ОТКОЛЬНЫЕ ЯВЛЕНИЯ В АМПУЛАХ СОХРАНЕНИЯ ПРИ УДАРНОМ СЖАТИИ ИНЕРТНЫХ И РЕАГИРУЮЩИХ СМЕСЕЙ

С. С. Бацанов, С. М. Гаврилкин, А. Ю. Гордополов*, Ю. А. Гордополов*

Центр высоких динамических давлений ВНИИФТРИ, 141570 Менделеево, batsanov@gol.ru *Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка

Исследовано ударное сжатие смесей Ti-C, Zn-S и соответствующих соединений в цилиндрических ампулах сохранения при одинаковых условиях эксперимента. В реагирующих системах размеры откольных тарелок были существенно больше, чем в случае инертных веществ, что объяснено влиянием экзотермических реакций ударно-волнового синтеза на интенсивность головной волны. Выполнены энергетические оценки степени химических превращений в ударных волнах.

Ключевые слова: ударное сжатие, высокие температуры, тепловой взрыв, титан — алюминий, титан — углерод.

ВВЕДЕНИЕ

При изучении ударной сжимаемости смесей Sn–S и Sn–Te на кривых Гюгонио обнаружены изломы при p = 15 и 50 ГПа соответственно [1–3], обусловленные экзотермическими химическими реакциями за фронтом ударной волны. При протекании этих реакций в цилиндрических ампулах сохранения наблюдается заметное увеличение диаметра маховского шнура в сохраненном образце и соответствующее различие в откольных явлениях: в случае реакционной смеси Sn-X размеры откольного элемента значительно больше, чем в случае инертного вещества SnX, при одинаковых условиях опыта [4]. Этот факт позволил трактовать механические изменения ампул сохранения как следствие ударно-волновых процессов, происходящих внутри ампулы сохранения. Заметим также, что уже в самых первых экспериментах по изучению маховского взаимодействия в цилиндрических ампулах было зафиксировано образование на дне ампулы выемки с таким же, как у маховского шнура, сечением, содержимое выемки служит основным источником загрязнения обжимаемого вещества материалом ампулы [5, 6]. Увеличение откольной тарелки, появляющейся вследствие выхода маховской волны на свободную поверхность, вызвано ее подпиткой энергией химического взаимодействия за фронтом ударной волны.

В настоящей работе описанный метод использован в качестве теста при исследовании возможности протекания химической реакции при ударном сжатии смесей порошков, а в случае положительного результата — для изучения зависимости механических эффектов от теплоты образования соединения. Исследовалась порошкообразная смесь Ti–C, на кривой ударной сжимаемости которой при p = 15 ГПа обнаружен излом, обусловленный химическим взаимодействием за фронтом ударной волны [7], а также система Zn–S, представляющая интерес для изучения самоподдерживающихся высокотемпературных реакций.

ЭКСПЕРИМЕНТ

Смесь порошков титана ($\rho = 4,52 \text{ г/см}^3$) и графита ($\rho = 2,26 \ r/cm^3$) в соотношении 1:1 запрессовывалась до 67 %-й плотности сплошного материала в стальную цилиндрическую ампулу высотой 55 мм с внешним диаметром 10 и внутренним — 5 мм, толщина верхней и нижней пробок 10 мм. Ампула нагружалась цилиндрическим зарядом насыпного гексогена диаметром 40 и высотой 100 мм. Взрывная сборка устанавливалась на стальную плиту с зазором 2 мм, в который помещалась тефлоновая пластинка. Параллельно выполнялся опыт с инертным материалом, приготовленным из гомогенной смеси порошков карбида титана (получен из Института твердых сплавов) и CsCl в отношении 1:3, ударная адиабата которого (в *p*-*V*-координатах) такая же, что и для смеси Ti–C.

