$

Полагая здесь $\chi_0=\alpha-\mu-\pi/2$, имеем $\rho_0=AQ$ (рис. 1). Тогда

$$\rho = AQe^{\left(\chi + \mu + \frac{\pi}{2} - \alpha\right)\operatorname{ctg} 2\mu}.$$
(15)

Из (12) следует, что

$$r_Q = r_A + AQ\sin(\alpha - \mu), \quad r_R = r_A + AQe^{\left(\frac{\pi}{2} - \alpha\right)\operatorname{ctg} 2\mu} \cos \mu.$$
 (16)

Дальнейший шаг — интегрирование соотношения (7) вдоль характеристики QR на рис. 1. Опять интегрируем по схеме рис. 2. Имеем в точке Q $\Theta_Q = \Theta_P = \alpha - \pi/2$. Тогда из (7) следует

$$tg 2\mu \ln \left(\frac{\sigma_R \cos 2\mu + a}{\sigma_Q \cos 2\mu + a}\right) = -\frac{2\sin \alpha \sin \mu}{\sin(\alpha + \mu)} \ln \frac{r_R}{r_Q} - \gamma_B \frac{\sin(\alpha - \mu)(r_R - r_Q)}{(\sigma_Q \cos 2\mu + a)\sin(\alpha + \mu)} + 2\alpha - \pi, \quad (17)$$

потому что $\Theta_R=0$.

Двигаемся дальше по характеристике первого семейства — из точки R на рис. 1 в точку S. Положение точки S определяется значением $r_S = r_A + AS$, где $AS = 2AR\cos\mu$ в силу того, что треугольник ARS равнобедренный. Учитывая, что AR на основании (15) есть величина $AOe^{\left(\frac{\pi}{2}-\alpha\right)\operatorname{ctg}2\mu}$, окончательно имеем

$$r_S = r_A + 2AQe^{\left(\frac{\pi}{2} - \alpha\right)\operatorname{ctg} 2\mu} \cos \mu. \tag{18}$$

Осталось проинтегрировать (7) вдоль RS. Получаем

$$tg 2\mu \ln \left(\frac{\sigma_S \cos 2\mu + a}{\sigma_R \cos 2\mu + a}\right) = -\frac{2\sin \mu}{\cos \mu} \ln \frac{r_S}{r_R} - \gamma_B \frac{r_S - r_R}{\sigma_R \cos 2\mu + a}.$$
(19)

Складывая (11), (17), (19) и учитывая свойства логарифма, находим

$$tg 2\mu \ln \left(\frac{\sigma_S \cos 2\mu + a}{\sigma_P \cos 2\mu + a}\right) = -\frac{2\sin \alpha \sin \mu}{\sin(\alpha + \mu)} \ln \frac{r_R}{r_P} - 2tg \mu \ln \frac{r_S}{r_R} - \frac{r_S}{r_R} - \frac{r_S - r_R}{\sin(\alpha + \mu)} \left(\frac{r_Q - r_P}{\sigma_P \cos 2\mu + a} + \frac{r_R - r_Q}{\sigma_Q \cos 2\mu + a}\right) + \frac{r_S - r_R}{\sigma_R \cos 2\mu + a} + \frac{r_S - r_R}$$

где σ_P определяется (10),

$$r_{P} = r_{A} - 2AQ \sin \mu \cos \alpha , \quad r_{Q} = r_{A} + AQ \sin(\alpha - \mu) ,$$

$$r_{R} = r_{A} + AQ e^{\left(\frac{\pi}{2} - \alpha\right) \cot 2\mu} \cos \mu , \quad r_{S} = r_{A} + 2AQ e^{\left(\frac{\pi}{2} - \alpha\right) \cot 2\mu} \cos \mu .$$
(21)

Из (20) находится зависимость σ_S от напряжений σ_P , σ_Q , σ_R . Видно, что σ_S определяется отношением AQ/r_A и, кроме того, величиной AQ в случае учета веса породы (при $\gamma_B \neq 0$). Другое замечание касается того, что в силу уравнений характеристик (6) разности $r_Q - r_P$, $r_R - r_O$, $r_S - r_R$ в (20) пропорциональны разностям $z_O - z_P$, $z_R - z_O$, $z_S - z_R$.

