УДК 531.3+539.3

ПРОДОЛЬНО-ПОПЕРЕЧНЫЙ ИЗГИБ СЛОИСТЫХ БАЛОК В ТРЕХМЕРНОЙ ПОСТАНОВКЕ

Г. Л. Горынин, Ю. В. Немировский*

Югорский государственный университет, 628012 Ханты-Мансийск

* Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск

E-mails: gsibadi@hmansy.wsnet.ru, shulgin@itam.nsc.ru

Пространственные уравнения теории упругости для слоистых балок решаются с помощью метода асимптотического расщепления без введения дополнительных гипотез и ограничений.

Ключевые слова: многослойные конструкции, продольно-поперечный изгиб.

Введение. Задача расчета многослойных конструкций является актуальной, так как современные технологические процессы позволяют создавать конструкционные элементы из существенно различающихся материалов. Методы расчета многослойных балок и пластин разработаны достаточно полно, обзор и анализ наиболее значимых работ можно найти, например, в [1, 2]. В большинстве работ основное внимание уделялось приближенному учету сдвига в поперечном сечении в плоскости приложенной нагрузки при пренебрежении поперечным обжатием слоев и другими сдвигами. Приведение соответствующих трехмерных уравнений к одно- и двумерным осуществлялось путем использования кусочно-линейных или степенных разложений поперечных касательных напряжений и перемещений по поперечной координате. Однако во многих случаях свойства материалов могут оказаться настолько различными, что остальными компонентами тензоров напряжений и деформаций нельзя пренебречь. Материалы отличаются друг от друга не только характеристиками жесткости, но и прочности. Поэтому для слоистых балок необходимо иметь достоверную информацию о полях напряжения в каждом слое. В данной работе для решения пространственных уравнений теории упругости в случае изгиба слоистых балок предлагается метод асимптотического расщепления, не требующий каких-либо существенных предположений и ограничений. Ранее данный метод применялся при решении частных задач в работах [3–5].

1. Поперечный изгиб. Рассмотрим балку с постоянным по длине произвольным поперечным сечением, симметричным относительно оси x, состоящую из произвольного числа слоев, выполненных из различных материалов (рис. 1). Начало координат поместим на верхней поверхности балки; слои пронумеруем сверху вниз (*i* — номер текущего слоя; *s* — число слоев).

Пусть u, v, w — перемещения точек в направлении осей x, y, z соответственно; b_- , b_+ — ширина верхней и нижней поверхностей балки; u^* — характерное значение для перемещения u; l, h — длина и высота балки; λ_i, ν_i — упругие постоянные; $\varepsilon_{\alpha\beta}$ — компоненты линейного тензора деформации; λ_0 — характерное значение упругой постоянной; q_-, q_+ — поперечные нагрузки, приложенные к верхней и нижней поверхностям балки соответственно. Будем рассматривать только такие балки, для которых величина $\varepsilon = h/l$ является малым параметром. Используем безразмерные переменные и функции:

$$x' = \frac{x}{h}, \qquad y' = \frac{y}{h}, \qquad z' = \frac{z}{l}, \qquad u' = \frac{u}{u^*}, \qquad w' = \frac{w}{u^*}, \qquad v' = \frac{v}{u^*}, \qquad \lambda'_i = \frac{\lambda_i}{\lambda_0},$$

Рис. 1. Продольно-поперечный изгиб слоистой балки

$$\mu'_i = \frac{\mu_i}{\lambda_0}, \qquad \sigma'_{\alpha\beta} = \frac{\sigma_{\alpha\beta}}{\sigma_0}, \qquad q'_+ = \frac{q_+}{q_0}, \qquad q'_- = \frac{q_-}{q_0}, \qquad \sigma_0 = \frac{\lambda_0 u^*}{h}$$

Далее штрих у безразмерных величин опущен. Откажемся от гипотезы плоских сечений и для перемещений примем следующие аппроксимации в каждом слое:

$$w_{i}^{(n)}(\boldsymbol{r},\varepsilon) = \sum_{k=0}^{n} U_{i,k}^{z} \frac{d^{(2k+1)}u_{0}^{(n)}}{dz^{(2k+1)}} \varepsilon^{2k+1}, \qquad U_{i,0}^{z} = -(x-c_{0}), \qquad U_{i,0}^{x} = 1,$$

$$u_{i}^{(n)}(\boldsymbol{r},\varepsilon) = \sum_{k=0}^{n} U_{i,k}^{x} \frac{d^{2k}u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \qquad v_{i}^{(n)}(\boldsymbol{r},\varepsilon) = \sum_{k=1}^{n} U_{i,k}^{y} \frac{d^{2k}u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \qquad (1)$$

где \mathbf{r} — радиус-вектор точки; $u_i^{(n)}(\mathbf{r},\varepsilon)$ — аппроксимация вектора перемещения; c_0 — константа; n — порядковый номер аппроксимации; $U_k^z(x,y)$, $U_k^x(x,y)$, $U_k^y(x,y)$ — характеристические функции векторного поля перемещений в поперечном сечении балки. Функцию прогиба $u_0^{(n)}(z)$ определим следующим образом:

$$u_0^{(n)}(z) = \frac{1}{F} \sum_{i=1}^s \int_{F_i} u_i^{(n)}(\mathbf{r}) \, dF, \qquad \sum_{i=1}^s \int_{F_i} U_{i,k}^x(x,y) \, dF = 0, \qquad k = 1, \dots, n,$$

где F — площадь поперечного сечения балки; F_i — площадь i-го слоя поперечного сечения балки.