В результате подрыва ампулы с инертным составом на ее внешнем основании в центре появилось светлое пятно диаметром 2 мм, при подрыве реакционной смеси — такое же пятно

Вещество	Наружный диаметр, мм		аружный диаметр, мм Внутренний диаметр		Длина зоны			
Бещество	до нагружения	после	ампулы до нагружения, мм	смещения, мм	смещения, мм			
Zn–S	20,0	19,5	10,3	На всю ширину ампулы (центральная часть 4,5 мм)	18			
CdCO ₃	17,0	15,7	10,3	5	16			
PbO	17,4	16,5	10,3	3	13			

Результаты эксперимента

диаметром 3 мм с выемкой в центре, диаметр и глубина которой 1 мм. Светлые пятна, вероятно, являются результатом выхода на свободную поверхность пробки упругих предвестников, которые вызывают отрыв микроскопического слоя материала ампулы. В случае ударного сжатия смеси порошков наблюдался откол в месте выхода маховской волны (как и при ранее исследованном взаимодействии олова с халькогенами). Использование зарядов из более мощного ПВВ-4 приводит к увеличению диаметра и глубины откола.

Были поставлены аналогичные опыты по ударному сжатию порошков ZnS и Zn–S в таких же цилиндрических ампулах, с 65 %-й плотностью заполнения инертного и реагирующего материалов и использованием в качестве зарядов состава TГ 80/20 (скорость детонации 7,2 км/с, диаметр заряда 60 мм, высота 100 мм). Детонация инициировалась цилиндрической шашкой (40 × 40 мм) насыпного гексогена. После подрыва на внешнем основании ампулы с инертным материалом образовалась каверна диаметром 0,6 и глубиной 1 мм, при подрыве реакционной смеси — 1,5 и 2 мм соответственно.

Таким образом, в случае реагирующих смесей диаметр маховского шнура и величина откольной тарелки больше, чем при таком же ударном сжатии инертных материалов одинакового состава и с близкими механическими свойствами, что указывает на химическое взаимодействие твердых тел в процессе ударного нагружения. Для смеси Ti–C этот результат подтверждается кинематическими измерениями [7].

Для выяснения качественного поведения рассматриваемых реакционных смесей в области нерегулярного взаимодействия в цилиндрической ампуле были проведены дополнительные эксперименты. Использовались стехиомет-

Рис. 1. Схема эксперимента по изучению «инерции» зоны маховского взаимодействия в цилиндрической ампуле

рическая смесь Zn–S, реакция в которой проходит без образования газовой фазы при нагружении ударной волной; соединение CdCO₃, разлагающееся с выделением CO₂, и для сравнения инертное соединение PbO. Нагружение осуществлялось аммонитом насыпной плотностью 1,1 г/см². Заряд располагался до середины ампулы (рис. 1). Высота заряда 60 мм, длина ампулы 120 мм. После вскрытия ампул отчетливо наблюдалось смещение зоны реакции в центре ампулы за границу расположения взрывчатого вещества (BB). Были измерены диаметр этого проскока и его длина. Все данные приведены в табл. 1.

Влияние упругости оболочки на параметры головной ударной волны

Экспериментальные исследования течения в цилиндрах диаметром d, собранных из плексигласовых дисков, с использованием высокоскоростной фотографии позволили измерить

Таблица 1

сечение маховского шнура $d_{\rm M}$ и показали, что отношение $d_{\rm M}/d$ растет при увеличении скорости детонации применяемого BB [8]. При ударном сжатии плексигласовых цилиндров с металлическими оболочками установлено [9], что в случае латуни $d_{\rm M}/d = 0.5$, а в алюминиевой оболочке $d_{\rm M}/d = 0.7$. К сожалению, другой информации в литературе не обнаружено.

Задача определения размеров маховской конфигурации в цилиндрической ампуле не имеет корректного теоретического решения из-за сложности процессов взаимодействия ударных волн в данной постановке, зависимости характера течения от множества параметров, точные значения которых, как правило, неизвестны, и, наконец, из-за влияния многократного прохождения ударных волн в ампулах сохранения на конечный результат.

