УДК 517.958

ОПТИМИЗАЦИЯ ФОРМ ПРЕПЯТСТВИЙ, ОБТЕКАЕМЫХ С ОТРЫВОМ СТРУЙ

В. Н. Монахов, Е. В. Губкина*

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

* Горно-Алтайский государственный университет, 649000 Горно-Алтайск E-mail: kmath@gasu.ru

В рамках модели идеальной несжимаемой жидкости изучены вопросы разрешимости задач оптимального управления формой сопла при истечении из него жидкости со свободной границей с учетом и без учета силы тяжести (внутренняя аэродинамика), а также задач оптимизации формы обтекаемого препятствия с отрывом струй (внешняя аэродинамика). Исследованы качественные свойства таких течений.

Ключевые слова: конформные отображения, свободная граница, кавитация, оптимальное управление, форма тела.

В 1935 г. М. А. Лаврентьев, используя разработанные им вариационные принципы конформных отображений, доказал, что при струйном обтекании выпуклых дуг потоками идеальной жидкости дуга окружности имеет максимальную подъемную силу [1. С. 405–449]. Оптимальное управление решениями эллиптических уравнений для широкого круга функционалов цели рассмотрено в монографии [2].

Непосредственно задачам управления формой сопла или формой обтекаемого препятствия при сверхзвуковом течении жидкости посвящено большое количество работ (см. [3, 4]). Такие задачи позволяют применять аналоги принципа Понтрягина и тем самым разрабатывать алгоритмы их численного решения.

1. СТРУЙНОЕ ИСТЕЧЕНИЕ ЖИДКОСТИ ИЗ ОПТИМАЛЬНОГО СОПЛА

1.1. Постановка задачи. Пусть из полигонального сопла $P_0 = (z_0, \ldots, z_{n-1})$ с вершинами $z_k = x_k + iy_k$ и углами $\alpha_k \pi$ при них вытекает несжимаемая жидкость на бесконечный прямолинейный водоупор $P_1 = (z_n, z_{n+1})$ $(y_{n+1} = 0, x_n = -\infty, x_{n+1} = \infty)$. При этом отрезок $P_2 = (z_{n-1}, z_n)$ является горизонтальной прямой $(y_{n-1} = y_n = H)$ (см. рисунок). В области D, ограниченной полигоном $P = (z_0, \ldots, z_{n+1}) = P_0 \cup P_1 \cup P_2$ и неизвестной кривой (струей) $L = (z_{n+1}, z_0), \partial D = P \cup L$, ищется комплексный потенциал течения $w(z) = \varphi + i\psi$ (аналитическая функция переменной z = x + iy), удовлетворяющий граничным условиям

$$\psi = 0, \quad z \in P_1, \qquad \psi = Q, \quad z \in P_0 \cup L, \qquad \left|\frac{dw}{dz}\right| = 1, \quad z \in L,$$
 (1)

где Q = const > 0 — искомый расход жидкости.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-01-00131), гранта Президента РФ по государственной поддержке молодых российских ученых (грант № МК-5083.2006.01), гранта Президента РФ по государственной поддержке ведущих научных школ РФ (грант № НШ-7525.2006.1).

Схема струйного истечения жидкости из сопла

Производные конформных отображений $w: K \to D^*$ и $z: K \to D$ единичного полукруга $K = \{\zeta: |\zeta| < 1, \text{ Im } \zeta > 0\}$ на полосу $D^* = \{w: 0 < \text{ Im } w < Q\}$ и на область D соответственно представляются в виде [5. С. 178]

$$\frac{dw}{d\zeta} = N_0 (1 - \zeta^2) \prod_{k=n}^{n+1} [(\zeta - t_k)(1 - \zeta t_k)]^{-1} \equiv N_0 \omega(\zeta),
\frac{dz}{d\zeta} = N_0 \omega(\zeta) \prod_{k=1}^{n-1} \left(\frac{\zeta - t_k}{1 - \zeta t_k}\right)^{\beta_k}.$$
(2)

Здесь t_k ($t_0 = -1 < t_1 < \ldots < t_n < t_{n+1} = 1$) — прообразы вершин z_k полигона P при конформном отображении $z = z(\zeta)$; $\beta_k \pi = (\alpha_k - 1)\pi$ — внешние углы при z_k ; $N_0(Q) =$ const > 0.

1.2. Уравнения относительно параметров. Зафиксируем точки $z_0 = ih_0$, $z_{n-1} = x_{n-1} + iH$ (h_0 , H, x_{n-1} ($-\infty < x_{n-1} < 0$) — известные константы).

Для полигонов $P_0 = (z_0, \ldots, z_{n-1})$ введем геометрическую характеристику $p_0 = (l, \beta)$, $l = (l_1, \ldots, l_{n-1}), \ l_k = |z_k - z_{k-1}|$ и подчиним ее условиям простого полигона $(p_0, P_0) \in G(\delta)$:

G:
$$\delta - 1 \leq \beta_k \leq 1$$
, $|\ln l_k| \leq \delta^{-1}$, $k = \overline{1, n-1}$ $(0 < \delta \ll 1)$. (3)

Параметры N_0 и $\underline{t_n}$ в (2) задаются, а постоянные t_k , соответствующие конечным вершинам $z_k \in P_0$, $k = \overline{1, n-1}$, находятся как решения нелинейной системы уравнений [5. С. 162]:

$$l_k = \int_{t_{k-1}}^{t_k} \left| \frac{dz}{dt} \right| dt \equiv g_k(T,\beta), \qquad k = \overline{1, n-1}.$$

Здесь $T = (t_1, \ldots, t_{n-1}); \beta = (\beta_1, \ldots, \beta_{n-1}); \beta_k \pi = (\alpha_k - 1)\pi$ — внешние углы при $z_k \in P_0$.