Материал балки подчиняется закону Гука

$$(\sigma_{\alpha\beta})_i = \lambda_i \theta \delta_{\alpha\beta} + 2\mu_i \varepsilon_{\alpha\beta}, \quad \theta = \sum_{\gamma=1}^3 \varepsilon_{\gamma\gamma}, \quad \lambda_i = \frac{\nu_i E_i}{(1-2\nu_i)(1+\nu_i)}, \quad \mu_i = \frac{E_i}{2(1+\nu_i)}.$$
(2)

Подставим равенства (1) в закон Гука (2):

$$(\sigma_{\alpha\alpha})_{i}^{(n)} = \sum_{k=1}^{n} (\tau_{\alpha\alpha})_{i}^{(2k)} \frac{d^{2k} u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k} + (\lambda_{i} + 2\mu_{i}\delta_{\alpha z}) U_{i,n}^{z} \frac{d^{2n+2} u_{0}^{(n)}}{dz^{2n+2}} \varepsilon^{2n+2}, \qquad \alpha \in [x, y, z],$$

$$(\sigma_{xy})_{i}^{(n)} = \sum_{k=1}^{n} (\tau_{xy})_{i}^{(2k)} \frac{d^{2k} u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \quad (\sigma_{\beta z})_{i}^{(n)} = \sum_{k=1}^{n} (\tau_{\beta z})_{i}^{(2k+1)} \frac{d^{2k+1} u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k+1}, \quad \beta \in [x, y],$$
⁽³⁾

где $\delta_{\alpha z}$ — символ Кронекера. В формулах (3) введены характеристические функции тензорного поля напряжений в поперечном сечении балки $(\tau_{\alpha\beta})_i^{(j)}$, которые связаны с характеристическими функциями векторного поля перемещений следующим образом:

$$(\tau_{zz})_{i}^{(2k+2)} = (\lambda_{i} + 2\mu_{i})U_{i,k}^{z} + \lambda_{i} \left(\frac{\partial U_{i,k+1}^{x}}{\partial x} + \frac{\partial U_{i,k+1}^{y}}{\partial y}\right), \qquad (\tau_{xz})_{i}^{(1)} = 0, \qquad (\tau_{yz})_{i}^{(1)} = 0,$$

$$(\tau_{xy})_i^{(2k)} = \mu_i \left(\frac{\partial U_{i,k}^y}{\partial x} + \frac{\partial U_{i,k}^x}{\partial y} \right), \qquad (\tau_{\beta z})_i^{(2k+1)} = \mu_i \left(U_{i,k}^\beta + \frac{\partial U_{i,k}^z}{\partial \beta} \right), \qquad \beta, \gamma \in [x, y], \quad \gamma \neq \beta,$$

$$(\tau_{\beta\beta})_i^{(2k+2)} = \left(\lambda_i \left(U_{i,k}^z + \frac{\partial U_{i,k+1}'}{\partial \gamma}\right) + (\lambda_i + 2\mu_i) \frac{\partial U_{i,k+1}'}{\partial \beta}\right), \qquad i = 1, \dots, s, \qquad k = 1, \dots, n.$$

Предположим, что поперечные нагрузки на верхней и нижней поверхностях имеют вид

$$q_{-} = \sum_{k=1}^{n} q_{-}^{(2k)} \frac{d^{2k} u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \qquad q_{+} = \sum_{k=1}^{n} q_{+}^{(2k)} \frac{d^{2k} u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \qquad q_{-}^{(2)} = q_{+}^{(2)} = 0,$$

$$q = b_{-}q_{-} + b_{+}q_{+}, \qquad q = \sum_{k=1}^{n} q^{(2k)} \frac{d^{2k} u_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k},$$
(4)

где $q_-^{(2k)},\,q_+^{(2k)},\,q^{(2k)}$ $(k=2,\ldots,n)$ — константы; q— суммарная поперечная нагрузка. Уравнения равновесия запишем в виде

$$L_{x,i}(\boldsymbol{u},\varepsilon) = 0, \qquad L_{y,i}(\boldsymbol{u},\varepsilon) = 0, \qquad L_{z,i}(\boldsymbol{u},\varepsilon) = 0.$$
 (5)

Краевые условия имеют следующий вид: — на верхней поверхности при x = 0

$$J_{x,1}(\boldsymbol{u},\varepsilon) = 0,$$
 $J_{y,1}(\boldsymbol{u},\varepsilon) = 0,$ $J_{z,1}(\boldsymbol{u},\varepsilon) = 0,$

— на нижней поверхности при x = 1

$$J_{x,s}(\boldsymbol{u},\varepsilon) = 0, \qquad J_{y,s}(\boldsymbol{u},\varepsilon) = 0, \qquad J_{z,s}(\boldsymbol{u},\varepsilon) = 0,$$
 (6)

— на боковой поверхности

$$B_{x,i}(\boldsymbol{u},\varepsilon) = 0, \qquad B_{y,i}(\boldsymbol{u},\varepsilon) = 0, \qquad B_{z,i}(\boldsymbol{u},\varepsilon) = 0.$$