Поэтому целесообразно найти простые инженерные приемы определения сечения маховского шнура и с помощью последнего провести систематическое исследование факторов, определяющих конечный результат ударного сжатия вещества в ампуле сохранения. Таким приемом стало применение фольг для измерения размера отверстий, появление которых вызвано тангенциальными разрывами на границе маховского шнура (этот метод использовался еще в работе [5]). В докладе [10] на примере ударного сжатия CdCO₃ в цилиндрической ампуле показано, что размеры сечения отверстий в медных фольгах, расположенных перпендикулярно оси ампулы, диаметры темного шнура вдоль оси ампулы, возникающего в результате перехода белого карбоната кадмия в черно-коричневый оксид CdO, и поперечник струи материала, вылетающий из нижнего торца ампулы, при одинаковых условиях эксперимента имеют близкие значения. Это означает, что, измеряя почернение материала в аксиальной части цилиндрической ампулы с ударно-обжатым карбонатом кадмия, можно оценить изменение размеров маховского шнура при изменении условий опыта.

В настоящей работе ударное сжатие CdCO₃ проводилось в стальных цилиндрических ампулах (высота 58, диаметр 10, толщина стенок 2,5, толщина пробок 13 мм) с плотностью заполнения 40 %. Использовались заряды из аммонита, насыпного флегматизированного гексогена и ПВВ-4 со скоростями детонации соответственно 3,7; 5,7 и 7,5 км/с, диаметры зарядов варьировались при постоянной

Рис. 2. Схема разложения CdCO₃: 1 — маховская зона, 2 — периферия, 3 — промежуточная зона

высоте 80 мм. После подрыва ампула вместе с веществом разрезалась по оси тонкой алмазной фрезой. Во всех случаях в центре наблюдался черно-коричневый конусообразный шнур на расстоянии ≈ 2 калибров от верхнего торца цилиндра (рис. 2). Анализ содержимого осевой и периферийной частей ампулы, предварительно прокаленного при T = 500 °C до постоянной массы, соответствующей образованию CdO, показал, что превращение CdCO₃ \rightarrow CdO на 90 % происходит в маховской зоне, о размерах которой можно судить по размерам темного конуса вдоль оси ампулы.

Влияние типа BB на превращение $CdCO_3$ изучалось на зарядах диаметром 47 мм. Действие аммонита привело к образованию маховского шнура диаметром 0,6 мм, внутри которого степень превращения составила 23 %, а вне его — 1 %. Использование гексогена привело к удвоению диаметра шнура, степень превращения внутри него 33 %, вне его — 4 %. В случае ПВВ-4 сохранить образец для топографического анализа не удалось. При увеличении диаметра заряда размеры черной области в образце не изменяются, но степень превращения растет. Так, при использовании зарядов гексогена диаметром 20, 27, 47, 80 и 110 мм среднее превращение CdCO₃ составило 9, 13, 17,5, 18 и 18,5 %, т. е. эффективность действия зарядов диаметром 47÷110 мм практически одинакова, и поэтому в дальнейших опытах мы использовали только заряды диаметром 47 мм.

Ударное сжатие CdCO₃ с использованием гексогена в стальных ампулах с внутренним диаметром 5 и внешним 15 мм привело к 13 %-му превращению со средним диаметром

Внешний цилиндр	$ ho, \\ \Gamma/cm^3$	<i>B</i> ₀ , ГПа	Диаметр м верх	лаховского 1 середина	инура, мм низ	[CdO], %
Молибден	10,2	265	0,3	0,5	0,8	10
Латунь	8,5	104	0,7	0,75	1,1	12
Дюраль	2,7	76	$_{0,3}$	$1,\!0$	$1,\!4$	14
Свинец	11,3	44	0,8	1,1	$1,\!4$	20
Пенопласт	0,5	1,0	1,0	1,3	1,5	25

				ſ	Габлица	a 2
Влияние жесткости	оболочек на	параметры	маховской	области	в цилинд	pax

Рис. 3. Ударная сжимаемость: 1 — смесь Zn–S; 2 — холодный ZnS; 3 — нагретый ZnS

маховского шнура 1,0 мм, тогда как в алюминиевой ампуле таких же размеров при одинаковых условиях опыта превращение составило 25 %, а диаметр маховского шнура — 1,8 мм. Таким образом, как и в описанных выше динамических экспериментах, диаметр головной ударной волны растет по мере уменьшения жесткости оболочки.

