УДК 623.562

ФОРМИРОВАНИЕ УДАРНИКА ПУТЕМ ИЗМЕНЕНИЯ ПОЛОЖЕНИЯ ТОЧКИ ИНИЦИИРОВАНИЯ КУМУЛЯТИВНОГО ЗАРЯДА

В.-Б. Ли, С.-М. Ван, В.-Б. Ли, Ю. Чжэн

Нанкинский научно-технологический университет, 210094 Нанкин, Китай, njustlwb@163.com

Исследуется возможность формирования ударника различной формы при использовании одного и того же кумулятивного заряда за счет изменения положения точки инициирования. Показано, что могут формироваться два типа ударников — ударное ядро и удлиненный ударник. Пробивная способность удлиненного ударника в 2.17 раза выше, чем у обычного ударного ядра, а диаметр пробитого отверстия меньше только на 31.8 %.

Ключевые слова: положение точки инициирования, ударное ядро, удлиненный ударник, детонационная волна, численное моделирование.

ВВЕДЕНИЕ

Исследование применения различных кумулятивных зарядов в многофункциональных боеголовках является важной частью конструирования боеприпасов. Для разработчиков боеголовок интерес представляет режим инициирования кумулятивного заряда, поскольку он влияет на формирование ударника. В работе [1] описан многофункциональный боеприпас, который состоит из основного заряда, формирующего кумулятивную струю при периферическом инициировании, и первичного заряда, который формирует струю с малым градиентом скорости. В работе [2] исследована многофункциональная боеголовка с поражающим элементом, формируемым взрывом (ЭФВ). Боеголовка создает стабильно летящий элемент при центральном инициировании, деформирующийся ЭФВ при кольцевом инициировании и разрушающийся на осколки ЭФВ при кольцевом инициировании с задержкой на 4 мкс относительно инициирования в центре. В работе [3] действие кумулятивных зарядов, которые могут быть использованы против легкобронированной техники, при проходке горных пород и т. д., рассмотрено при различных способах их инициирования. В работах [4-6] предложена концепция новой боеголовки, обеспечивающей три режима работы: создание стабильно летящего ЭФВ, растягивающегося ЭФВ и многоосколочного ЭФВ. В этих работах проведено

модельное и экспериментальное изучение влияния различных режимов инициирования.

В работе [6] для моделирования форм пенетратора, образуемых при изменении местоположения периферического инициирования заряда, использовали программный пакет Dyna2D. Установлено, что в случае, когда инициирующее кольцо находилось вблизи центральной точки, формировался стабильно летящий ЭФВ; если же кольцо было далеко от центра, мог формироваться деформирующийся ЭФВ. В работе [7] моделировали образование ударника в многофункциональном боеприпасе. Показано, что изменение положения инициирующего кольца явно влияет на его форму. Ударник постепенно вытягивался по мере увеличения инициирующего кольца, при этом отношение длина/диаметр и скорость ударника также росли. Однако в этой работе не исследовался случай инициирования из одной точки и влияние ее положения на форму ударника. Вместе с тем использование только одноточечного инициирования и трансформация ударника за счет изменения положения точки инициирования позволяют избежать ряд проблем, возникающих при кольцевом инициировании.

Первоначально мы исследовали влияние кольцевого многоточечного инициирования на формирование и пробивную способность ЭФВ [8]. Были определены число точек инициирования и их местоположение, обеспечивающие замену периферического инициирования. Кроме того, установлено, что при синхронности инициирования не хуже 200 нс формируемый взрывом элемент не искривляется. Тем не менее, даже если несинхронность при многоточечном

[©] Weibing Li, Xiaoming Wang, Wenbin Li, Yu Zheng, 2012.

ZNDY of Ministerial Key Laboratory Nanjing University of Science and Technology, Nanjing 210094, China.