При известных значениях σ_S определим значения σ_z , приводящие к полю линий скольжения, изображенному на рис. 1. Из (4) находим $\sigma(\sin\psi+1)-\sigma_z=a$. Так как $\psi=2\mu-\pi/2$, то $\sigma_z=\sigma(1-\cos2\mu)-a$ или $\sigma_z=2\sin^2\mu\sigma_S-a$.

Приведем еще несколько примеров. Определим расстояние A_1D на рис. 1. Имеем следующие формулы:

$$A_1A = h\operatorname{ctg}\alpha\;,\quad O_1A = h/\sin\alpha\;,\quad O_1A = 2AB\sin\mu\;,\quad AB = O_1A/2\sin\mu = h/(2\sin\alpha\sin\mu)\;.$$

Подставляя AB в (21) вместо AQ, получаем $r_D - r_A = \frac{h\cos 2\mu}{\sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \cot 2\mu}$, $A_1D = A_1A + r_D - r_A$. Отсюда видим, что отношение A_1D к h, т. е.

$$\operatorname{ctg}\beta = \operatorname{ctg}\alpha + \frac{\cos 2\mu}{\sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right)\operatorname{ctg}2\mu},\tag{22}$$

где β — угол, образуемый прямой O_1D с осью Or (этот угол определяет наклон пластической области к оси Or), является для данного угла α и угла μ постоянной величиной.

Зная угол β , (22) можно использовать для определения угла μ при данном α . Зная μ , выражение (20) можно использовать для определения предела упругости материала a.

С учетом (20) получим значения σ в точках A и D. Для точки A σ_A находим с помощью

$$\frac{\sigma_A \cos 2\mu + a}{\sigma_P \cos 2\mu + a} = -\exp\left\{\frac{2\alpha - \pi}{tg \, 2\mu}\right\},\tag{23}$$

поскольку AQ=0, $r_P=r_Q=r_R=r_S$. Так как σ_P есть (10), то $\sigma_P\cos 2\mu+a=a/(2\cos^2\mu)$. Тогда σ_A из (23) запишется в виде

$$\sigma_A = -\frac{a}{\cos 2\mu} \left[1 - \frac{1}{2\cos^2 \mu} \exp\left\{ -\frac{\pi - 2\alpha}{\operatorname{tg} 2\mu} \right\} \right]. \tag{24}$$

Для точки D $AQ = AB = h/(2\sin\alpha\sin\mu)$, поэтому $r_P = OO_1$ на рис. 1,

$$r_{Q} = r_{B} = OO_{1} + O_{1}B\cos\left(\alpha + \mu - \frac{\pi}{2}\right) = OO_{1} + \frac{h\sin(\alpha + \mu)}{2\sin\alpha\sin\mu},$$
 (25)

$$r_R = r_C = OO_1 + h \operatorname{ctg}\alpha + AC \cos \mu = OO_1 + h \operatorname{ctg}\alpha + \frac{h \cos \mu}{2 \sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg}2\mu},$$

$$r_D = OO_1 + h \operatorname{ctg}\alpha + 2AC \cos \mu = OO_1 + h \operatorname{ctg}\alpha + \frac{h \cos \mu}{\sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg}2\mu}.$$

Введем обозначения: $r_0 = OO_1$ — радиус основания карьера, H — высота карьера OM на рис. 1. Тогда для отношений r_R / r_P , r_S / r_R в (20) следуют выражения:

$$\frac{r_R}{r_P} = \frac{r_C}{r_0} = 1 + \frac{h}{H} \frac{H}{r_0} \operatorname{ctg}\alpha + \frac{h}{H} \frac{H}{r_0} \frac{\cos \mu}{2 \sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg}2\mu},$$

$$\frac{r_S}{r_R} = \frac{r_D}{r_C} = \left(1 + \frac{h}{H} \frac{H}{r_0} \operatorname{ctg}\alpha + \frac{h}{H} \frac{H}{r_0} \frac{\cos \mu}{\sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg}2\mu}\right) / \left(1 + \frac{h}{H} \frac{H}{r_0} \operatorname{ctg}\alpha + \frac{h}{H} \frac{H}{r_0} \frac{\cos \mu}{2 \sin \alpha \sin \mu} \cdot e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg}2\mu}\right).$$
(26)