Было изучено поведение CdCO₃ при ударном сжатии в двухслойных цилиндрических ампулах: внутренний цилиндр — стальная трубка с отверстием 5 и наружным диаметром 10 мм; внешний цилиндр изготавливался из разных материалов, и его диаметры равны соответственно 10 и 15 мм, т. е. толщина стенок обоих цилиндров 2,5 мм. Плотность заполнения ампулы порошком CdCO₃ везде составляла 40 %. После вскрытия ампулы вначале измерялся внутренний диаметр ампулы, который после ударного сжатия обычно уменьшался до 3 мм, затем — диаметры черной области вверху (на расстоянии 0 ÷ 6 мм от верхнего торца ампулы), в середине (в интервале $6 \div 26$ мм) и внизу ($26 \div 32$ мм) ударно-обжатого образца. Каждый тип оболочки испытывался по меньшей мере трижды, и полученные результаты осреднялись. Результаты опытов представлены в табл. 2.

Видно, что сечение маховского шнура уменьшается по мере увеличения модуля упругости оболочки. Этот факт можно использовать для регулирования термодинамических параметров в осевой области цилиндрических ампул сохранения в зависимости от задачи эксперимента: для химического синтеза лучше использовать внешние цилиндры из мягких материалов, для сохранения максимального выхода вюрцитной фазы при превращении графитоподобного нитрида бора — молибденовые оболочки.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Вначале оценим влияние жесткости материалов на размеры маховской области. Из результатов ударного сжатия карбоната кадмия в цилиндрических ампулах переменной жесткости следует, что диаметр маховского шнура закономерно растет при уменьшении различия значений ρc^2 оболочки и содержимого ампулы.

Таблица 3 Ударные адиабаты исследованных веществ

Состав	D = c + sU						
	ho, г/см ³	c, км/с	s	$ρc^2$, ΓΠα			
Ti–C	3,72	$4,\!17$	$2,\!05$	64,7			
TiC	4,45	5,17	1,42	119			
Zn–S	$3,\!95$	2,55	1,60	25,7			
ZnS	4,10	4,80	1,14	94,5			

Таблица 4

р₀. ГПа	$E_{\rm c},\kappa$ Дж/моль		$\Delta E,$	$\Delta p_Q,$	$E_{\rm c}$, кДж/моль		$\Delta E,$	$\Delta p_Q,$
F 0 ,	Ti–C	TiC	кДж/моль	ГПа	Zn–S	ZnS	кДж/моль	ГПа
10	6,8	4,3	2,5	10,0	20,55	10,8	9,75	7,4
20	20,0	14,1	$5,\!9$	10,7	48,35	33,3	$15,\!05$	8,0
30	36,2	27,0	9,2	11,0	79,2	61,3	17,9	8,6
40	54,15	41,8	12,35	11,3	110,0	92,7	17,3	9,0
50	73,3	57,95	$15,\!35$	11,6	140,6	125,3	15,3	$_{9,5}$
60	93,25	75,0	18,25	11,8	171,2	159,8	11,4	10,1
70	113,75	92,8	20,95	11,9	201,7	194,8	6,9	10,6
80	134,7	111,25	23,45	12,1	232,0	230,5	1,5	11,2
90	155,9	129,8	26,1	12,1	262,1	266, 6	-4,5	11,9
100	177,4	148,9	28,5	12,1	292,0	$_{303,0}$	-11,0	12,5

Работа сжатия и тепловое давление в ходе реакции синтеза

Рассмотрим ударно-волновые характеристики изученных веществ. Их ударные адиабаты (D = c + sU) по данным [11] и значения жесткости ρc^2 в аксиальной части цилиндрической ампулы на стационарном участке, где D равна скорости детонации использованных ВВ, приведены в табл. 3. В экспериментах с Ті-С и ТіС использовался насыпной гексоген с $D_0=6.2$ км/с при $\rho=1.0$ г/см 3, а в экспериментах с Zn–S и ZnS — ПВВ-4 с $D_0=7.2$ км/с при $\rho = 1.6 \ \text{г/см}^3$. Видно, что при ударном сжатии холодных веществ различие значений $ho c^2$ для оболочек и обжимаемых смесей (с учетом, что для железа $\rho c^2 = 168 \ \Gamma \Pi a$) значительно больше, чем для соответствующих соединений, т. е. диаметр маховского шнура в опытах со смесями должен быть меньше. В действительности наблюдается обратная картина. Рассмотрим причину этого противоречия.