Условия сопряжения на границе между слоями балки:

$$\Phi_{x,i}(\boldsymbol{u},\varepsilon) = 0, \qquad \Phi_{y,i}(\boldsymbol{u},\varepsilon) = 0, \qquad \Phi_{z,i}(\boldsymbol{u},\varepsilon) = 0, \qquad S_{x,i}(\boldsymbol{u},\varepsilon) = 0, \qquad S_{z,i}(\boldsymbol{u},\varepsilon) = 0, \qquad x = h_i, \qquad i = 2,\dots,s.$$
(7)

В формулах (5)–(7) введены следующие дифференциальные операторы, действующие на вектор перемещения u:

$$L_{\beta,i}(\boldsymbol{u},\varepsilon) = \frac{\partial (\sigma_{\beta x})_i}{\partial x} + \frac{\partial (\sigma_{\beta y})_i}{\partial y} + \varepsilon \frac{\partial (\sigma_{\beta z})_i}{\partial z}, \qquad J_{x,1}(\boldsymbol{u},\varepsilon) = (\sigma_{xx})_1 + q_-,$$

$$J_{y,1}(\boldsymbol{u},\varepsilon) = (\sigma_{xy})_1, \quad J_{z,1}(\boldsymbol{u},\varepsilon) = (\sigma_{xz})_1, \quad J_{x,s}(\boldsymbol{u},\varepsilon) = (\sigma_{xx}) - q_+, \quad J_{y,s}(\boldsymbol{u},\varepsilon) = (\sigma_{xy})_s,$$

$$J_{z,s}(\boldsymbol{u},\varepsilon) = (\sigma_{xz})_s, \quad B_{\beta,i}(\boldsymbol{u},\varepsilon) = (\sigma_{\beta x})_i n_x + (\sigma_{\beta y})_i n_y, \quad \Phi_{x,i}(\boldsymbol{u},\varepsilon) = (u)_{i-1} - (u)_i,$$

$$\Phi_{y,i}(\boldsymbol{u},\varepsilon) = (v)_{i-1} - (v)_i, \quad \Phi_{z,i}(\boldsymbol{u},\varepsilon) = (w)_{i-1} - (w)_i, \quad S_{x,i}(\boldsymbol{u},\varepsilon) = (\sigma_{xx})_{i-1} - (\sigma_{xx})_i, \\ S_{y,i}(\boldsymbol{u},\varepsilon) = (\sigma_{xy})_{i-1} - (\sigma_{xy})_i, \quad S_{z,i}(\boldsymbol{u},\varepsilon) = (\sigma_{zx})_{i-1} - (\sigma_{zx})_i, \quad \beta \in [x,y,z].$$

Определение 1. Задачу о нахождении поля перемещений u, удовлетворяющего уравнениям (2), (5)–(7) внутри балки и на ее границе, будем называть полукраевой, так как существуют участки границы балки (ее торцы), на которых краевые условия временно не поставлены.

Определение 2. Пусть дано дифференциальное уравнение $L(\boldsymbol{u}(\boldsymbol{r}),\varepsilon) = 0$. Функциональную последовательность $\{\boldsymbol{u}^{(n)}(\boldsymbol{r})\}_{n=1}^{\infty}$ будем называть формальным асимптотическим решением этого уравнения, если существует монотонно возрастающая функция m(n) такая, что для всех n выполняется равенство $L(\boldsymbol{u}^{(n)}(\boldsymbol{r}),\varepsilon) = O(\varepsilon^{m(n)})$ при $\varepsilon \to 0$. Если аналогичное равенство выполняется для части или всех краевых условий, то будем говорить о формальном асимптотическом решении полукраевой или краевой задачи соответственно.

Потребуем выполнения равенств для характеристических функций тензорного поля напряжений и связанных с ними характеристических функций векторного поля перемещений:

— внутри поперечного сечения

$$\frac{\partial \left(\tau_{\beta x}\right)_{i}^{(2k)}}{\partial x} + \frac{\partial \left(\tau_{\beta y}\right)_{i}^{(2k)}}{\partial y} + \left(\tau_{\beta z}\right)_{i}^{(2k-1)} = 0, \quad \frac{\partial \left(\tau_{zx}\right)_{i}^{(2k+1)}}{\partial x} + \frac{\partial \left(\tau_{zy}\right)_{i}^{(2k+1)}}{\partial y} + \left(\tau_{zz}\right)_{i}^{(2k)} = 0; \quad (8)$$

— на верхней и нижней поверхностях балки

$$(\tau_{zx})_{1}^{(2k+1)} = 0, \quad (\tau_{xy})_{1}^{(2k)} = 0, \quad (\tau_{xx})_{1}^{(2k)} = -q_{-}^{(2k)}, \quad k = 1, \dots, n, \qquad x = 0,$$

$$(\tau_{xx})_{s}^{(2k)} = q_{+}^{(2k)}, \quad (\tau_{zx})_{s}^{(2k+1)} = 0, \quad (\tau_{xy})_{s}^{(2k)} = 0, \quad k = 1, \dots, n, \qquad x = 1;$$

$$(9)$$

— на боковой поверхности балки

$$(\tau_{\beta x})_{i}^{(2k)}n_{x} + (\tau_{\beta y})_{i}^{(2k)}n_{y} = 0, \quad \beta \in [x, y], \qquad (\tau_{zy})_{i}^{(2k+1)}n_{y} + (\tau_{zx})_{i}^{(2k+1)}n_{x} = 0; \tag{10}$$