Для разностей $r_{R}-r_{Q}$, $r_{S}-r_{R}$ из (25) получим

$$r_{R} - r_{Q} = r_{C} - r_{B} = \frac{h}{H} \left(\operatorname{ctg} \alpha + \frac{\cos \mu}{\sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg} 2\mu} + \frac{\sin(\alpha + \mu)}{2 \sin \alpha \sin \mu} \right) H,$$

$$r_{S} - r_{R} = r_{D} - r_{C} = \frac{h}{H} \frac{\cos \mu}{2 \sin \alpha \sin \mu} e^{\left(\frac{\pi}{2} - \alpha\right) \operatorname{ctg} 2\mu} H,$$
(27)

Все эти выражения подставляются в (20), находится σ_D . Далее вычисляется среднее значение $\sigma_{\rm cp} = (\sigma_A + \sigma_D)/2$, а затем σ_z . Введение параметра h/H в (26), (27) сделано не случайно.

ОПРЕДЕЛЕНИЕ ОПАСНОГО СЕЧЕНИЯ ПО ВЫСОТЕ, НА КОТОРОМ ДАВЛЕНИЕ МАКСИМАЛЬНО

Представим себе карьер с конусообразной выемкой, как на рис. 1. То есть имеется карьер высотой H с радиусом основания r_0 . Есть угол α , характеризующий наклон борта, есть угол β , определяющий "наклон" зоны пластичности к оси Or. Уже упоминалось, что потеря устойчивости борта карьера происходит за счет веса как вышележащих слоев массива горных пород, так и за счет веса находящейся наверху техники и сооружений. Здесь будем рассматривать только вес вышележащих слоев массива горных пород. Для данных значений r_0 и H проанализируем различные сечения массива пород, находящиеся на некоторой высоте h. Анализировать — значит находить вес вышележащих пород и относить его к площади, на которую он действует. В этом случае будем оценивать вес торов с поперечным сечением в виде трапеций и делить его на площадь кругового кольца с внешним и внутренним радиусами h ctg $\beta + r_0$, h ctg $\alpha + r_0$ соответственно. Высота тора равняется H - h, его объем вычисляется как объем ци-

линдра с радиусом основания $h \cot \beta + r_0$ за вычетом объема усеченного конуса с радиусом нижнего и верхнего основания соответственно $h \cot \alpha + r_0$, $H \cot \alpha + r_0$. Проведя необходимые выкладки, получаем искомое давление, отнесенное к высоте H, в виде выражения

$$\frac{p}{H} = \gamma_B \frac{(\operatorname{ctg}^2 \alpha - 3\operatorname{ctg}^2 \beta)x^3 + 3(\operatorname{ctg} \alpha - 2\operatorname{ctg} \beta)x^2y + 3\operatorname{ctg}^2 \beta x^2 + 6\operatorname{ctg} \beta xy - 3y\operatorname{ctg} \alpha - \operatorname{ctg}^2 \alpha}{3(\operatorname{ctg} \beta - \operatorname{ctg} \alpha)[(\operatorname{ctg} \beta + \operatorname{ctg} \alpha)x^2 + 2xy]}, \quad (28)$$

где обозначены x = h/H, $y = r_0/H$.