В результате реакции при сжатии смеси образуется новое вещество с новой ударной адиабатой. Поскольку сжимаемость смеси больше сжимаемости соединения, адиабата смеси располагается левее адиабаты соединения (рис. 3). Поэтому точка, соответствующая давлению, при котором происходит реакция, должна переместиться с одной кривой на другую с затратой энергии, равной разности работы сжатия смеси и соединения. Вследствие же выделения тепла в результате синтеза ударно-волновые характеристики вещества должны еще измениться. В соответствии с моделью Ми — Грюнайзена за счет выделившегося в ходе реакции тепла давление возрастает на величину

$$\Delta p_Q = \frac{2\Gamma Q}{V(\Gamma+2) - \Gamma V_0},\tag{1}$$

где Γ — коэффициент Грюнайзена, V_0 и V — объемы исходного (холодного) и сжатого (нагретого) тела. Зная тепловые эффекты реакций синтеза, удельные теплоемкости и коэффициенты термического расширения TiC и ZnS, а также их модули объемного сжатия, можно рассчитать тепловое давление Δp_Q и, добавив его к нормальному ударному давлению, получить адиабату нагретого тела. Однако предварительно в величину теплового эффекта надо внести поправку на разность работы сжатия смеси и соединения (ΔE).

Для вычисления ΔE воспользуемся универсальным уравнением состояния Шлоссера — Винета — Ферранте [12], которое дает выражение для работы сжатия

$$E_{\rm c} = (9V_0 B_0/\eta^2) \{ [\eta(1-x) - 1] \times \exp[\eta(1-x)] + 1 \}, \quad (2)$$

где B_0 — модуль объемного сжатия, V_0 и V — исходный и конечный объемы тела, $x = (V/V_0)^{1/3}$, $\eta = 1.5B_0'$ (B_0' — производная B_0 по давлению). В табл. 4 приведены значения E_c

TiC: $D = 5,73 + 1,0U$				ZnS: $D = 5,30 + 0,8U$				
p, ГПа	V, cm^3	D, км/с	U, км/с	$p, \Gamma \Pi a$	V, cm^3	D, км/с	U, км/с	
0	14,1	5,73	0	0	24,5	53,0	0	
20	$12,\!53$	6,504	0,724	17,4	21,73	$5,\!910$	0,753	
$_{30,7}$	11,88	6,775	1,067	28,0	20,28	6,211	1,153	
41,0	$11,\!38$	7,072	1,365	38,6	19,17	$6,\!551$	1,507	
$51,\!3$	$10,\!97$	7,376	$1,\!637$	49,0	18,55	$7,\!090$	1,788	
$61,\! 6$	$10,\!65$	$7,\!699$	1,884	59,5	18,05	$7,\!439$	2,046	
$71,\!8$	$10,\!37$	7,994	2,115	70,1	17,67	$7,\!856$	2,282	
81,9	$10,\!13$	8,275	2,330	80,6	17,34	8,239	2,502	
92,1	9,90	8,532	2,542	91,2	17,05	8,600	2,712	
102,1	9,71	8,787	2,736	101,9	16,81	$8,\!956$	2,910	
112,1	9,55	9,044	2,918	112,5	16,60	9,290	3,097	

Таблица 5 Ударные адиабаты нагретых соединений TiC и ZnS

для изученных смесей и соединений в диапазоне $p_0 = 10 \div 100 \ \Gamma \Pi a$ (механические характеристики взяты из [12]). Эти значения должны быть вычтены из тепловых эффектов образования TiC и ZnS (94 и 203 кДж/моль соответственно), и полученные значения можно использовать для расчетов Δp_Q по уравнению (1).