— на границе между слоями балки

$$(\tau_{zx})_{i-1}^{(2k+1)} = (\tau_{zx})_i^{(2k+1)}, \qquad (\tau_{x\beta})_{i-1}^{(2k)} = (\tau_{x\beta})_i^{(2k)}, \qquad U_{i-1,k}^{\alpha} = U_{i,k}^{\alpha}, \alpha \in [x, y, z], \qquad \beta \in [x, y], \qquad x = h_i, \qquad i = 2, \dots, s, \qquad k = 1, \dots, n.$$

$$(11)$$

Для одновременного выполнения первых двух дифференциальных равенств в (4) достаточно потребовать пропорциональности верхней и нижней нагрузок:

$$q_{+}^{(2k)} = k_q q_{-}^{(2k)}, \qquad q_{+} = k_q q_{-}.$$
 (12)

Если проинтегрировать по сечению уравнения (8) с учетом равенств (9)–(11), то получим необходимое условие разрешимости краевой задачи (8)–(11)

$$q^{(2k)} = -I_{(2k-2)}, \qquad I_{(2k)} = \int_{F} (x - c_0) (\tau_{zz})^{(2k)} dF.$$
 (13)

Если сложить первые два равенства в (4), умноженные на b_{-} и b_{+} соответственно, то получим дифференциальное уравнение, которое в силу пропорциональности нагрузок эквивалентно исходным равенствам (4):

$$\sum_{k=2}^{n} I_{(2k-2)} \frac{d^{2k} u_0^{(n)}}{dz^{2k}} \varepsilon^{2k} + q = 0.$$
(14)

Непосредственной подстановкой легко убедиться, что формулы (1) дают формальное асимптотическое решение полукраевой задачи (5)–(7), если выполнено условие $\varepsilon^4 d^{2n+2} u_0^{(n)}/dz^{2n+2} = O(1)$ при $\varepsilon \to 0$. Последнее равенство достигается, если при решении дифференциального уравнения (14) исключать быстро осциллирующие решения при $\varepsilon \to 0$. Фактически это условие означает выделение четырехпараметрического семейства решений уравнения (14):

$$u_0^{(n)}(z,\varepsilon) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + F_{(4)}(z,\varepsilon),$$
(15)

где a_j — параметры; $F_{(4)}(z,\varepsilon)$ — частное "неосциллирующее" решение уравнения.

Общее количество краевых условий для семейства решений (15) на торцах балки равняется четырем. Следовательно, на торцах балки можно использовать традиционные краевые условия, основанные на принципе Сен-Венана: равенство нулю средних перемещений $u_0^{(n)}$ и изгибающего момента (шарнирное опирание); равенство нулю изгибающего момента и перерезывающей силы (свободный торец); равенство нулю продольных и поперечных перемещений в среднем (защемление).

Если поперечная нагрузка является многочленом, то непосредственной подстановкой можно доказать

УТВЕРЖДЕНИЕ (о точном решении полукраевой задачи). Пусть выполнены условия (12), (13), справедлива формула (15) и поперечная нагрузка q(z) является многочленом степени m_0 . Тогда функции (1) дают четырехпараметрическое семейство точных решений полукраевой задачи (2), (5)–(7). Номер приближения n вычисляется по формуле $n = [0,5(m_0 + 4)]$, где [a] — целая часть числа a.

ПРИМЕР 1 (однослойная балка прямоугольного поперечного сечения под действием сосредоточенных сил). Если на балку действуют только сосредоточенные силы, то в соответствии с приведенным выше утверждением второе приближение (n = 2) дает точное решение и из уравнения (14) следуют равенства

$$\frac{d^j u_0(z)}{dz^j} = 0, \qquad j \ge 4.$$

Если подставить эти равенства в формулы (1), (3), то уже первое приближение дает точное решение полукраевой задачи (2), (5)–(7). Из решения краевой задачи (8)–(11) при k = 1 для однослойной балки прямоугольного сечения получим следующие характеристические функции тензора напряжений (b — ширина балки):

$$(\tau_{xx})^{(2)} = (\tau_{xy})^{(2)} = 0, \qquad (\tau_{zz})^{(2)} = -E(x-c_0),$$

$$(\tau_{zy})^{(3)} = 4\mu\nu b \sum_{k=1}^{\infty} \frac{\operatorname{sh}\left[(2k-1)\pi y\right]}{\operatorname{sh}\left[(2k-1)\pi 0,5b\right]} \frac{\cos\left((2k-1)\pi x\right)}{\pi^2(2k-1)^2} + 2\nu\mu y(x-0,5) + E(0,5(x-0,5)^2 - 0,125).$$
(16)

С использованием (16) по формулам (1), (3) вычисляются перемещения и компоненты тензора напряжений. Если осреднить величину $(\sigma_{zx})^{(1)}$ по ширине сечения, то из формул (3), (16) получим известную формулу Журавского распределения касательных напряжений по сечению.