Разрешимость системы уравнений относительно T установлена в [5] методом непрерывности, при этом доказано включение $T \subset R$:

$$R: \quad t_{k+1} - t_k > \varepsilon(\delta) > 0, \quad k = \overline{0, n}.$$

$$\tag{4}$$

Систему уравнений для t_k запишем в виде одного функционального уравнения

$$L = g(T, \beta), \qquad (l, \beta) \in G, \qquad g = (g_1, \dots, g_{n-1}).$$
 (5)

При выполнении дополнительного условия

$$0 < \delta \leqslant |\theta(t) - \beta| \leqslant \pi - \delta, \qquad \theta = \arg \frac{dz}{dt}, \qquad |t| \leqslant 1$$
(6)

на вращение касательной к полигону P_0 (β — некоторый угол) для схем Кирхгофа [5. С. 153–156] и Рябушинского [6] доказана также локальная единственность решений T уравнения (5):

$$\left|\frac{Dg}{DT}\right| \ge \varepsilon_0(\delta) > 0. \tag{7}$$

Здесь $Dg/DT = \{\partial g_i/\partial t_j\}$ — матрица Якоби. При этом установлено, что если среди полигонов P_0 найдется полигон P_0^0 , для которого решение уравнения (5) единственно, то оно будет единственным и для любого конечного полигона $P_0 \in G$. В данном случае в качестве P_0^0 можно взять прямолинейное сопло $P_0^0 = \{y = y_0, -\infty < x < x_0\}$, для которого уравнение (5) выполняется автоматически при любом разбиении P_0^0 точками $z_k = x_k + iy_0$, $k = \overline{1, n-1}, |z_{k+1} - z_k| \neq 0, \infty$. В п. 3 устанавливается справедливость оценки (7) для общей схемы кавитации, включающей рассматриваемую задачу.

1.3. Проблема оптимизации. Определим геометрическую характеристику p_0 искомого полигона P_0 из некоторого условия оптимальности. В задачах внутренней аэродинамики в качестве функционала цели, как правило, выступает величина тяги на выходе из оптимизируемого сопла.

Проведем через точки $t_0 = -1$ и $t_* = (1 - \varepsilon/2) \in (t_n, t_{n+1})$ полукруг $K_0 = \{\zeta : |\zeta + \varepsilon/4| < r_0 = 1 - \varepsilon/4$, Im $\zeta > 0\}$ и обозначим через $\Gamma_0 = \{r_0 e^{i\gamma} : 0 < \gamma < \pi\}$ прообраз кривой, соединяющей точки $z_0 \in P_0$ и $z_* = z(t_*) \in P_1$. Функционал тяги выбирается в форме

$$F = \int_{0}^{\pi} \left| \frac{dw}{dz}(\zeta) \right|^{2} d\gamma = C \int_{0}^{\pi} \prod_{k=1}^{n-1} \left| \frac{1 - \zeta t_{k}}{\zeta - t_{k}} \right|^{2\beta_{k}} d\gamma \qquad (\zeta = r_{0} e^{i\gamma}).$$
(8)

Функционал $F(P_0)$ обладает ограниченными производными любого конечного порядка по аргументам (β_k, t_j), входящим явно, поскольку подынтегральная функция в (8) не имеет особенностей (точки t_0 и t_{n+1} не входят в произведение). Согласно [5] решения $t_j = t_j(l, \beta)$ также являются дифференцируемыми по (l_i, β_k). Следовательно, у функционала $F(P_0)$ существует экстремальная точка P_0^* [7. С. 106]:

$$\sup_{G} F(P_0) = F(P_0^*).$$
(9)

Оптимизацию случая криволинейного сопла начнем с увеличения количества вершин полигона P_0 , введя обозначение $P_0^m = (z^0, \ldots, z^m)$ $(z^0 = z_0, z^m = z_{n-1}).$

Сопло $\Lambda \subset C^1$ будем искать в классе кусочно-гладких кривых ограниченной длины:

$$C^{1}: \qquad \left|\ln\frac{dz}{d\tau}\right| \leq M, \quad |z(\tau)| \leq M, \quad \tau \in [0,1].$$

Здесь $z = z(\tau)$ — параметрическое уравнение Λ . Каждой заданной кривой Λ поставим в соответствие семейство сходящихся к ней полигонов $P^m \to \Lambda$. Тогда, как показано в [5. С. 168–170], соответствующее P_0^m семейство конформных отображений $Z^m: K \to D$ равномерно ограничено в области $K_{\delta} \equiv K \setminus Q_{\delta}(t_n, t_{n+1}) (Q_{\delta} - фиксированная \delta$ -окрестность $(0 < \delta \ll 1)$ заданных точек t_n и $t_{n+1} = 1$). Это обстоятельство позволяет выделить сходящуюся подпоследовательность $\{Z^{m_k}(\zeta)\}, Z^{m_k}(\zeta) \to Z(\zeta)$ при $m_k \to \infty$, причем предельное

отображение $Z: K_{\delta} \to D_{\delta}$ переводит отрезок $[-1, t_{n-1}]$ в кривую Λ . Поведение отображения $z = Z(\zeta)$ в окрестности Q_{δ} также описано в [5].