Используя данные табл. 4, можно построить ударные адиабаты нагретых за счет химических реакций соединений TiC и ZnS по известным из кривых ударного сжатия объемам этих веществ и по новым значениям давления с учетом представленной в этой же таблице величины Δp_Q . В табл. 5 приведены необходимые параметры p, V для нагретых веществ, экстраполированные на значение p = 0 (значения V_0 близки к известным для холодных тел, умноженным на коэффициент термического расширения, и $T = (Q - \Delta E)/c_p$, где Q — тепловой эффект реакции, c_p — удельная теплоемкость при постоянном давлении), и рассчитанные по этим данным скорости D, U и ударные адиабаты. Коэффициент Грюнайзена для ТіС принят равным 1,3, для ZnS — 0,8, в соответствии с их механическими и термодинамическими характеристиками.

Сравнение табл. 3 и 5 показывает, что жесткость ρc^2 образовавшихся в результате химической реакции нагретых соединений TiC и ZnS выше, чем жесткость холодных соединений и тем более смесей, что уменьшает их отличие от жесткости оболочек и должно вызывать расширение маховской области в ударно-обжатом материале, как и наблюдалось в эксперименте.

Рассмотрим далее распространение ударных волн в стальной пробке цилиндрических ампул сохранения. В случае нагретого TiC в аксиальной части содержимого ампулы развивается давление 12,4 ГПа, которому при вхождении в металл соответствуют значения D =5,1 км/с, U = 0,37 км/с и p = 15,1 ГПа. По стенкам ампулы ударная волна распространяется со скоростью 6,2 км/с, и с такой же скоростью она движется по пробке от периферии к центру. Поскольку внутренний диаметр ампулы 5 мм и относительный диаметр маховского шнура 0.6 от сечения цилиндра [8, 9], боковая ударная волна уже через 1 мм с обеих сторон вступит во взаимодействие с прямой головной ударной волной, после чего пойдет разгрузка. Последняя будет распространяться со скоростью звука в железе, т. е. 4,57 км/с, и успеет пройти только 0,7 радиуса основания ампулы, прежде чем встретится с головной ударной волной, прошедшей 9 мм в пробке. Таким образом, аксиальный цилиндр диаметром 3 мм с 10-миллиметровой пробкой не подвергается действию боковой разгрузки и может выйти на свободную поверхность, отразиться и совершить отрыв откольного элемента.

Проведем некоторые энергетические оцен-

ки наблюдаемых эффектов. С учетом того, что плотность стали 7,85 г/см 3 , масса откола в реагирующей смеси Ti-C составит ≈ 0.003 г. Скорость движения откольного элемента v =2U = 0.74 км/с (U = 0.37 км/с в стали). Отсюда его кинетическая энергия E = 1.6 Дж. Зная теплоту образования ТіС (94 кДж/моль), количество вещества в ампуле (1,7 г) и диаметр маховского шнура (1 мм, судя по диаметру откола), можно установить, что при полном протекании реакции взаимодействия титана с углеродом в маховском шнуре в ампуле должно выделиться тепла ≈ 100 Дж. Следовательно, кинетическая энергия откольного элемента составляет ≈ 1.6 % от теплоты реакции. Это нижний предел, так как в пробке может начать формироваться головная ударная волна, скорость которой стремится к 6,2 км/с, а $U \approx 1,417$ км/с, что дает в качестве верхнего предела 12 % от теплоты реакции. Полученные величины в 2–3 раза меньше оценок степени химического превращения за фронтом ударной волны по кинематическим и оптическим измерениям [1-3].

