УДК 532.51

СТЕКАНИЕ ВЯЗКОЙ ПЛЕНКИ ЖИДКОСТИ ПО НАКЛОННОЙ ГОФРИРОВАННОЙ ПОВЕРХНОСТИ. РАСЧЕТ УСТОЙЧИВОСТИ ТЕЧЕНИЙ К ПРОИЗВОЛЬНЫМ ВОЗМУЩЕНИЯМ С ИСПОЛЬЗОВАНИЕМ ИНТЕГРАЛЬНОГО МЕТОДА

Ю. Я. Трифонов

Институт теплофизики им. С. С. Кутателадзе СО РАН, 630090 Новосибирск, Россия Новосибирский государственный университет, 630090 Новосибирск, Россия E-mail: trifonov@itp.nsc.ru

Исследовано стекание вязких пленок жидкости вдоль наклонной гофрированной (синусоидальной) поверхности. Расчеты проведены с использованием интегральной модели. В рамках теории Флоке рассмотрена устойчивость нелинейных стационарных течений к произвольным возмущениям. Показано, что для каждого типа гофрирования существует критическое число Рейнольдса, при котором появляются неустойчивые возмущения. Установлено, что это значение существенно зависит от физических свойств жидкости и геометрических параметров течения. В частности, в случае стекания пленки вдоль гладкой стенки критический параметр волнообразования зависит только от угла наклона поверхности течения. Найдены значения параметров гофрирования (амплитуды и периода), при которых стекание пленки вдоль волнистой стенки устойчиво к произвольным возмущениям в диапазоне значений числа Рейнольдса вплоть до умеренных. Такие значения параметров существуют при всех рассмотренных углах наклона поверхности течения.

Ключевые слова: течение пленок, нелинейные волны, устойчивость.

DOI: 10.15372/PMTF20160201

1. Введение и постановка задачи. Стекание вязких пленок жидкости по гофрированным поверхностям используется во многих современных устройствах и технологиях (компактные теплообменники [1], дистилляционные колонны [2], нанесение покрытий [3], охлаждение элементов компьютеров [4], миниатюрные устройства в биомедицине [5]). В настоящее время существует большое количество работ, посвященных исследованию гидродинамики таких течений (см., например, [6]). В [7] при изучении стекания пленки вдоль волнистой стенки установлено, что в случае малой амплитуды гофрирования результаты расчетов устойчивости такого течения совпадают с выводами, следующими из линейной теории устойчивости плоскопараллельного течения Нуссельта: при значениях числа Рейнольдса Re > Re_{flat} = 5 ctg (β)/6 (β — угол наклона поверхности течения к горизонту) появляются неустойчивые моды. Устойчивость пленочного течения по гофрированной вертикальной поверхности рассматривалась в работах [8, 9]. Расчет проводился с использо-

Работа выполнена при финансовой поддержке Министерства образования и науки РФ.