Введем отношение касательных напряжений к их осредненным величинам

$$\Delta \sigma_{zx} = \frac{(\sigma_{zx})^{(1)}}{\langle (\sigma_{zx})^{(1)} \rangle} = \frac{(\tau_{zx})^{(3)}}{\langle (\tau_{zx})^{(3)} \rangle} \qquad \Big(\langle a \rangle = \frac{1}{b} \int_{-0.5b}^{0.5b} a(x,y) \, dy \Big).$$

	Таблица 1					
b		y	$\Delta \sigma_{zx}$	b	y	$\Delta \sigma_{zx}$
0,5		$\begin{array}{c} 0 \\ 0,5b \end{array}$	$0,983 \\ 1,033$	2	$\begin{array}{c} 0 \\ 0,5b \end{array}$	$0,856 \\ 1,396$
1		$\begin{array}{c} 0 \\ 0,5b \end{array}$	$0,940 \\ 1,126$	4	$\begin{array}{c} 0 \\ 0,5b \end{array}$	$0,805 \\ 1,987$

Таблица 2

	Δu						
Вид закрепления балки	$\varepsilon = 0,1$		$\varepsilon = 0,125$		$\varepsilon = 0,167$		$\varepsilon = 0,25$
	b = 1	b = 4	b = 1	b = 4	b = 1	b = 4	b = 1
Консольная	1,007	1,021	1,012	1,033	1,021	1,060	1,046
Шарнирно опертая	1,030	1,086	1,046	1,134	1,082	1,236	$1,\!184$
Защемленная по краям	1,118	1,343	1,184	1,536	1,329	1,957	1,738

Максимальные значения $\Delta \sigma_{zx}$ в сечении балки при x = 0.5, $\nu = 0.25$ представлены в табл. 1. Из определения этой величины следует, что она не зависит от способа закрепления балки и количества приложенных сосредоточенных нагрузок. Значения, приведенные в табл. 1, совпадают со значениями, полученными С. П. Тимошенко для консольной балки прямоугольного сечения [6], нагруженной сосредоточенной силой на конце (задача Сен-Венана). Следовательно, результат Тимошенко распространен на балки произвольного опирания с произвольным числом сосредоточенных нагрузок.

Введем отношение максимальных прогибов, полученных предлагаемым методом, к максимальным прогибам, полученным на основе гипотезы плоских сечений Бернулли $u_{\rm B}$:

$$\Delta u = u_0^{(1)}/u_{\rm B}.$$

Значения величины Δu для балок под действием единичной сосредоточенной нагрузки при $\nu = 0.25$ приведены в табл. 2. Во всех рассмотренных примерах это отношение больше единицы.

Следует отметить, что учет действия сосредоточенных нагрузок, приложенных не на торцах, осуществляется путем разрезания балки по сечению, в плоскости которого действует сосредоточенная нагрузка. Затем осуществляется сопряжение этих двух частей с использованием интегральных условий на торцах, что возможно в силу принципа Сен-Венана. Поэтому вблизи точки действия сосредоточенной нагрузки всегда имеет место ошибка, что характерно для любой балочной теории. Ее учет и исправление возможны только на основе построения пограничных слоев [7].

ПРИМЕР 2 (плоская деформация трехслойной балки). Рассмотрим трехслойную балку единичной ширины (b = 1), нагруженную на верхней поверхности поперечной распределенной нагрузкой q_- ($k_q = 0$). Считаем, что слои обладают характеристиками: $E_2 = 1$, $E_1 = E_3 = 4E_2$, $\nu_1 = \nu_2 = \nu_3 = 0.3$, $h_2 = 0.33$, $h_3 = 0.67$. Характеристические функции вектора перемещения и тензора напряжений представлены на рис. 2, 3. Напряжения σ_{zz} на порядок превышают напряжения σ_{xx} , как это следует из эпюр характеристических функций τ_{zz} и τ_{xx} .

Решения, полученные на основе приведенного выше утверждения, для одно- и трехслойной консольных балок совпадают с решениями, полученными с помощью функций Эри (см. [6, 8]).

Таким образом, обжатием в данном случае можно пренебречь. Однако в общем случае расчета слоистых балок пренебрегать заранее теми или иными компонентами тензора

Рис. 2. Характеристические функции тензора напряжений для трехслойной балки ($E_1 = E_3 = 4E_2$, $\nu_1 = \nu_2 = \nu_3 = 0,3$): a — нормальные функции ($1 - (\tau_{zz})^{(2)}$, $2 - (\tau_{zz})^{(4)}$, $3 - (\tau_{xx})^{(4)}$); δ — касательные функции ($1 - (\tau_{zx})^{(3)}$, $2 - (\tau_{zx})^{(5)}$)

Рис. 3. Характеристические функции вектора перемещения для трехслойной балки ($E_1 = E_3 = 4E_2$, $\nu_1 = \nu_2 = \nu_3 = 0,3$): a — продольные функции ($1 - U_{i,0}^z$, $2 - U_{i,1}^z$, $3 - U_{i,2}^z$); δ — поперечные функции ($1 - U_{i,1}^x$, $2 - U_{i,2}^x$)

напряжений нельзя, так как их величины могут зависеть от геометрических размеров слоев, механических характеристик конструктивных материалов и от порядка расположения материалов в конструкции.