Свойства функционала тяги $F(P_0^{m_k})$ позволяют выполнить предельный переход при $m_k \to \infty$ и тем самым найти предельное оптимальное криволинейное сопло $\Lambda^* \subset C^1$:

$$\lim_{m_k \to \infty} \sup_G F(P_0^{m_k}) = F(\Lambda^*).$$
(10)

Теорема 1. На множестве простых конечных полигонов $P_0 \in G$ существует экстремальная точка P_0^* функционала $F(P_0)$, т. е. удовлетворяется равенство (9). Если выполняется условие (6), то каждая экстремальная точка функционала $F(P_0)$ изолирована.

B классе кривых $\Lambda \subset C^1$, $\Lambda = \lim_{m_k \to \infty} P_0^{m_k}$, $P_0^{m_k} \in G$ ограниченной длины $|\Lambda| \leqslant M, M \geqslant$

 $|z_{n-1}-z_0|$ существует оптимальное криволинейное сопло Λ^* , для которого справедливо соотношение (10).

Как отмечено ранее, при выполнении условия (6) решение $T(P_0)$, $\forall P_0 \in G$ уравнения (5) единственно, следовательно, оно единственно и для экстремальной точки P_0^* функционала $F(P_0)$, откуда и вытекает ее изолированность.

2. УЧЕТ ГРАВИТАЦИИ

В рассмотренной выше задаче условие $q \equiv |dw/dz| = 1$ на свободной границе L заменим на уравнение Бернулли

$$q^2 + 2gy = q_{\infty}^2 + 2gh, \tag{11}$$

где g — ускорение свободного падения; q_{∞} , h — скорость и глубина потока на бесконечности вниз по течению соответственно. Впервые эта задача изучена В. Н. Монаховым (1969) без привлечения каких-либо условий малости на параметры потока [5. С. 178–184]. Метод, примененный для ее решения, состоял в одновременной аппроксимации криволинейных границ полигонами с такой линеаризацией граничного условия (11), при которой оно удовлетворялось в конечном числе точек на L. После доказательства разрешимости полученных при этом вспомогательных задач предельным переходом устанавливалась разрешимость и исходной задачи.

Изложим кратко схему решения задачи о течениях тяжелой жидкости.

2.1. Вспомогательная задача. Пусть заданы параметры $a_0 = q_0 q_{\infty}^{-1}$, $q_0 = |dw/dz|_{z=z_0}$ и $\mu = h/h_0$, $h_0 = \text{Im } z_0$. Величины q_0 , q_{∞} , h, h_0 , Q разыскиваются вместе с комплексным потенциалом течения w = w(z). Константы a_0 и μ подчиняются естественным ограничениям для любого значения $\delta \ll 1$:

$$0 < \delta \leq \mu = hh_0^{-1} \leq 1 - \delta, \qquad e^{-2\pi} - \delta \leq a_0 = q_0 q_\infty^{-1} \leq 1 - \delta.$$
(12)

Представление для $dw/d\zeta$ из п. 1 сохраняется, а представление (2) заменяется на следующее:

$$\frac{dz}{d\zeta} = N_0 \omega(\zeta) \prod_{k=1}^{n-1} \left(\frac{\zeta - t_k}{1 - \zeta t_k}\right)^{\beta_k} e^{M(\zeta)} .$$
(13)

Здесь

$$M = \frac{\zeta^2 - 1}{\pi} \int_{0}^{\pi} \ln \left[q_{\infty}^{-1} q(\gamma) \right] \frac{d\gamma}{1 - 2\zeta \cos \gamma + \zeta^2},$$

$$[q_{\infty}^{-1}q(\gamma)]^{2} = 1 + 2gq_{\infty}^{-2}[h - y(\gamma)],$$

 $y = y(\gamma)$ — искомая функция [5. С. 180].

Искомый промежуток $[h, h_0]$ разобьем точками

$$y^k = h_0 - k \frac{h_0 - h}{m+1}, \qquad k = \overline{0, m+1}$$
 (14)

и положим $z^k = (x^k + iy^k) \in L$. Пусть $\zeta_k = e^{i\gamma_k}$ — прообразы z^k и $q_k = q(\gamma_k), q_{m+1} = q_{\infty}$. Из равенств (11), (14) находим

$$q_{k+1}^2 - q_k^2 = 2gh \,\frac{1-\mu}{\mu(m+1)}, \qquad k = \overline{0, m}.$$
(15)

Введем функции

$$\tilde{q}_k(\gamma) = \exp\left(p_{\infty}^{k+1} + \frac{\cos\gamma - \cos\gamma_{k+1}}{\cos\gamma_k - \cos\gamma_{k+1}} p_{k+1}^k\right), \qquad \gamma \in [\gamma_{k+1}, \gamma_k]$$
(16)