[©] Трифонов Ю. Я., 2016

ванием как интегрального подхода, так и полных уравнений Навье — Стокса. Показано, что при небольших числах Рейнольдса существует диапазон параметров гофрирования (амплитуды и периода), в котором все возмущения основного течения затухают. В экспериментах [10] исследовалось стекание пленки по наклонной поверхности ($\beta = 1 \div 8^{\circ}$) с гофрированием прямоугольного типа. Показано, что в этом случае, в отличие от случая гладкой стенки, диапазон чисел Рейнольдса, в котором имеет место безволновое стекание, существенно шире и критическое число Рейнольдса увеличивается на 20÷30 %. В работах [11, 12] с использованием криволинейной системы координат и длинноволновой аппроксимации исследовалась устойчивость стекания пленки по стенке синусоидальной формы с большим периодом гофрирования. В [12] описаны также эксперименты, в которых изучалось стекание силиконового масла вдоль наклонной синусоидальной поверхности с большим периодом гофрирования. Показано, что в этом случае и в расчетах, и в эксперименте критическое значение параметра волнообразования больше, чем в случае гладкой стенки. В [13] с использованием модифицированного интегрального подхода исследовалось влияние поверхностного натяжения на устойчивость течения пленки. Установлено, что в ряде случаев гофрирование поверхности оказывает дестабилизирующее влияние и неустойчивость возникает быстрее, чем в случае гладкой стенки. В [6] экспериментально исследовалась начальная стадия волнообразования при стекании пленки вдоль наклонной поверхности с гофрированием различного типа (синусоидальным и прямоугольным). Показано, что тип гофрирования оказывает существенное влияние на момент начала волнообразования. В экспериментах [14] исследовалось стекание жидкостей по наклонной ($\beta = 10^{\circ}$) синусоидальной поверхности. В начальном сечении задавались пульсации расхода жидкости, затем изучалось их развитие (рост или затухание) вниз по потоку. Исследовалось стекание жидкостей с относительно малым значением числа Капицы. Обнаружено существование "островов" устойчивости на плоскости параметров (f, Re) (f — частота заданных пульсаций). Установлено также, что при некоторых значениях частоты пульсаций возмущения затухали вниз по потоку даже при больших значениях числа Рейнольдса (в три-четыре раза превышающих критическое значение параметра волнообразования Re_{flat} при $\beta = 10^{\circ}$). В работе [15] с использованием уравнения в длинноволновом приближении теоретически исследовалась устойчивость стекания пленки вдоль наклонной поверхности с синусоидальным или прямоугольным типом гофрирования при угле наклона $\beta = 45^{\circ}$ и двух значениях числа Капицы. Обнаружено, что период гофрирования L оказывает существенное влияние на момент начала волнообразования. При малых значениях L гофрирование оказывает дестабилизирующее влияние при малых значениях амплитуды гофрирования А и стабилизирует течение при достаточно больших значениях А. С увеличением периода гофрирования влияние амплитуды гофрирования становится противоположным. В расчетах [15] установлено, что при достаточно больших значениях периода гофрирования оно оказывает дестабилизирующее влияние при всех значениях амплитуды А.

Таким образом, задача о влиянии типа гофрирования стенки на момент начала волнообразования при течении пленки по наклонной поверхности является актуальной. В задаче имеются пять параметров и безразмерная функция, описывающие тип гофрирования. Целью данной работы является систематическое исследование устойчивости течения пленки по наклонной гофрированной поверхности к произвольным возмущениям. Результаты, полученные ранее для случая течения пленки по вертикальной поверхности [8, 9, 16], обобщаются на случай наклонной гофрированной поверхности.

2. Основные уравнения. Стекание жидкой волновой пленки по гофрированной наклонной поверхности описывается системой уравнений Навье — Стокса с соответствующими граничными условиями. При исследовании гидродинамики стекающих пленок часто используется интегральный подход (система уравнений Шкадова) [17]. При этом рассмат-

4

риваются длинноволновые возмущения. В работах [8, 9] в предположении, что период гофрирования значительно превышает толщину пленки: $\varepsilon = H_0/L \ll 1$ (H_0 — толщина пленки; L — период гофрирования), такой подход был обобщен на случай стекания вязкого слоя жидкости по волнистой вертикальной стенке. Обнаружен диапазон параметров, в котором результаты расчетов с использованием интегрального подхода количественно согласуются с результатами расчетов по полным уравнениям Навье — Стокса. Основная идея интегрального подхода заключается в использовании автомодельного профиля продольной скорости в виде функции

$$u(x, y, t) = \frac{3q(x, t)}{H(x, t)} \left(\frac{y - f(x)}{H} - \frac{(y - f(x))^2}{2H^2}\right).$$