Отметим, что выражение (28) справедливо до тех пор, пока радиус цилиндра $h \cot \beta + r_0$ будет больше радиуса верхнего основания усеченного конуса $H \cot \alpha + r_0$, т. е. для всех $x \ge \cot \alpha / \cot \beta$. Из (28) видно, что давление p при данных r_0 и H зависит от x, т. е. от h. При x=1 (h=H) давление p равно нулю. Чтобы найти высоту сечения, на котором давление p максимально, вычислим из (28) производную по x и приравняем ее нулю. В результате находим следующее уравнение для определения x:

$$(\operatorname{ctg}^{2}\alpha - 3\operatorname{ctg}^{2}\beta)(\operatorname{ctg}\beta + \operatorname{ctg}\alpha)x^{4} + 4(\operatorname{ctg}^{2}\alpha - 3\operatorname{ctg}^{2}\beta)x^{3}y + 6[(\operatorname{ctg}\alpha - 2\operatorname{ctg}\beta)y - \operatorname{ctg}\beta\operatorname{ctg}\alpha]x^{2}y + 2\operatorname{ctg}\alpha(\operatorname{ctg}\beta + \operatorname{ctg}\alpha)(3y + \operatorname{ctg}\alpha)x + 2\operatorname{ctg}\alpha(3y + \operatorname{ctg}\alpha)y = 0.$$
(29)

Это уравнение 4-го порядка относительно x. Рассмотрим некоторые частные случаи, вытекающие из (29). Если y=0 ($r_0=0$), то из (29) следует, что один корень равен нулю, а второй определяется выражением

$$x = \sqrt[3]{\frac{2\operatorname{ctg}^2\alpha}{3\operatorname{ctg}^2\beta - \operatorname{ctg}^2\alpha}}.$$
 (30)

Если y большое, т. е. $r_0 >> H$, тогда (29) трансформируется в квадратное уравнение, положительный корень которого есть

$$x = \sqrt{\frac{\operatorname{ctg}\alpha}{2\operatorname{ctg}\beta - \operatorname{ctg}\alpha}} \ . \tag{31}$$

Такое же значение x получается для случая плоской деформации [15].

Вычисляя положительное значение x из (29) и подставляя его в (28), находим максимальное давление p/H для данных значений r_0 и H.

Таким образом, получается, что максимальное давление p есть функция двух параметров — r_0 и H. Приравнивая это значение давления предельному, установленному на основе решения задачи по жестко-пластической схеме, находим уравнение для определения максимально допустимой высоты карьера.

На рис. З показаны зависимости относительной высоты "опасного" сечения x и приведенной нагрузки $p/(H\gamma_B)$ на нем от относительного радиуса выемки y при значениях угла наклона борта карьера $\alpha=60^\circ$, $\beta=30^\circ$. На рис. 4a дано изменение относительной высоты "опасного" сечения x и приведенной предельной нагрузки $p/(H\gamma_B)$ в зависимости от угла наклона борта α при $\beta=30^\circ$, y=0.4, на рис. 4δ — в зависимости от угла β при $\alpha=75^\circ$, y=0.4.

В таблице представлена зависимость приведенной высоты $(H\gamma_B)/k$ от угла наклона борта карьера α и угла поворота тензорного базиса φ_* . Видно, что с увеличением значения угла φ_* приведенная высота увеличивается для одного и того же значения α . Кроме того, для одного и того же значения φ_* , приведенная высота уменьшается с увеличением α . Если зафиксировать

значения угла α и угла φ_* то предельно допустимая высота карьера обратна пропорциональна значению γ_B (чем "тяжелее" массив пород, тем высота меньше). С другой стороны, чем больше предел пластичности k (чем массив прочнее), тем предельная высота больше. Полученные закономерности не противоречат общепринятым представлениям. В отличие от них, в данной работе получен конкретный вид этих зависимостей.

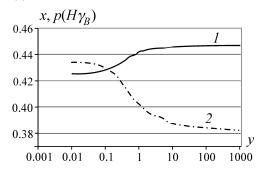


Рис. 3. Зависимости относительной высоты "опасного" сечения x=h/H (1) и приведенной нагрузки $p/(H \gamma_B)$ на нем (2) от относительного радиуса выемки $y=r_0/H$ при $\alpha=60^\circ$, $\beta=30^\circ$

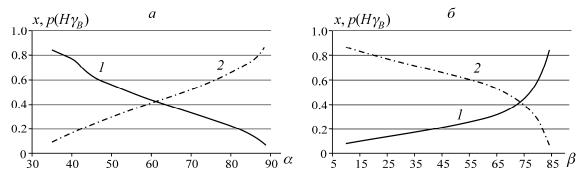


Рис. 4. Изменение относительной высоты "опасного" сечения x (I) и приведенной предельной нагрузки $p/(H\gamma_B)$ (2) в зависимости: a — от угла α при $\beta=30^\circ$, y=0.4; δ — от угла β при $\alpha=85^\circ$