В случае системы Zn-S аналогичным образом приходим к следующим результатам. При скорости головной ударной волны D = 7,2 км/с (равной скорости детонации использованного заряда) имеем для стали U 1,93 км/с, следовательно, скорость движения откольной тарелки $v = 2U = 2 \cdot 1,93 \approx$ 3,86 км/с. Масса откольной тарелки в случае реагирующей смеси составляет $2.8 \cdot 10^{-2}$ г, а в нейтральном веществе — $2.2 \cdot 10^{-3}$ г. Отсюда кинетическая энергия откольных тарелок равна соответственно 224 и 17 Дж, т. е. увеличение энергии из-за экзотермической реакции составило 207 Дж. В маховском канале диаметром 1,5 мм содержится 0,1188 г смеси Zn-S, полная теплота превращения которой равняется 234 Дж (теплота образования вюрцитной фазы ZnS 192,2 кДж/моль [7]), т. е. реакция в объеме маховского шнура прошла на 90 %. Как видно, реакция соединения цинка с серой проходит более интенсивно, чем реакция соединения титана с углеродом.

ЗАКЛЮЧЕНИЕ

Описанный прием изучения химических превращений в ударных волнах является, по существу, упрощенным вариантом метода свободной поверхности и, в принципе, может быть усовершенствован путем измерения (например, электроконтактными датчиками) реальной скорости полета откольной тарелки до уровня количественной оценки термохимических характеристик ударного синтеза. В рамках описанного метода представляет интерес изучить влияние материала и толщины пробки на характер откола, уменьшить толщину стенок ампулы для предотвращения взаимодействия прямых и боковых волн и улучшить процедуру сохранения откольных элементов, чтобы деформация ампулы при ударах о стенки взрывной камеры не искажала картину откола.

ЛИТЕРАТУРА

- Бацанов С. С., Доронин Г. С., Клочков С. В., Теут А. И. О возможности протекания реакции синтеза за фронтом УВ // Физика горения и взрыва. 1986. Т. 22, № 6. С. 134–137.
- Бацанов С. С., Гогуля М. Ф., Бражников М. А. и др. Ударное сжатие реагирующих веществ в системе олово — халькоген // Хим. физика. 1991. Т. 10. С. 1699–1704.
- Бацанов С. С., Гогуля М. Ф., Бражников М. А. и др. Поведение реагирующей системы Sn + S в ударных волнах // Физика горения и взрыва. 1994. Т. 30, № 3. С. 107–112.
- 4. Бацанов С. С., Андрианова Е. Е., Лазарева Е. В. Механические последствия химического превращения веществ в ампулах сохранения // Хим. физика. 1989. Т. 8. С. 1435–1437.
- 5. Бацанов С. С., Доронин Г. С., Ступников В. П. Параметры ударного сжатия веществ в цилиндрических ампулах // Инж.-физ. журн. 1967. Т. 13, № 4. С. 572–574.
- Бацанов С. С., Нигматуллина В. М., Юделевич И. Г. Действие взрыва на вещество. Защита обжимаемого вещества от загрязнений материалом ампулы // Физика горения и взрыва. 1968. Т. 4, № 3. С. 422–425.
- Гордополов А. Ю., Гордополов Ю. А., Федоров В. М., Шихвердиев Р. М. Химические превращения в смеси Ті С, инициированные ударной волной // XII Симпозиум по горению и взрыву. Черноголовка, 11–15 сентября 2000. Ч. II. С. 190–192.
- Ададуров Г. А., Дремин А. Н., Канель Г. И. Параметры маховского отражения в плексигласовых цилиндрах // ПМТФ. 1969. № 2. С. 126–130.
- Доронин Г. С., Ступников В. П., Романьков В. В. и др. Сжатие плексигласовых цилиндров скользящей детонационной волной // Журн. техн. физики. 1973. Т. 43, № 5. С. 1059–1065.

- 10. Мартынов А. И., Лазарева Е. В., Темницкий И. Н. Исследование нерегулярного взаимодействия ударных волн в цилиндрических ампулах сохранения // Тезисы докл. III Всесоюз. симпоз. по импульсным давлениям. 1979. С. 101.
- 11. Бацанов С. С. Effects of Explosions on Materials. New York: Springer-Verlag, 1994.
- 12. **Рябин В. А., Остроумов М. А., Свит Т. Ф.** Термодинамические свойства веществ. Л.: Химия, 1977. С. 392.

Поступила в редакцию 14/XII 2001 г., в окончательном варианте — 15/XI 2003 г.