Здесь x — координата вдоль плоскости, наклоненной под углом β по отношению к горизонту; y — координата в направлении, перпендикулярном оси x; t — время; u(x, y, t) компонента вектора скорости жидкости в направлении x; f(x) — функция, задающая форму гофрированной стенки; H(x,t) = h(x,t) - f(x) — локальная толщина пленки; h(x,t) — функция, задающая форму свободной поверхности в данный момент времени; h(x,t)

$$q(x,t) = \int_{y=f(x)} u \, dy$$
 — расход жидкости в пленке. Учитывая малость параметра ε и автомо-

дельность профиля продольной скорости, в результате интегрирования полных уравнений Навье — Стокса поперек слоя получаем следующую систему уравнений для исследования динамики пленочного течения по волнистой наклонной поверхности:

$$\frac{\partial q}{\partial t} + \frac{6}{5} \frac{\partial}{\partial x} \left(\frac{q^2}{H}\right) = -\frac{3 \operatorname{ctg} \beta}{\operatorname{Re}} H(x, t) \frac{\partial h}{\partial x} + \frac{3}{\varepsilon \operatorname{Re}} \left(H - \frac{q}{H^2}\right) + \varepsilon^2 \operatorname{We} H \frac{\partial^3 h}{\partial x^3},
\frac{\partial H}{\partial t} + \frac{\partial q}{\partial x} = 0.$$
(1)

Здесь Re — число Рейнольдса; We = $(3 \operatorname{Fi})^{1/3}/(\sin^{1/3}(\beta) \operatorname{Re}^{5/3})$ — число Вебера; $h(x,t) = H(x,t) + f(x)/\varepsilon_1$; $\varepsilon_1 = H_0/A$; A — амплитуда гофрирования. Уравнения (1) записаны в безразмерном виде. Величины L, H_0 и L/u_0 являются масштабами длины, толщины и времени соответственно: $H_0 \equiv (3\nu^2 \operatorname{Re}/(g\sin\beta))^{1/3}$, $u_0 \equiv \nu \operatorname{Re}/H_0$, Fi = $(\sigma/\rho)^3/(g\nu^4)$ (ν — кинематическая вязкость жидкости; ρ — плотность жидкости; σ — поверхностное натяжение; g — ускорение свободного падения; Fi — пленочное число).

В задаче имеются пять параметров (ε , ε_1 , Fi, Re, β) и безразмерная функция f(x), описывающие конфигурацию стенки. В качестве независимых параметров будем использовать $L/\sqrt{\sigma/(\rho g)}$, A/L, Re, β , Ka (Ka \equiv Fi^{1/11} — число Капицы) и ограничимся изучением синусоидальнго типа гофрирования: $f(x) = 0.5(1 - \cos(2\pi x))$. Нетрудно показать, что параметры уравнения выражаются через выбранные независимые параметры следующим образом: $\varepsilon = (3 \text{ Re} / \sin \beta)^{1/3} / [\text{Ka}^{11/6} L/\sqrt{\sigma/(\rho g)}]$, $\varepsilon_1 = \varepsilon/(A/L)$.

В отличие от случая вертикальной ($\beta = 90^{\circ}$) гофрированной поверхности [8] в рассматриваемом случае в уравнениях (1) имеется только один дополнительный член. Численный алгоритм для нахождения стационарных решений и исследования устойчивости аналогичен соответствующему алгоритму в работе [8]. Безволновому стеканию пленки по гофрированной поверхности соответствуют стационарные решения системы (1), поэтому для их нахождения используются метод Ньютона и фурье-разложение:

$$q_b = 1, \quad H_b(x) \approx \sum_{n=-N/2+1}^{N/2-1} H_n e^{2\pi i n x}, \quad (H_{-n})^* = H_n.$$

Здесь верхний индекс "*" означает комплексное сопряжение. Для реализации численного алгоритма задаются начальные приближения для гармоник H_n (например, в случае малых значений параметра A/L). Для улучшения начального приближения используется итерационный метод Ньютона. В ходе расчетов при варьировании количества гармоник N должны выполняться следующие условия аппроксимации точного решения $H_b(x)$: $|H_{N/2-1}|/ \sup |H_n| < 10^{-3}$.