ПРИМЕР 3 (плоская деформация двухслойной консольной балки). Рассмотрим двухслойную консольную балку единичной ширины (b = 1), нагруженную на верхней поверхности постоянной поперечной распределенной нагрузкой q_- ($k_q = 0$). Считаем, что слои обладают характеристиками: нижний слой — сталь ($E_2 = 200$ ГПа, $\nu_1 = 0,33$); верхний слой — графит ($E_1 = 5,9$ ГПа, $\nu_1 = 0,3$) или бетон ($E_1 = 20$ ГПа, $\nu_1 = 0,2$). Толщина верхнего слоя принимает значения: $\Delta h_1 = 0,05$; 0,1; 0,2. В табл. 3 приведены значения $|\sigma_{zz}/\sigma_{xx}|$, вычисленные в начале координат (верхняя точка заделанного сечения), где величина осевых растягивающих напряжений σ_{zz} в верхнем слое заведомо максимальна. Очевидно, что когда это отношение близко́ к единице или меньше единицы, пренебрегать

	$ \sigma_{zz}/\sigma_{xx} $								
ε	$\Delta h_1 =$	0,05	$\Delta h_1 =$	= 0,1	$\Delta h_1 = 0.2$				
	Графит	Бетон	Графит	Бетон	Графит	Бетон			
0,100	$0,\!5$	2,6	0,7	3,2	$1,\!3$	4,8			
$0,\!125$	0,2	1,5	0,3	$1,\!9$	0,7	2,9			
$0,\!167$	$_{0,1}$	0,7	$0,\!03$	0,9	$_{0,2}$	1,5			

Таблица З

обжатием нельзя. Из анализа табл. З следует, что необходимость учета обжатия зависит от свойств материалов, относительных толщин слоев Δh_1 и продольного относительного размера балки ε . Вдали от заделанного торца величина осевых напряжений убывает, в то время как величина σ_{xx} не меняется, поэтому относительный вклад обжатия увеличивается.

2. Продольно-поперечный изгиб. Пусть на верхнюю и нижнюю поверхности балки кроме поперечной действует продольная распределенная нагрузка p_{-} , p_{+} . Примем для перемещений следующие аппроксимации в каждом слое:

$$w_{i}^{(n)} = \sum_{k=0}^{n} W_{i,k}^{z} \frac{d^{2k} w_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \qquad u_{i}^{(n)} = \sum_{k=1}^{n} W_{i,k}^{x} \frac{d^{(2k-1)} w_{0}^{(n)}}{dz^{(2k-1)}} \varepsilon^{2k-1}, \qquad W_{i,0}^{z} = 1,$$

$$v_{i}^{(n)} = \sum_{k=1}^{n} W_{i,k}^{y} \frac{d^{(2k-1)} w_{0}^{(n)}}{dz^{(2k-1)}} \varepsilon^{2k-1}, \qquad \boldsymbol{u}_{i}^{(n)}(\boldsymbol{r}) = (u_{i}^{(n)}, v_{i}^{(n)}, w_{i}^{(n)}),$$
(17)

где $w_0^{(n)}(z)$ — функция продольного смещения сечения; $W_{i,k}^z(x,y)$, $W_{i,k}^x(x,y)$, $W_{i,k}^y(x,y)$ — характеристические функции вектора перемещений в поперечном сечении балки. Считаем, что значение функции продольного смещения $w_0^{(n)}(z)$ равняется среднему перемещению точек поперечного сечения в продольном направлении, что равносильно равенствам

$$\sum_{i=1}^{s} \int_{F_i} W_{i,k}^z(x,y) \, dF = 0, \qquad k = 1, \dots, n.$$

Используя в законе Гука представления для перемещений (17), получим

$$(\sigma_{\alpha\alpha})_{i}^{(n)} = \sum_{k=1}^{n} (\tau_{\alpha\alpha})_{i}^{(2k-1)} \frac{d^{2k-1}w_{0}^{(n)}}{dz^{2k-1}} \varepsilon^{2k-1} + (\lambda_{i} + 2\mu_{i}\delta_{\alpha z})W_{i,n}^{z} \frac{d^{2n+1}w_{0}^{(n)}}{dz^{2n+1}} \varepsilon^{2n+1},$$

$$(\sigma_{xy})_{i}^{(n)} = \sum_{k=1}^{n} (\tau_{xy})_{i}^{(2k-1)} \frac{d^{2k-1}w_{0}^{(n)}}{dz^{2k-1}} \varepsilon^{2k-1}, \qquad (\sigma_{\beta z})_{i}^{(n)} = \sum_{k=1}^{n} (\tau_{\beta z})_{i}^{(2k)} \frac{d^{2k}w_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k},$$

$$\alpha \in [x, y, z], \qquad \beta \in [x, y].$$

$$(18)$$

В формулах (18) использованы характеристические функции тензора напряжений $(\tau_{\alpha\beta})_i^{(j)}$, которые связаны с характеристическими функциями вектора перемещений:

$$(\tau_{zz})_{i}^{(2k-1)} = (\lambda_{i} + 2\mu_{i})W_{i,k-1}^{z} + \lambda_{i}\left(\frac{\partial W_{i,k}^{x}}{\partial x} + \frac{\partial W_{i,k}^{y}}{\partial y}\right), \qquad (\tau_{z\beta})_{i}^{(2k)} = \mu_{i}\left(\frac{\partial W_{i,k}^{z}}{\partial \beta} + W_{i,k}^{\beta}\right),$$
$$(\tau_{\beta\beta})_{i}^{(2k+1)} = \left(\lambda_{i}\left(W_{i,k}^{z} + \frac{\partial W_{i,k+1}^{\gamma}}{\partial \gamma}\right) + (\lambda_{i} + 2\mu_{i})\frac{\partial W_{i,k+1}^{\beta}}{\partial \beta}\right), \qquad (\tau_{z\beta})_{i}^{0} = 0,$$

$$(\tau_{xy})_i^{(2k-1)} = \mu_i \left(\frac{\partial W_{i,k}^y}{\partial x} + \frac{\partial W_{i,k}^x}{\partial y}\right), \quad \beta, \gamma \in [x, y], \quad \gamma \neq \beta, \quad i = 1, \dots, s, \quad k = 1, \dots, n.$$

Предположим, что нагрузки на верхней и нижней поверхностях имеют вид

$$p_{-} = \sum_{k=1}^{n} p_{-}^{(2k)} \frac{d^{2k} w_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \quad p_{+} = \sum_{k=1}^{n} p_{+}^{(2k)} \frac{d^{2k} w_{0}^{(n)}}{dz^{2k}} \varepsilon^{2k}, \quad p = b_{-}p_{-} + b_{+}p_{+},$$

$$q_{-} = \sum_{k=1}^{n} q_{-}^{(2k-1)} \frac{d^{2k-1} w_{0}^{(n)}}{dz^{2k-1}} \varepsilon^{2k-1}, \quad q_{+} = \sum_{k=1}^{n} q_{+}^{(2k-1)} \frac{d^{2k-1} w_{0}^{(n)}}{dz^{2k-1}} \varepsilon^{2k-1}, \quad q = b_{-}q_{-} + b_{+}q_{+}.$$
(19)

В дифференциальных операторах (7) учтем влияние продольной нагрузки:

$$J_{z,1}(\boldsymbol{u},\varepsilon) = (\sigma_{xz})_1 + p_-, \qquad J_{z,s}(\boldsymbol{u},\varepsilon) = (\sigma_{xz})_s - p_+.$$
⁽²⁰⁾

Тогда для продольно-поперечного изгиба балки также справедлива полукраевая задача (2), (5)–(7). Потребуем выполнения следующих равенств для характеристических функций тензора напряжений и связанных с ними характеристических функций вектора перемещений:

— на верхней и нижней поверхностях балки

$$(\tau_{zx})_{1}^{(2k)} = -p_{-}^{(2k)}, \qquad (\tau_{xy})_{1}^{(2k-1)} = 0, \qquad (\tau_{xx})_{1}^{(2k-1)} = -q_{-}^{(2k-1)} \qquad \text{при} \quad x = 0, \\ (\tau_{zx})_{s}^{(2k)} = p_{+}^{(2k)}, \qquad (\tau_{xy})_{s}^{(2k-1)} = 0, \qquad (\tau_{xx})_{s}^{(2k-1)} = q_{+}^{(2k-1)} \qquad \text{при} \quad x = 1;$$

$$(21)$$

— на боковой поверхности балки

$$(\tau_{\beta x})_{i}^{(2k-1)}n_{x} + (\tau_{\beta y})_{i}^{(2k-1)}n_{y} = 0, \qquad (\tau_{zy})_{i}^{(2k)}n_{y} + (\tau_{zx})_{i}^{(2k)}n_{x} = 0, \qquad k = 1, \dots, n; \quad (22)$$

— на границах между слоями

$$(\tau_{zx})_{i-1}^{(2k)} = (\tau_{zx})_{i}^{(2k)}, \qquad (\tau_{x\beta})_{i-1}^{(2k-1)} = (\tau_{x\beta})_{i}^{(2k-1)}, \qquad W_{i-1,k}^{\alpha} = W_{i,k}^{\alpha}; \tag{23}$$

— во внутренних точках поперечного сечения балки

$$\frac{\partial \left(\tau_{\beta x}\right)_{i}^{(2k-1)}}{\partial x} + \frac{\partial \left(\tau_{\beta y}\right)_{i}^{(2k-1)}}{\partial y} + \left(\tau_{\beta z}\right)_{i}^{(2k-2)} = 0, \quad \frac{\partial \left(\tau_{zx}\right)_{i}^{(2k)}}{\partial x} + \frac{\partial \left(\tau_{zy}\right)_{i}^{(2k)}}{\partial y} + \left(\tau_{zz}\right)_{i}^{(2k-1)} = 0, \tag{24}$$

$$\alpha \in [x, y, z], \qquad \beta \in [x, y], \qquad k = 1, \dots, n, \qquad i = 1, \dots, s.$$

Для одновременного выполнения четырех дифференциальных равенств в (19) достаточно потребовать пропорциональности верхней и нижней нагрузок:

$$q_{+}^{(2k-1)} = k_q q_{-}^{(2k-1)}, \qquad q_{+} = k_q q_{-}, \qquad p_{+}^{(2k)} = k_p p_{-}^{(2k)}$$