и подставим в (13) вместо $q(\gamma)$ величину $\tilde{q}(\gamma) = \tilde{q}_k(\gamma), \gamma \in [\gamma_{k+1}, \gamma_k]$. Тогда по построению уравнение Бернулли (11) удовлетворяется в конечном числе точек $z^k \in L, k = \overline{0, m+1}$. Для нахождения неизвестных γ_k получается система уравнений

$$\frac{y^k - y^{k-1}}{h} = \frac{(1 - t_n)^2}{\pi} \int_{\gamma_{k+1}}^{\gamma_k} \frac{(1 + \zeta)\sin\theta(\gamma)\,d\gamma}{|1 - \zeta|\,|\zeta - t_n|^2 \tilde{q}_k(\gamma)}, \qquad k = \overline{0, m-1},\tag{17}$$

где $\theta(\gamma) = \arg(d\tilde{z}/d\gamma); d\tilde{z}/d\gamma$ определяется формулой (13), в которую вместо $q(\gamma)$ подставлено $\tilde{q}(\gamma)$.

2.2. Априорные оценки. Как и в п. 1, постоянные N_0 и t_n фиксируются, а для определения искомых параметров t_k $(k = \overline{1, n-1})$ и γ_k $(k = \overline{1, m})$ во вспомогательной задаче получаем систему уравнений (5), (11) с общим числом уравнений m + n + 1 (в уравнениях (5) dz/dt заменяется на $d\tilde{z}/dt$). При этом для вектора $T = (t_1, \ldots, t_{n-1})$ сохраняются оценки (4). Докажем аналогичное включение для вектора $(\gamma_1, \ldots, \gamma_m) \in R_{\gamma}$:

$$R_{\gamma}: \qquad \gamma_i - \gamma_{i+1} > \varepsilon_0 > 0, \quad i = \overline{0, m}.$$

В силу ограниченности $|z_0|$ и величины $y^k = \text{Im } z^k$ сходимость $|z_0 - z^k| \to 0$ возможна лишь при Re $z^k = x^k \to \infty$. Тогда глубина потока на бесконечности вниз по течению равна $h^* = y_0 - y^k \neq h$, что противоречит исходному предположению. Пусть начиная с некоторого γ_p $(1 \leq p \leq m) \gamma_k \to 0, k \geq p$. Тогда

$$|z^{p} - z^{p-1}| = \frac{(1 - t_{n})^{2}}{\pi} \Big| \int_{\gamma_{p}}^{\gamma_{p-1}} \frac{|1 + \zeta| e^{i\theta(\gamma)} d\gamma}{|1 - \zeta| |\zeta - t_{n}|^{2} \tilde{q}_{p-1}(\gamma)} \Big| \equiv \Big| \int_{\gamma_{p}}^{\gamma_{p-1}} \frac{f(\gamma) d\gamma}{\sin \gamma/2} \Big|,$$

и, поскольку $|f(\gamma)| > 0$ в окрестности $\gamma = 0$, при $\gamma_p \to 0$ интеграл в последнем равенстве расходится, т. е. $|z^p - z^{p-1}| \to \infty$ при $\gamma_p \to 0$.

Итак, доказано, что $|\gamma_k| > \varepsilon_0 > 0$ $(k = \overline{0, m})$. В то же время если $\gamma_k - \gamma_{k+1} \to 0$, то из системы (17) находим

$$\frac{1-\mu}{\mu(m+1)} = \frac{(1-t_n)^2}{\pi} \int_{\gamma_{k+1}}^{\gamma_k} \frac{|1+\zeta|\sin\theta(\gamma)\,d\gamma}{|1-\zeta|\,|\zeta-t_n|^2\tilde{q}_k(\gamma)} \leqslant \frac{\gamma_k - \gamma_{k+1}}{a_0\sin(\gamma_{k+1}/2)} \to 0,$$

что противоречит условию $\mu < 1$. Следовательно, существует $\varepsilon > 0$, такое что $\gamma_k - \gamma_{k+1} > \varepsilon > 0$ ($k = \overline{0, m}$). Последнее обстоятельство обеспечивает выполнение оценок

$$c_0^{-1} \leqslant |e^{M(\zeta)}| \leqslant c_0$$
 при $\zeta \in D_{\zeta} = \{|\zeta| \leqslant 1, \operatorname{Im} \zeta \ge 0\}.$

2.3. Разрешимость задачи. Рассмотрим простейшую задачу об истечении жидкости из прямолинейного сопла $P^0 = (z_0, z_n)$, требуя выполнения уравнения Бернулли только в точке z_0 истечения струи и в точке z_{n+1} на бесконечности вниз по течению.

Разрешимость соответствующей P^0 системы уравнений (5), (17) легко устанавливается [5. С. 183].

Введем в уравнение системы (5) параметр λ таким образом, чтобы при изменении λ от единицы до нуля полигон $P = (z_0, \ldots, z_n)$ переходил в P^0 . Параметр λ включим также в граничное условие, полагая

$$q^{\lambda}(\gamma) = \lambda \tilde{q}(\gamma) + (1 - \lambda)q^{0}(\gamma).$$

Здесь $\tilde{q}(\gamma)$ соответствует задаче для P, а $q^0(\gamma) = \exp \{[(1 - \cos \gamma)/2] \ln (q_0/q_\infty)\}$ — задаче для P^0 . В силу равномерных относительно λ оценок $dz^{\lambda}/d\zeta$, соответствующих полигонам P^{λ} , с помощью теоремы Лере — Шаудера о неподвижной точке устанавливается разрешимость соответствующих систем уравнений (5), (17) при любых $\lambda \in [0, 1]$.