инициировании сведена к минимуму, она может влиять на формирование ударника, особенно его хвостовой части, что ухудшает стабильность ЭФВ и воздействует на конечное пробивание. При изучении влияния положения точки инициирования на формирование ЭФВ [9] мы обнаружили, что с ростом расстояния между лайнером и точкой инициирования на оси заряда отношение длина/диаметр и скорость ударника заметно растут, аналогично как при кольцевом инициировании в работе [8]. В настоящей работе поставлена цель подтвердить возможность изменения формы ЭФВ путем регулирования положения точки инициирования в кумулятивном заряде. Действие детонационной волны на лайнер и формирование ударника при изменении положения точки инициирования изучали с использованием программного пакета LS-DYNA.

ПОСТАНОВКА ЭКСПЕРИМЕНТА И ЕГО РЕЗУЛЬТАТЫ

Для того чтобы подтвердить реальность создания многофункционального ЭФВ путем изменения положения точки инициирования, был сконструирован опытный образец кумулятивного заряда (рис. 1). Заряд инициировали в центральной точке O (конфигурация O) или в точке P (конфигурация P). Для инициирования в точке P в верхней части лайнера было просверлено отверстие диаметром 7 мм для установки стандартного детонатора № 8. Для инициирования в точке О отверстие для установки было просверлено в оболочке заряда. Кроме того, при инициировании в точке О использовали также лайнер без отверстия в верхней части (конфигурация Q), чтобы проверить, влияет ли такое отверстие на формирование ударника при одной и той же форме заряда. При использовании заряда конфигурации О формировался удлиненный ударник, а в случае конфигурации P формировалось ударное ядро.

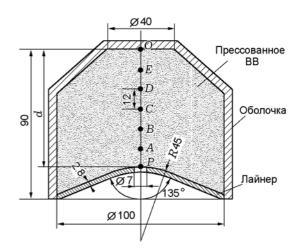


Рис. 1. Структура кумулятивного заряда и положение точек инициирования

Формообразование ударника и его параметры (длина, диаметр, скорости головной и хвостовой частей) для различных конфигураций контролировали путем рентгенографирования. Использовали два аппарата фирмы «Hewlett-Packard Co» с напряжением 450 кВ, которые располагали под углом 45° друг к другу. В каждом опыте получали два снимка в различные моменты времени. Кумулятивный заряд устанавливали вертикально на специальном цилиндре, задававшем расстояние от заряда до мишени, которое составляло $10D_k$, где D_k — диаметр заряда (калибр).

На рис. 2 показаны рентгенограммы формы ударника через 120 мкс после инициирования, полученные в зарядах различной конфигурации. На кассете с пленкой размещали репер (белая линия на снимках), который использовался для цифровой обработки рентгенограмм. Параметры ударника для каждой конфигурации заряда приведены в таблице: v — средняя скорость между двумя экспозициями, v_1 — скорость головной части ударника, v_2 — хвостовой части, L/D — отношение длины ударника

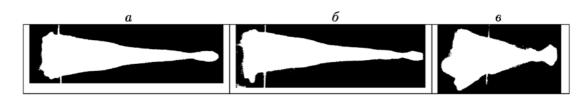


Рис. 2. Форма ударника для различных конфигураций заряда: Q(a), O(b), P(a) (t=120 мкс)

Конфигурация	t_1 , мкс	t_2 , MKC	<i>v</i> , м/с		D/D_k		L/D_k		L/D	L/D	11/15
			v_1	v_2	t_1	t_2	t_1	t_2	t_1	h/D_k	h'/D_k
\overline{Q}	120	160	2 982	2407	0.37	0.30	1.17	1.55	3.16	1.41	0.32
0	120	160	3 006	2 352	0.38	0.32	1.18	1.64	3.11	1.5	0.3
\overline{P}	120	200	2 129	1919	0.46	0.6	0.67	0.92	1.46	0.69	0.44

Результаты опытов

к его диаметру в момент времени t_1 , t_1 — время получения первого снимка, t_2 — второго. По сравнению с ударным ядром, сформированным при конфигурации P, скорость удлиненного ударника, сформированного при конфигурации O, выше на 41.2~%, а отношение L/D больше в 2.13 раза.