Подставляя в уравнения (1) выражения

$$q(x,t) = 1 + \tilde{q}(x) e^{-\lambda t} + \kappa.c., \qquad H(x,t) = H_b(x) + \hat{H}(x) e^{-\lambda t} + \kappa.c.$$

(к.с. — комплексно-сопряженная к возмущению величина) и линеаризуя эти уравнения, получаем систему уравнений для собственных значений с периодическими по координате *x* коэффициентами. Эти коэффициенты являются вещественными. В соответствии с общей теорией Флоке решения указанной линейной системы уравнений представляются в следующем виде:

$$\begin{pmatrix} \hat{H} \\ \hat{q} \end{pmatrix} = \begin{pmatrix} \sum_{n=-N/2-1}^{n=N/2-1} \hat{H}_n e^{2\pi i n x} \\ \sum_{n=-N/2+1}^{n=N/2-1} \hat{q}_n e^{2\pi i n x} \\ \sum_{n=-N/2+1}^{n=-N/2+1} \hat{q}_n e^{2\pi i n x} \end{pmatrix} e^{2\pi i Q x}.$$

Здесь $Q \in [0,1]$ — вещественный параметр. В результате задача сводится к задаче на собственные значения для комплексной матрицы общего вида $A\hat{x} = \lambda \hat{x}, \, \hat{x} = (\hat{H}_n, \hat{q}_n)^{\mathrm{T}}$. Матрица A имеет размерность [2(N-1), 2(N-1)], и ее собственные значения определяются численно. Стационарное решение устойчиво, если вещественные части всех 2(N-1)собственных чисел больше или равны нулю для каждого значения параметра $Q \in [0, 1]$. Вследствие вещественности коэффициентов линеаризованных уравнений имеет место симметрия: $\lambda_k(-Q) = \lambda_k^*(Q), k = 1, \ldots, 2(N-1)$, поэтому достаточно рассмотреть собственные значения в интервале $Q \in [0, 0, 5]$.

При Q = 0; 0,5 набор собственных значений состоит как из вещественных чисел, так и из пар комплексно-сопряженных чисел. Заметим также, что при Q = 0 всегда имеется одно нулевое собственное значение.

3. Результаты расчетов. Из уравнений (1) следует, что плоскопараллельное течение пленки по наклонной гладкой плоскости устойчиво при значениях числа Рейнольдса $\operatorname{Re} \leq \operatorname{Re}_{flat} = \operatorname{ctg} \beta$, при этом критическое значение параметра волнообразования Re_{flat} зависит только от угла наклона β . В данном случае размерная длина волны λ_{neut}^* нейтрального возмущения рассчитывается по уравнению

$$\frac{2\pi}{\lambda_{neut}^*}\sqrt{\frac{\sigma}{\rho g \sin\beta}} = \sqrt{\operatorname{Re} - \operatorname{ctg}\beta}.$$

Устойчивость процесса стекания пленки по гофрированной поверхности исследовалась численно (рис. 1–5). При фиксированных значениях числа Капицы, угла наклона β , амплитуды и периода гофрирования сначала проводились расчеты при малых значениях числа Рейнольдса жидкости и вычислялись собственные значения $\lambda_k(Q)$, $k = 1, \ldots, 2(N-1)$ при $Q = 0; 0,01; 0,05; 0,10; 0,15; \ldots; 0,50$. При этом приближенно определялись значения параметра Q, при которых стационарное решение устойчиво или неустойчиво. Затем значение числа Рейнольдса увеличивалось и вновь анализировались собственные значения. С использованием специального алгоритма более точно рассчитывались формы нейтральных кривых, при которых происходит смена устойчивости.