Теперь для произвольного простого полигонального сопла $P_0 = (z_0, \ldots, z_{n-1})$ может быть сделан предельный переход при $m \to \infty$, за счет чего уравнение Бернулли (11) выполняется на всей свободной границе L [5. С. 184].

2.4. Оптимальное полигональное сопло. Будем искать $P_0 = (z_0, \ldots, z_{n-1})$ из условия максимума функционала тяги $F(P_0)$, заданного формулой (8), в которой под интегралом необходимо добавить сомножитель $e^{-2 \operatorname{Re} M(\zeta)}$. Эти изменения в форме функционала тяги $F(P_0)$ не влияют на его дифференциальные свойства, что (как и в п. 1) позволяет найти экстремальную точку P_0^* , удовлетворяющую равенству (9). Предельным переходом от полигонов к кривой $\Lambda \subset C^1$ ($P_0^{m_k} \to \Lambda$) находим криволинейное оптимальное сопло Λ^* , подчиняющееся соотношению (10).

Теорема 2. В задаче истечения тяжелой жидкости из полигонального сопла $P_0 \in G(\delta)$ существует экстремальная точка P_0^* функционала тяги $F(P_0)$, удовлетворяющая соотношению (9). Предельным переходом от полигонов к криволинейным границам отыскивается также оптимальное криволинейное сопло $\Lambda^* \subset C^1$, для которого справедливо равенство (10).

3. ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ КАВИТАЦИЕЙ

Для снижения сопротивления плохообтекаемых тел в прикладной гидродинамике применяются методы искусственной кавитации. Создаются кавитаторы, так чтобы тело находилось внутри образующейся за кавитатором каверны, часто внутрь каверны вдувается воздух, специальными устройствами организуется поток внутри каверны, выравнивающий давление, и т. д. При этом реализуются различные известные схемы кавитации: Кирхгофа, Рябушинского, Эфроса, Эфроса — Жуковского, Жуковского — Рошко и т. д. [5. С. 174–178].

Важными прикладными задачами являются задачи оптимального управления кавитацией (размерами каверны или ее сопротивлением) за счет вариации формы кавитаторов и перераспределения давления внутри каверны.

3.1. Струйная задача. Рассмотрим общую задачу гидродинамики со свободной границей, поставленную и изученную в [5. гл. 4, § 2], которая включает все основные схемы кавитации. Пусть область D ограничена свободной поверхностью L, на которой |dw/dz| = 1, и простым полигоном $P = (z_0, \ldots, z_{n+1})$. При этом в \overline{D} могут находиться точки A_i и C_m остановки и разветвления потока $((dw/dz)(A_i) = (dw/dz)(C_m) = 0)$ и точки B_j , в которых располагаются вихри и источники $((dw/dz)(B_j) = \infty)$. Тогда производные конформных отображений верхней полуплоскости $E = \{\zeta \colon \text{Im } \zeta > 0\}$ на области D и D^* представляются в виде [5, 8]

$$\frac{dw}{d\zeta} = N_0 \omega(\zeta), \qquad \omega = \prod_{i,j} \frac{\zeta^2 - |a_i|^2}{\zeta^2 - |b_j|^2} \prod_{m,s} \frac{\zeta - c_m}{\zeta - \sigma_s},
\frac{dz}{d\zeta} = N_0 \omega(\zeta) \chi^{\nu}(\zeta) \Pi(\zeta) e^{M(\zeta)}, \qquad \Pi = \prod_k \chi_k^{\beta_k}.$$
(18)

Здесь a_i, b_j, c_m — заданные прообразы A_i, B_j, C_m соответственно; σ_s — фиксированные прообразы бесконечных вершин $w(\sigma_s) \in \partial D^*$;

$$\chi_k = [(1-\zeta^2)^{1/2}(1-t_k^2)^{1/2} + 1 - \zeta t_k](\zeta - t_k)^{-1}, \qquad \chi = (1-\zeta^2)^{1/2} + 1,$$
$$M = -\frac{(1-\zeta^2)^{1/2}}{\pi i} \int_{|t|>1} \frac{\ln |\Pi(t)\chi^{\nu}(t)| dt}{(1-t^2)^{1/2}(t-\zeta)},$$

 $t_k \in (-1, 1)$ — искомые прообразы конечных вершин $P(t_0 = -1, t_{n+1} = 1); \nu$ — целое число. Параметры N_0 и t_n задаются, а вектор $T = (t_1, \ldots, t_{n-1})$ определяется из уравнения (5), для решения которого справедливы оценки (4) [5].

По построению функция $dz/d\zeta$ в форме (18) удовлетворяет краевой задаче

$$\arg \frac{dz}{dt} = \pi \bar{\theta}(t), \quad |t| < 1, \qquad \left|\frac{dz}{dt}\right| = |N_0 \omega(t)|, \quad |t| > 1, \tag{19}$$

где $\bar{\theta}(t) = \bar{\delta}_k, t \in [t_k, t_{k+1}]; \bar{\delta}_k \pi$ — угол наклона k-й стороны полигона P к оси Ox.