Результаты экспериментов по пробиванию мишеней зарядами различных конфигураций также представлены в таблице: h — глубина пробивания, h' — диаметр пробитого отверстия. Опыты показали, что заряды конфигурации O пробивали отверстия цилиндрической формы, а заряды конфигурации P — эллипсоидальной. Глубина пробивания зарядами конфигурации O в 2.17 раза больше, чем зарядами конфигурации P, при этом диаметр отверстия был меньше только на 31.8 %.

Из сравнения результатов действия зарядов конфигураций Q и O, таких как форма Θ В, параметры формы и параметры пробивания, видно, что наличие отверстия диаметром 7 мм в верхней части лайнера слабо влияет на формирование Θ В.

МОДЕЛИРОВАНИЕ МЕХАНИЗМА ФОРИМОРОВАНИЯ ЭФВ ПРИ ИЗМЕНЕНИИ ПОЛОЖЕНИЯ ТОЧКИ ИНИЦИИРОВАНИЯ

Влияние различного положения точки инициирования на сжатие лайнера детонационной волной, а также механизм формирования многофункционального ЭФВ исследовали при помощи программного пакета LS-DYNA. Для того чтобы избежать больших деформаций расчетной сетки и течения материала, для моделирования процесса формирования использовали произвольный метод Лагранжа — Эйлера (АLE-алгоритм) [8, 10, 11]. Построение модели процесса и выбор модели для описания материала представлены в [8]. Поскольку сборка является осесимметричной, то при использовании метода конечных элементов достаточно моделировать 1/4 структуры. В расчетах модели-

руется прессованное взрывчатое вещество типа 8 701 плотностью 1.713 г/см³, со скоростью детонации 7 980 м/с, описываемое уравнением состояния JWL. Материал лайнера — чистая медь, а оболочки — сталь 45. Динамическое поведение этих материалов при действии детонационной волны описывали моделью Джонсона — Кука и уравнением состояния Грюнайзена. Для описания воздуха использовали полиномиальное уравнение состояния.

Поскольку эксперименты показали, что наличие отверстия в верхней части лайнера мало влияет на формирование ударника, то для упрощения моделировался лайнер без отверстия (рис. 3).

Сжатие лайнера

При изменении положения точки инициирования меняется процесс сжатия лайнера детонационной волной. Как следует из рис. 3, фронт детонационной волны под точкой инициирования представляет собой сферическую поверхность. При инициировании в точке О сферическая волна начинает сжимать лайнер при t = 9 мкс. При инициировании в точке Pсферическая волна действует на лайнер сразу после инициирования основного заряда. Кроме того, распределение максимального давления детонации в каждый момент времени различно. На рис. 4, а показано изменение максимального давления при распространении детонационной волны по заряду. Сначала давление возрастает, затем быстро падает до некоторого фиксированного значения и, наконец, медленно уменьшается. Поскольку при инициировании в центральной точке детонационная волна должна пройти по заряду прежде, чем она начнет действовать на лайнер, то максимальное давление в ней достигается позже, чем при инициировании в точке Р. Детонационное давление уменьшается в период между 12 и 15 мкс при инициировании в центральной точке и в период между 9 и 12 мкс при инициировании в

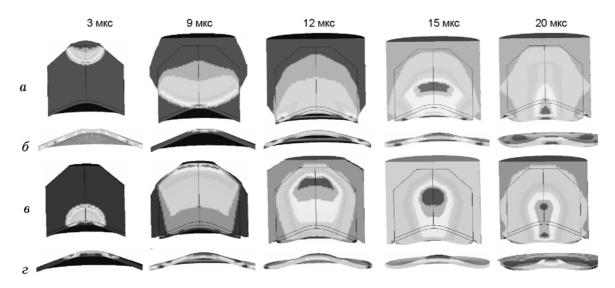


Рис. 3. Распространение детонации в заряде и сжатие лайнера:

a, b — конфигурация O: a — распространение детонации, b — сжатие лайнера; b, c — конфигурация b: b — распространение детонации, b — сжатие лайнера