Если проинтегрировать по сечению уравнения (24) с учетом равенств (21)–(23), то получим необходимое условие разрешимости краевой задачи (21)–(24):

$$q_{+}^{(2k-1)} = -\frac{G_{(2k-2)}}{b_{+} + k_q b_{-}}, \qquad p_{+}^{(2k)} = -\frac{A_{(2k-1)}}{b_{+} + k_p b_{-}},$$

$$G_{(2k)} = \sum_{i=1}^{s} \int_{F_i} (\tau_{xz})_i^{(2k)} dF, \qquad A_{(2k-1)} = \sum_{i=1}^{s} \int_{F_i} (\tau_{zz})_i^{(2k-1)} dF, \qquad k = 1, \dots, n.$$
(25)

Линейная комбинация первых двух равенств в (19) дает дифференциальное уравнение на функцию продольного смещения

$$\sum_{k=1}^{n} A_{(2k-1)} \frac{d^{2k} w_0^{(n)}}{dz^{2k}} \varepsilon^{2k} + p = 0.$$
(26)

Из выражений (19), (25) следует равенство, которому должна удовлетворять поперечная нагрузка:

$$q = -\sum_{k=2}^{n} G_{(2k-2)} \frac{d^{2k-1} w_0^{(n)}}{dz^{2k-1}} \varepsilon^{2k-1},$$
(27)

т. е. суммарная в сечении поперечная нагрузка, в отличие от суммарной в сечении продольной нагрузки, не является произвольно заданной. Эту поперечную нагрузку, зависящую от продольной, обозначим q^p .

Непосредственной подстановкой легко убедиться, что формулы (17) задают формальное асимптотическое решение полукраевой задачи (2), (5)–(7), (20) при выполнении условия $\varepsilon^2 d^{2n+1} w_0^{(n)}/dz^{2n+1} = O(1)$ при $\varepsilon \to 0$. Последнее равенство достигается, если при решении дифференциального уравнения (26) исключать быстро осциллирующие решения при $\varepsilon \to 0$. Фактически это условие означает выделение двухпараметрического семейства решений уравнения (26):

$$w_0^{(n)}(z,\varepsilon) = a_0 + a_1 z + F_{(2)}(z,\varepsilon),$$
(28)

где a_j — параметры; $F_{(2)}(z,\varepsilon)$ — частное "неосциллирующее" решение уравнения. Общее количество краевых условий для решений (28) на торцах балки равняется двум. Следовательно, на торцах балки следует использовать традиционные краевые условия, основанные на принципе Сен-Венана: равенство нулю средних перемещений $w_0^{(n)}$ (закрепленный торец) и равенство нулю продольного усилия (свободный торец).

3. Общий случай продольно-поперечного изгиба. Пусть на балку одновременно действуют произвольные продольная и поперечная нагрузки p, q. В силу произвольности нагрузок решение нельзя искать в виде (17). Приложенную нагрузку можно рассматривать как суперпозицию двух нагрузок. Первая нагрузка — это продольно-поперечная нагрузка специального типа: продольная нагрузка p — произвольная, поперечная нагрузка q^p имеет вид (27). Вторая нагрузка — это приведенная поперечная нагрузка, вычисляемая по формуле $q^h = q - q^p$. Это случай чистого поперечного изгиба, он решается на основе представления (1). В силу линейности уравнений теории упругости и их следствий полученные решения для первой и второй нагрузок складываются.

ЛИТЕРАТУРА

- 1. Болотин В. В. Прочность, устойчивость и колебания многослойных пластин // Расчеты на прочность: Сб. ст. М.: Машиностроение, 1965. Вып. 11. С. 31–63.
- 2. Андреев А. Н., Немировский Ю. В. Многослойные анизотропные оболочки и пластины: Изгиб, устойчивость, колебания. Новосибирск: Наука. Сиб. отд-ние, 2001.
- Горынин Г. Л., Немировский Ю. В. Расчет напряженного состояния слоистых балок произвольного поперечного очертания // Сб. тр. III Всерос. конф. "Фундаментальные и прикладные проблемы современной механики", Томск, 2–4 окт. 2002 г. Томск: Изд-во Том. ун-та, 2002. С. 16–22.
- Немировский Ю. В., Горынин Г. Л. Асимптотическое решение краевой задачи изгиба удлиненных упругих тел // Сб. тр. 5-й Всерос. конф. "Краевые задачи и математическое моделирование", Новокузнецк, 29 нояб. — 1 дек. 2002 г. Новокузнецк: Изд-во Новокузнец. фил. Кем. ун-та, 2002. С. 48–54.
- Nemirovsky U. V., Gorynin G. L. The theory of the layered beams under the action of cross loading // Advanced studies in mechanical engineering. Yeungnam: Yeungnam Univ., 2002. P. 9–16.

- 6. Тимошенко С. П., Гудьер Дж. Теория упругости. М.: Наука, 1975.
- 7. Горынин Г. Л., Немировский Ю. В. Пограничный слой в слоистом стержне // Науч. вестн. Новосиб. гос. техн. ун-та. 2004. № 1(16). С. 21–36.
- 8. Раппопорт Р. М. Расчет балок, составленных из материалов с различными механическими характеристиками // Тр. Ленингр. политехн. ин-та. 1948. № 5. С. 52–74.

Поступила в редакцию 18/IV 2003 г., в окончательном варианте — 14/I 2004 г.