Рис. 1. Кривые нейтральной устойчивости нелинейных решений к различным возмущениям при Ka = 10, $\beta = 10^{\circ}$, Re_{flat} = 5,67: 1–3 — $L/\sqrt{\sigma/(\rho g)} = 3$ (1 — A/L = 0,01, 2 — A/L = 0,02, 3 — A/L = 0,2); 4–6 — $L/\sqrt{\sigma/(\rho g)} = 4$ (4 — A/L = 0,01, 5 — A/L = 0,02, 6 — A/L = 0,125); 7, 8 — $L/\sqrt{\sigma/(\rho g)} = 10$ (7 — A/L = 0,02, 8 — A/L = 0,05)

Рис. 2. Зависимость критического числа Рейнольдса, при котором появляются неустойчивые возмущения, от параметра гофрирования при $\beta = 10^{\circ}$, $\operatorname{Re}_{flat} = 5,67$: $a - \operatorname{Ka} = 10, \ \delta - \operatorname{Ka} = 5; \ 1 - L/\sqrt{\sigma/(\rho g)} = 10, \ 2 - L/\sqrt{\sigma/(\rho g)} = 5, \ 3 - L/\sqrt{\sigma/(\rho g)} = 4, \ 4 - L/\sqrt{\sigma/(\rho g)} = 3$

На рис. 1 представлены типичные кривые нейтральной устойчивости при различных значениях параметров $L/\sqrt{\sigma/(\rho g)}$ и A/L. Отметим сильную зависимость формы этих кривых от периода гофрирования, их немонотонный характер и существование "носика", где значение $\operatorname{Re}_n \equiv \operatorname{Re}(Q_n)$ минимально и производная $d\operatorname{Re}/dQ$ обращается в нуль при $Q = Q_n$. Значение Re_n является критическим параметром волнообразования при стекании пленки по гофрированной стенке, для его вычисления разработан специальный численный алгоритм. На рис. 2, 3 приведены зависимости этого параметра от параметра гофрирования A/L при различных значениях угла наклона β , числа Капицы и периода гофрирования.

Из рис. 1–3 следует, что при малом значении угла наклона гофрирование может оказывать дестабилизирующее влияние ($\operatorname{Re}_n/\operatorname{Re}_{flat} < 1$). Расчеты при $L/\sqrt{\sigma/(\rho g)} \leq 3$ и малых углах наклона β показывают, что при всех значениях параметра A/L < 0.2 гоф-

Рис. 3. Зависимость критического числа Рейнольдса, при котором появляются неустойчивые возмущения, от параметра гофрирования:

a, $\delta - \beta = 30^{\circ}$, $\operatorname{Re}_{flat} = 1,73$ (a — Ka = 10, δ — Ka = 5), e, $z - \beta = 80^{\circ}$, $\operatorname{Re}_{flat} = 0,176$ (e — Ka = 10, z — Ka = 5); 1 — $L/\sqrt{\sigma/(\rho g)} = 10$, 2 — $L/\sqrt{\sigma/(\rho g)} = 5$, 3 — $L/\sqrt{\sigma/(\rho g)} = 4$, 4 — $L/\sqrt{\sigma/(\rho g)} = 3$

рирование оказывает дестабилизирующее влияние. С уменьшением числа Капицы характерные значения $\operatorname{Re}_n / \operatorname{Re}_{flat}$ уменьшаются, что способствует волнообразованию при всех рассмотренных значениях угла наклона β . Зависимость критического параметра волнообразования от параметра A/L имеет немонотонный характер при всех рассмотренных значениях β , Ka, $L/\sqrt{\sigma/(\rho g)}$, причем при малых значениях угла наклона имеет место четко выраженный максимум. С увеличением угла наклона β влияние периода гофрирования на критический параметр волнообразования изменяется на противоположное: при $\beta = 10^{\circ}$ стекание пленки по стенке с малым периодом гофрирования $L/\sqrt{\sigma/(\rho g)} = 3$ оказывается менее устойчивым по сравнению со случаем течения с периодом $L/\sqrt{\sigma/(\rho g)} = 10$, а при $\beta = 80^{\circ}$ — наоборот. Следует отметить, что при увеличении угла наклона β с 10 до 80° значение Re_{flat} уменьшается более чем в 30 раз, поэтому характерные значения $\operatorname{Re}_n / \operatorname{Re}_{flat}$ на рис. 3,6,c значительно больше, чем на рис. 2,a,b. При увеличении угла наклона β величина Re_n меняется незначительно.