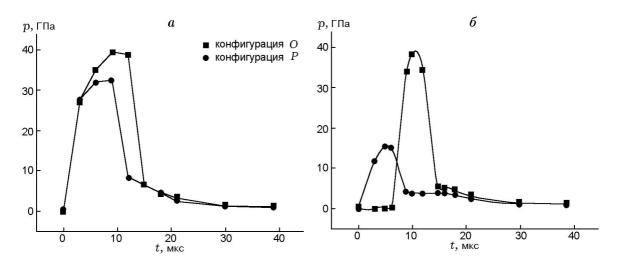


Рис. 4. Профиль давления в детонационной волне, распространяющейся по заряду (a), и профиль детонационного давления, действующего на лайнер (b)

вершине лайнера, поскольку в это время в результате действия детонационной волны между вершиной лайнера и взрывчатым веществом возникает зазор, что и вызывает быстрое падение давления.

Процесс сжатия лайнера иллюстрирует рис. 3. Профили детонационного давления, действующего на лайнер, приведены на рис. $4, \delta$. Ход зависимостей здесь такой же, как и кривых максимального давления в детонационной волне на рис. 4, a. Пик давления, действующего на лайнер, при инициировании в точке O на-

много больше, чем при инициировании в точке P, и давление мгновенно возрастает в момент времени t=9 мкс. При этом верхняя часть лайнера сжимается сферической волной, что приводит к большей скорости головной части $Э\Phi В$. Область с максимальным детонационным давлением, действующим на лайнер (см. рис. 3), больше при инициировании в точке P, чем при инициировании в точке O, и некоторые части лайнера нагружаются одновременно. Поэтому если ударник формируется при инициировании заряда в верхней части лайнера, то

градиент скорости меньше, тогда как при инициировании в точке O область максимального давления расположена ближе к центру.

Влияние положения точки инициирования на формирование ЭФВ

При инициировании заряда в центре фронт детонационной волны перед подходом к верхней части лайнера имеет сферическую форму. В зависимости от положения точки инициирования на основной оси меняются интенсивность детонационной волны и, как следствие, параметры формирования ЭФВ. При инициировании заряда в точках P, A, B, C, D, E и O образуются различные конфигурации.

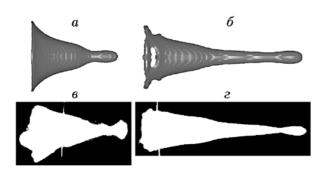


Рис. 5. Форма элемента, формируемого взрывом через 120 мкс после точечного инициирования:

 $a,\ \delta$ — моделирование, $6,\ z$ — эксперимент; $a,\ 6$ — конфигурация $P,\ d=0,\ \delta,\ z$ — конфигурация $O,\ d/D_k=0.72$

Мы уделяли внимание в основном тому, как влияет расстояние d между лайнером и точкой инициирования на формирование ЭФВ. Расстояние между точками инициирования 12 мм (см. рис. 1). Численное моделирование формирования ударника проведено для каждой конфигурации, и типичные результаты представлены на рис. 5 в сопоставлении с данными опытов. Для конфигурации P расстояние d=0 (рис. 5,a,6) означает, что точка инициирования расположена в вершине лайнера.

На рис. 6 представлены расчетные зависимости параметров формирования ударника при инициировании в центральной точке. Здесь v — скорость, L/D — отношение длины ударника к диаметру (хвостовая часть ударника в экспериментах разрушалась, поэтому в расчетах в качестве D использовали максимальный диаметр остающейся целой части). С ростом расстояния на оси заряда между лайнером и точкой инициирования от 0 до 0.72 калибра заряда скорость ЭФВ возрастает на 48.6 %, а отношение L/D увеличивается в 2.22 раза.

Анализ данных, представленных на рис. 5, 6, показывает, что при одной и той же конструкции заряда с ростом расстояния на оси между лайнером и точкой инициирования скорость головной части и градиент скорости постепенно повышаются, ударник растягивается, отношение L/D увеличивается и $Э\Phi B$ превращается в удлиненный $Э\Phi B$.