3.2. Локальная единственность решений. Согласно методу непрерывности для доказательства единственности решения $T = (t_1, \ldots, t_{n-1})$ уравнения (5) в общей струйной задаче (см. подп. **3.1**) достаточно установить отличие от нуля ее якобиана Dl/DT, поскольку в простейшем случае, когда полигоном P является отрезок прямой, единственность решения известна [5].

Поставим в соответствие общей струйной задаче вспомогательное течение по схеме Кирхгофа, полагая

$$\frac{dW}{d\zeta} = N_1 \zeta \Big(\equiv Q_0(\zeta) \, \frac{dw}{d\zeta} \Big), \qquad \frac{dZ}{d\zeta} = N_2 \chi(\zeta) \Pi(\zeta) \Big(\equiv Q(\zeta) \, \frac{dz}{d\zeta} \Big). \tag{20}$$

Здесь $W: E \to \Omega^*$ и $Z: E \to \Omega$ — конформные отображения, соответствующие задаче Кирхгофа (20) в некоторых областях Ω и Ω^* ; производные $dw/d\zeta$ и $dz/d\zeta$ представляются формулами (18) для исходных областей D^* и D. Соотношения (20) при заданных функциях $Q_0(\zeta)$ и $Q(\zeta)$ определяют конформные отображения W = W(w), Z = Z(z) и области $\Omega^* = W(D^*), \Omega = Z(D).$

Функция $Q(\zeta)$ находится из сопоставления (20) и (19):

$$Q^{-1} = N_2(N_0)\omega(\zeta)\chi^{\nu-1}(\zeta)e^{M(\zeta)}, \qquad N_2 = \text{const} > 0.$$
(21)

Отметим, что $\omega(\zeta)$ и $\chi(\zeta)$ не зависят от $T = (t_1, \ldots, t_{n-1})$, а $M(\zeta)$ является функцией только фиксированной постоянной N_0 .

Для полигонов $P \subset G$ функция $Q(\zeta)$ в (21) обладает свойствами

$$\arg Q(t) = 0, \quad |t| < 1, \qquad |\ln N_2 Q(t)| \le M < \infty, \quad |t| < \infty.$$

Таким образом, $\arg(d(Z-z)/dt) = 0, |t| < 1, и, следовательно, при конформном отображении <math>Z = Z(z)$ полигону P соответствует полигон Z(P) с параллельными сторонами и длинами сторон:

$$L_{j} = \int_{t_{j-1}}^{t_{j}} |Q(t)| \left| \frac{dz}{dt} \right| dt, \qquad j = \overline{1, n-1}.$$
 (22)

Зафиксируем вектор $T \subset R$, а тем самым и полигоны P и Z(P). Начальная точка Z(-1) = 0полигона P(Z) задана, а в концевой точке положим Z(1) = 1, чего можно добиться растяжением отображения $Z(\zeta)$. Вычислим вариацию $\delta L_j(T)$ через вариацию δT . Для системы уравнений (22), соответствующей течению Кирхгофа, при выполнении условия (6) из равенств $\delta Z(\pm 1) = 0$ следует, что $\delta Z = 0$, а следовательно, и $\delta T = 0$ [5. С. 153–158]. Вернемся к системе уравнений (5), для которой $\delta l_k = 0$, $k = \overline{1, n-1}$ и, как показано, $\delta T = 0$, что означает $(Dl/DT)(T) \neq 0$. Таким образом, установлен *принцип топологического подобия* задач о параметрах для общего струйного течения и течения по схеме Кирхгофа.

Теорема 3. Решения $T = (t_1, \ldots, t_{n-1})$ уравнения (5), соответствующего общей струйной задаче для простого полигона $P \subset G$, при выполнении условий (6) локально единственны, т. е. $Dl/DT \neq 0$. Если существует полигон $P^0 \subset G$, для которого решение уравнения (5) единственно, то оно единственно и для любого $P \subset G$.

3.3. Сходящийся алгоритм численного решения задачи о параметрах. Возьмем отрезок прямой P^0 , соединяющий концы z_0 и z_{n+1} полигона P, зафиксируем на нем точки z_k^0 , $k = \overline{1, n}$ и построим семейство полигонов $\{P^\nu\}$, $\nu = (\nu_0, \ldots, \nu_{n+1})$, $\nu_k \in [0, 1]$, включающее P^0 и исходный полигон $P = P^1$ [6]. Введем геометрическую характеристику $p^{\nu} = (l^{\nu}, \alpha^{\nu})$ полигона P^{ν} ($l^{\nu} = (l_1^{\nu_1}, \ldots, l_{n-1}^{\nu_{n-1}})$ — вектор длин сторон P^{ν} ; $\alpha = (\alpha_0^{\nu_0}, \ldots, \alpha_{n-1}^{\nu_{n-1}})$; $\alpha_k^{\nu_k} \pi$ — углы P^{ν} в точках $z_k^{\nu_k}$, $k = \overline{0, n-1}$). Уравнение (5) представим в следующей эквивалентной форме:

$$u = F(u, p), \qquad F_k = u_k l_k^{-1} g_k(T, \alpha), \quad k = \overline{1, n-1}.$$
 (23)

Здесь $u_k = t_{k-1} - t_{k-2}, k = \overline{2, n}; p = (l, \alpha)$. Рассмотрим два полигона $(P^{\lambda}, P^{\mu}) \in \{P^{\nu}\}$ с близкими характеристиками