На рис. 4, 5 линии 1'-4' являются границами областей параметров $L/\sqrt{\sigma/(\rho g)}$ и A/L, в которых стекание пленки устойчиво к произвольным возмущениям ($Q \in [0, 0, 5]$). Такие области существуют при сравнительно небольших значениях числа Рейнольдса, при $\text{Re} \ge 13$ на рис. 4 и $\text{Re} \ge 10$ на рис. 5 они отсутствуют. При этом период гофрирования в

Рис. 4. Зависимость величины $L/\sqrt{\sigma/(\rho g)}$ от параметра гофрирования A/L при $\beta = 10^{\circ}$, $\text{Re}_{flat} = 5,67$, Ka = 10:

1–5 — верхние границы областей, в которых стекание пленки устойчиво к периодическим возмущениям с Q = 0, 1'-4' — верхние границы областей, в которых стекание пленки устойчиво к произвольным возмущениям с $Q \in [0, 0, 5]$; 1, 1' — Re = 6; 2, 2' — Re = 7; 3, 3' — Re = 9; 4, 4' — Re = 11; 5 — Re = 13

Рис. 5. Зависимость величины $L/\sqrt{\sigma/(\rho g)}$ от параметра гофрирования A/L при $\beta = 40^{\circ}$, $\text{Re}_{flat} = 1,19$, Ka = 10:

1–5 — верхние границы областей, в которых стекание пленки устойчиво к периодическим возмущениям с Q = 0, 1'-4' — верхние границы областей, в которых стекание пленки устойчиво к произвольным возмущениям с $Q \in [0, 0, 5]$; 1, 1' — Re = 1,3; 2, 2' — Re = 2; 3, 3' — Re = 5; 4, 4' — Re = 8; 5 — Re = 10

указанных областях устойчивости изменяется на несколько порядков и существенно зависит от параметра A/L и числа Рейнольдса. Линии 1–5 на рис. 4, 5 являются границами областей параметров $L/\sqrt{\sigma/(\rho g)}$ и A/L, в которых стекание устойчиво к периодическим возмущениям (Q = 0). Период этих возмущений равен периоду гофрирования L. Заметим, что границы таких областей устойчивости были рассчитаны в [8, 9] для случая стекания пленки вдоль вертикальной гофрированной поверхности (Ka = 10, 5). Таким образом, результаты расчетов устойчивости при различных значениях угла наклона в диапазоне 0 < A/L < 0,1667 показывают, что имеется диапазон чисел Рейнольдса $\text{Re}_{flat} < \text{Re} < \text{Re}^{**}$, где существуют параметры гофрирования (A/L, $L/\sqrt{\sigma/(\rho g)}$), при которых стекание пленки по волнистой стенке устойчиво к произвольным двумерным возмущениям. Заключение. В рамках интегрального подхода исследовано стекание вязких пленок жидкости вдоль наклонной гофрированной (синусоидальной) поверхности и рассмотрена устойчивость нелинейных стационарных решений к произвольным возмущениям. Показано, что критическое значение числа Рейнольдса, при котором стационарное стекание становится неустойчивым, существенно зависит от периода и амплитуды гофрирования, физических свойств жидкости (числа Капицы) и угла наклона поверхности течения. Заметим, что в случае стекания пленки вдоль гладкой стенки критический параметр волнообразования Re_{flat} зависит только от угла наклона плоскости течения. Установлено, что в диапазоне значений числа Рейнольдса вплоть до умеренных ($\operatorname{Re} < \operatorname{Re}^{**}$) существуют значения параметров гофрирования (амплитуды и периода), при которых стекание пленки вдоль волнистой стенки устойчиво к произвольным возмущениям. Такие параметры существуют при всех рассмотренных углах наклона плоскости течения $10^\circ \leq \beta \leq 90^\circ$, при этом зависимость $\operatorname{Re}^{**}(\beta)$ является более слабой по сравнению с зависимостью $\operatorname{Re}_{flat}(\beta)$.