Значения приведенной высоты $(\gamma_B H)/k$ при различных значениях угла наклона борта α и угла поворота тензорного базиса φ_* , град

φ_*	0.001	5	15	20	25	30	35	40	44
55	4.734	5.858	7.501	10.066	14.442	22.958	43.409	116.275	839.924
60	3.616	4.351	5.398	6.98	9.571	14.341	24.93	58.2	311.06
65	3.087	3.663	4.475	5.682	7.617	11.084	18.48	40.285	185.083
70	2.584	3.024	3.638	4.536	5.947	8.405	13.443	27.366	108.014
75	2.109	2.435	2.991	3.533	4.531	6.22	9.543	18.14	61.462
80	1.662	1.894	2.21	2.658	3.334	4.446	6.542	11.605	33.701
85	1.237	1.391	1.598	1.888	2.314	2.993	4.218	6.965	17.254

По данным таблицы на рис. 5 построены зависимости приведенной высоты от разных значений α и φ_* .

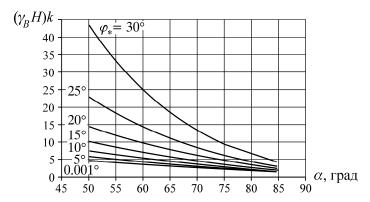


Рис. 5. Зависимости приведенной высоты $(\gamma_B H)/k$ от угла наклона борта α при различных значениях угла поворота тензорного базиса φ_*

выводы

Построено решение задачи о допустимой высоте карьера в осесимметричной постановке. Получены уравнения, связывающие данный параметр с характеристиками борта карьера и массива пород, слагающего этот борт.

Показано, что в случае учета веса породы необходимо при интегрировании соотношений на характеристиках задавать путь интегрирования.

СПИСОК ЛИТЕРАТУРЫ

- **1. Drucker D. C., Prager W.** Soil mechanics and plastic analysis for limit design, Quarterly of Applied Mathematics, 1952, Vol. 10, No. 2.
- **2. Соколовский В. В.** Теория пластичности. 3-е изд. М.: Высш. шк., 1969.
- **3. Березанцев В.Г.** О решениях осесимметричной задачи предельного равновесия среды, обладающей внутренним трением и сцеплением // Инж. сборник. 1951. Т. Х.
- **4. Надаи А.** Пластичность и разрушение твердых тел. Т. 1. М.: Мир, 1969.
- **5. Новожилов В. В.** О пластическом разрыхлении // ПММ. 1965. Т. 29. Вып. 4.
- **6. Чанышев А. И.** Построение паспортных зависимостей горных пород в допредельной и запредельной областях деформирования // ФТПРПИ. 2002. № 5.
- **7.** Ставрогин А. Н., Протосеня А. Г. Пластичность горных пород. М.: Недра, 1979.
- **8. Качанов Л. М.** Основы теории пластичности. М.: Наука, 1969.
- 9. Соколовский В. В. Статика сыпучей среды. М.: ГИФМЛ, 1960.
- **10.** Фисенко Г. Л. Устойчивость бортов карьеров и отвалов. 2-е изд. М.: Недра, 1965.
- 11. Галустьян Э. Л. Геомеханика открытых горных работ. М.: Недра, 1992.
- 12. Демин А. М. Устойчивость открытых горных выработок и отвалов. М.: Недра, 1973.
- **13. Попов И. И., Шпаков П. С., Поклад Г. Г.** Устойчивость горных отвалов. Алма-Ата: Наука, 1987.
- **14. Корн Г., Корн Т.** Справочник по математике (для научных работников и инженеров). М.: Наука, 1973.
- **15. Подыминогин Г. М., Чанышев А. И.** Определение максимально допустимой высоты карьера по схеме жестко-пластического тела // ФТПРПИ. 2015. № 3.