 $0 < |p^{\lambda} - p^{\mu}| \leqslant q \ll 1$

и составим уравнение для возмущений $v = u^{\lambda} - u^{\mu}$ [8]:

$$v = \Phi(u, q). \tag{24}$$

В работе [6] для схем Кирхгофа и Рябушинского показано, что при выполнении условия $|Dl/DT| \ge \delta > 0$ найдется фиксированное значение параметра $q = q_0(\delta) > 0$, такое что оператор возмущений $\Phi(u, q_0)$ будет сжимающим на некотором множестве $S \subset \mathbb{R}^n$. Этот факт позволяет разбить процесс нахождения решений $u = (u_1, \ldots, u_{n-1})$ уравнения (23) на конечное число циклов, в каждом из которых уравнение (24) для возмущений может быть решено методом простой итерации.

Такой сходящийся алгоритм решения уравнения (23) называется методом (алгоритмом) циклической итерации. Согласно доказанному в теореме 3 неравенству $Dl/DT \neq 0$ метод циклической итерации применим и в общей струйной задаче.

Теорема 4. Уравнение (23) для параметров, соответствующее общей струйной задаче, может быть решено с помощью сходящегося алгоритма циклической итерации.

3.4. Оптимизация. В рассматриваемых задачах внешней аэродинамики в качестве функционала цели берется сопротивление обтекаемого полигона $P \in G(\delta)$:

$$F_0(P) = \int_{-1}^{1} \left| \frac{dw}{dz}(t) \right| dt = N_0 \int_{-1}^{1} \left| \chi^{\nu} \Pi e^M \right|^{-1} dt.$$

Положим $F(P) = [F_0(P)]^{-1}$ и будем искать $\sup_G F(P)$. Функционал F(P) является непрерывно дифференцируемым по входящим явно параметрам t_k , β_j и полностью удовлетворяет условиям теоремы 1.

4. ОПТИМИЗАЦИЯ В КЛАССЕ КРИВОЛИНЕЙНЫХ ПРЕПЯТСТВИЙ

Рассмотрим изученную в п. 3 задачу для криволинейных препятствий, не представляя их в виде сходящихся последовательностей полигонов. Для этого используем метод, примененный в работе [9] к задачам фильтрации.

4.1. Криволинейная граница. Построим некоторую ляпуновскую кривую $\Gamma(\mu) \subset C^{\alpha+1}$, $\alpha > 0$, аппроксимирующую полигон P, так чтобы для производной $dz/d\zeta$ конформного отображения $z: E \to D(\Gamma)$, $\partial D(\Gamma) = \Gamma \cup L$ имело место явное представление вида (2), где $\mu > 0$ — параметр аппроксимации. Введем следующие обозначения: $t_k^{\pm} = t_k \pm r_k, r_k(\mu) = \mu \inf \{(t_k - t_{k-1}), (t_{k+1} - t_k)\}, k = \overline{1, n+1}, 0 < \mu \leq 1/3, t_0^{\pm} = t_0 = -1, t_{n+1}^- = t_{n+1} = 1, \Delta_k = [t_k^-, t_k^+], \Delta_k^+ = [t_k^+, t_{k+1}^-]$. Рассмотрим функцию $\theta(t) = \overline{\theta}(t) - 1$, удовлетворяющую условиям $\theta(t) = \delta_k \pi, t \in \Delta_k^+; \theta = 0, |t| > 1$:

$$\theta = [\delta_k(t - t_k^-) + \delta_{k-1}(t_k^+ - t)] |\Delta_k|^{-1} \equiv \theta_k(t), \qquad t \in \Delta_k.$$

Здесь $\delta_k = \bar{\delta}_k - 1$. Построенная функция $\theta(t, \mu), |t| < 1$ непрерывна и равномерно ограничена независимо от величин $(t_{k+1} - t_k) \ge 0, \ k = \overline{0, n}, \ |\theta| \le \sup_k |\delta_k|$.

Рассмотрим функцию

$$\Pi_{\theta}(\zeta) = (1 - \zeta^2)^{-1/2} \exp\Big(\int_{-1}^{1} \frac{\theta(t, \mu) \, dt}{t - \zeta}\Big),$$

которая представляет собой производную конформного отображения

$$Z = \int_{-1}^{\zeta} \Pi_{\theta}(\zeta) \, d\zeta, \qquad Z \colon \quad E \to D(\overline{\Gamma}), \quad \overline{\Gamma}(\mu) = \Gamma \cup P_0 \cup P_{n+1}.$$

При этом область $D(\Gamma)$ ограничена некоторой аппроксимирующей кривой $\Gamma(\mu)$ с углом $\pi\theta(t)$ наклона касательной к оси Ox и прямолинейными лучами $P_0 = (z_0, \infty)$, $P_{n+1} = (z_{n+1}, \infty)$. Вычислив интеграл типа Коши в представлении Π_{θ} , получим следующее выражение для функции $\Pi_{\theta}(\zeta)$ с точностью до постоянной растяжения:

$$\Pi_{\theta} = (1 - \zeta^2)^{-1/2} \prod_{k=0}^n \left(\frac{t_k^+ - \zeta}{t_k^- - \zeta}\right)^{\gamma_k(\zeta)} \left(\frac{t_{k+1}^- - \zeta}{t_k^+ - \zeta}\right)^{\delta_k}$$