ЛИТЕРАТУРА

- Helbig K., Nasarek R., Gambryan-Roisman T., Stephan P. Effect of longitudinal minigrooves on flow stability and wave characteristics of falling liquid films // J. Heat Transfer. 2009. V. 131. 011601.
- 2. Valluri P., Matar O. K., Hewitt G. F., Mendes M. A. Thin film flow over structured packings at moderate Reynolds numbers // Chem. Engng Sci. 2005. V. 60. P. 1965–1975.
- Weinstein S. J., Ruschak K. J. Coating flows // Annual Rev. Fluid Mech. 2004. V. 36. P. 29–53.
- 4. Kraus A., Bar-Cohen A., Wative A. A. Cooling electronic equipment. Hoboken: John Wiley and Sons, 2005. (Mechanical engineers' handbook: Energy and power; V. 4).
- 5. Stone H. A., Stroock A. D., Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip // Annual Rev. Fluid Mech. 2004. V. 36. P. 381–411.
- Cao Z., Vlachogiannis M., Bontozoglou V. Experimental evidence for a short-wave global mode in film flow along periodic corrugations // J. Fluid Mech. 2013. V. 718. P. 304–320.
- Tougou H. Long waves on a film ow of a viscous uid down an inclined uneven wall // J. Phys. Soc. Japan. 1978. V. 44. P. 1014–1019.
- 8. **Трифонов Ю. Я.** Устойчивость и нелинейные волновые режимы при стекании пленок по гофрированной поверхности // ПМТФ. 2007. Т. 48, № 1. С. 110–120.
- Trifonov Y. Y. Stability of a viscous liquid film flowing down a periodic surface // Intern. J. Multiphase Flow. 2007. V. 33. P. 1186–1204.
- Vlachogiannis M., Bontozoglou V. Experiments on laminar film flow along a periodic wall // J. Fluid Mech. 2002. V. 457. P. 133–156.
- Wierschem A., Aksel N. Instability of a liquid film flowing down an inclined wavy plane // Physica D. 2003. V. 186. P. 221–237.
- Wierschem A., Lepski C., Aksel N. Effect of long undulated bottoms on thin gravity-driven films // Acta Mech. 2005. V. 179. P. 41–66.
- D'Alessio S. J. D., Pascal J. P., Jasmine H. A. Instability in gravity-driven flow over uneven surfaces // Phys. Fluids. 2009. V. 21. 062105.
- Pollak T., Aksel N. Crucial flow stabilization and multiple instability branches of gravity-driven films over topography // Phys. Fluids. 2013. V. 25. 024103.
- 15. Tseluiko D., Blyth M. G., Papageorgiou D. T. Stability of film flow over inclined topography based on a long-wave nonlinear model // J. Fluid Mech. 2013. V. 729. P. 638–671.

- Трифонов Ю. Я. Волны на стекающих пленках жидкости. Расчет устойчивости к произвольным двумерным возмущениям и "оптимальные" режимы стекания // ПМТФ. 2014. Т. 55, № 2. С. 188–198.
- 17. Шкадов В. Я. Волновые режимы течения тонкого слоя вязкой жидкости под действием силы тяжести // Изв. АН СССР. Механика жидкости и газа. 1967. № 1. С. 43–51.

Поступила в редакцию 26/V 2014 г., в окончательном варианте — 12/XI 2014 г.