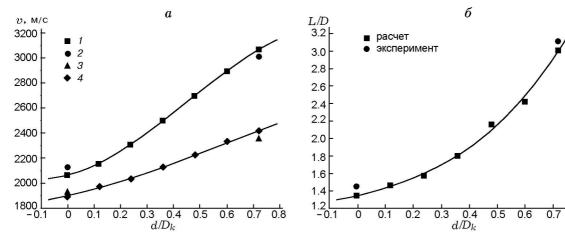


Рис. 6. Зависимости параметров ЭФВ от параметра d/D_k через 120 мкс после инициирования в центральной точке:

a: 1, 2 — скорость головной части, расчет (1) и эксперимент (2); 3, 4 — скорость хвостовой части, эксперимент (3) и расчет (4)

ЗАКЛЮЧЕНИЕ

При одной и той же структуре заряда можно получить и ударное ядро, и удлиненный ударник, если менять положение точки инициирования. Удлиненный ЭФВ формируется при инициировании в центральной точке в конце заряда, а обычный ЭФВ — при инициировании в верхней точке заряда. По сравнению с обычным ЭФВ у удлиненного ЭФВ отношение L/Dбольше в 2.13 раза, скорость больше на 41.2 %, глубина пробивания больше в 2.17 раза, а диаметр пробитого отверстия уменьшается только на 31.8 %. Наличие отверстия диаметром 7 мм в вершине лайнера слабо влияет на формирование ударника, влияние же размера отверстия на этот процесс требует дальнейшего изучения.

В результате моделирования установлено, что с ростом расстояния на оси заряда от лайнера до точки инициирования параметры формирования ударника меняются гиперболически. При увеличении расстояния между лайнером и точкой инициирования от 0 до $0.72D_k$ скорость $\Theta\Phi$ В возрастает на $48.6\,\%$, а отношение длина/диаметр — в $2.22\,$ раза.

Работа выполнена при поддержке Фонда исследований и инноваций провинции Янгсу (N CX09B_087Z), Национального фонда естественных наук Китая (N 11202103).

ЛИТЕРАТУРА

1. Whelan A. J. Multiple effect warheads for defeat of urban structures and armour // Proc. 24th Intern. Symp. on Ballistics, New Orleans, Louisiana, 2008. — P. 1092–1098.

- Steinmann F., Lösch C. Multimode warhead technology studies // Proc. 21st Intern. Symp. on Ballistics, Adelaide, Australia, 2004. — P. 728– 735.
- 3. Baker E. L., Daniels A. S., Turci J. P., et al. Selectable initiation shaped charges // Proc. 20th Intern. Symp. on Ballistics, Orlando, Florida, USA. 2002. P. 589–596.
- Fong R. New, selectable, explosively formed penetrator (EFP) warhead concept // 41st Annu. Bomb and Warhead Techn. Meeting. — 1991. — V. 1. — P. 172–197.
- Fong R. Warhead Technology Advancements. ADA394848. — 2000.
- 6. **Bender D., Fong R., Ng W., et al.** Dual mode warhead technology for future smart munitions // Proc. 19th Intern. Symp. on Ballistics, Interlaken, Switzerland, 2001. P. 679–684.
- 7. Jiang J. W., Shuai J. F., Li N., et al. Numerical simulation of the formation of multimode EFP and its penetration effect to RHA // Trans. of Beijing Inst. of Technol. 2008. V. 28, N 9. P. 756–805.
- 8. Li W. B., Wang X. M., Li W. B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator // Intern. J. Impact Eng. 2010. V. 37, N 4. P. 414–424.
- 9. Li W. B., Wang X. M., Li W. B., et al. Method of converting multimode penetrator through point initiation // Explo Shock Wave. 2011. V. 31, N 2. P. 204–209.
- 10. Johnson G. R., Stryk R. A. Some considerations for 3D EFP computations // Intern. J. Impact Eng. 2006. V. 32, N 10. P. 1621–1634.
- 11. **Livermore.** LS-DYNA Keyword User's Manual. California: Livermore Software Technology Corporation, 2003. P. 20.42–510.

Поступила в редакцию 5/IV 2011 г., в окончательном варианте — 10/XI 2011 г.