Здесь $\gamma_k = (a_k + b_k \zeta) |\Delta_k|^{-1}, a_k = t_k^+ \delta_{k-1} - \delta_k t_k^-, b_k = \delta_k - \delta_{k-1}, k = \overline{1, n}; \gamma_0 = 0; t_0^\pm = t_0 = -1;$ $t_{n+1}^- = t_{n+1} = 1; |\Delta_k| = (t_k^+ - t_k^-), k = \overline{1, n}.$ По построению $\theta(t, \mu) \to \delta_k, t \in [t_{k-1}, t_k]$ при $\mu \to 0$ и, следовательно, кривая $\Gamma(\mu)$

По построению $\theta(t,\mu) \to \delta_k$, $t \in [t_{k-1},t_k]$ при $\mu \to 0$ и, следовательно, кривая $\Gamma(\mu)$ сходится к заданному полигону P, а производная $(dz_{\theta}/d\zeta)(\mu)$ конформного отображения z_{θ} : $E \to D(\Gamma)$ представляется в форме (18), вместо П и M нужно подставить Π_{θ} и M_{θ} . Аналогично задаче для полигона рассмотрим уравнение (5) для определения вектора $T = (t_1, \ldots, t_{n-1})$, в котором

$$g_k(T,\beta) = \left| \int_{t_{k-1}}^{t_k} \frac{dz_\theta}{dt} dt \right| = |z_k - z_{k-1}|, \qquad k = \overline{1, n-1}.$$
(25)

В определение кривой $\Gamma(\mu)$ входит заданная геометрическая характеристика (l, β) $(l = (l_1, \ldots, l_n)$ и $\beta = (\beta_0, \ldots, \beta_{n+1}))$ базового полигона P, с которым $\Gamma(\mu)$ совпадает при $\mu = 0$. Предполагается, что вектор (l, β) удовлетворяет условиям (3) невырожденности полигона P.

Конформное отображение $z_{\theta}: E \to D(\Gamma)$ переводит $t_k, k = \overline{0, n+1}$ в точки $z_{\theta k}(\mu) \in \Gamma(\mu)$ — вершины некоторого аппроксимируемого кривой $\Gamma(\mu)$ полигона $P_{\theta}(\mu)$, причем длины сторон $P_{\theta}(\mu)$ и P совпадают, а внешние углы $\pi\beta_k(\mu)$ и $\pi\beta_k$, вообще говоря, принимают разные значения.

Произвольному вектору T, подставленному в (5), соответствует некоторая кривая $\Gamma(\mu, T)$, аппроксимирующая полигон $P(\mu, T)$. Уравнения (5) являются условиями совпадения $\Gamma(\mu, T)$ и $\Gamma(\mu)$, а следовательно, условиями совпадения $P(\mu, T)$ и $P(\mu)$.

4.2. Разрешимость задачи. После приведения промежутков интегрирования в (25) к отрезку [0, 1] аналогично [5] устанавливается, что функции $g_k(T, \beta)$ непрерывно дифференцируемы по t_i , $i = \overline{1, n-1}$ и для вектора T справедливы оценки (4) (см. также [9]).

Так как оператор $g: \mathbb{R}^n \to \mathbb{R}^{n-1}, g = (g_1, \ldots, g_{n-1})$ в (25) непрерывно дифференцируемый по t_k на множестве $T \in R$ и на его границе не имеет неподвижных точек, то по теореме Шаудера уравнение (25) имеет, по крайней мере, одно решение. Доказана

Теорема 5 (существования). Пусть базовый полигон P является невырожденным. Тогда для соответствующей ему кривой $\Gamma(\mu)$ уравнение (25) имеет, по крайней мере, одно решение $T = (t_1, \ldots, t_{n-1})$, принадлежащее множеству R, определенному в (4).

Проблема оптимизации исследуется так же, как в п. 3.

ЛИТЕРАТУРА

- 1. Лаврентьев М. А. Избранные труды. Математика и механика. М.: Наука, 1990.
- 2. **Лионс Ж. Л.** Оптимальное управление системами, описываемыми уравнениями с частными производными. М.: Мир, 1972.
- 3. Теория оптимальных аэродинамических форм. М.: Мир, 1969.
- 4. Крайко А. Н. Вариационные задачи газовой динамики. М.: Наука, 1979.
- 5. Монахов В. Н. Краевые задачи со свободными границами для эллиптических систем уравнений. Новосибирск: Наука. Сиб. отд-ние, 1977.
- 6. Монахов В. Н. Об одном вариационном методе решения задач гидродинамики со свободными границами // Сиб. мат. журн. 2000. Т. 41, № 5. С. 106–121.
- 7. Вайнберг М. М. Вариационные методы исследования нелинейных операторов. М.: Гостехтеоретиздат, 1956.
- 8. Монахов В. Н., Губкина Е. В. Корректность задачи о параметрах струйных течений идеальной жидкости // Докл. РАН. 2003. Т. 391, № 5. С. 595–597.
- 9. Монахов В. Н. Контактные задачи теории фильтрации в криволинейных областях // Докл. РАН. 2005. Т. 404, № 3. С. 344–347.

Поступила в редакцию 13/II 2006 г., в окончательном варианте — 19/X 2006 г.