2013

УДК 51.72, 539

О КОЭФФИЦИЕНТЕ БОКОВОГО РАСПОРА Случайных упаковок дискретных элементов

С. В. Клишин, О. А. Микенина

Институт горного дела им. Н. А. Чинакала СО РАН, E-mail: sv.klishin@google.com, Красный проспект, 54, 630091, г. Новосибирск, Россия

Выполнено численное исследование напряженно-деформированного состояния дискретного материала в случае двухосного нагружения в трехмерной постановке. Показано выполнение соотношения континуальной модели Друкера – Прагера для двумерного случая на начальной стадии течения.

Напряженное состояние, боковой распор, континуальная модель, горная порода, сплошная среда, гранулированный материал, численный анализ, метод дискретных элементов

введение

Понятие коэффициента бокового распора различных геоматериалов широко используется в различных инженерных схемах расчетов, прежде всего в механике сыпучих сред и грунтов, механике горных пород и др. [1-3]. В гидростатике значение коэффициента бокового распора равно тождественно единице. Этот факт представляет собой не что иное, как отражение закона Паскаля. Для геоматериалов коэффициент бокового распора колеблется в довольно широких пределах и зависит от целого ряда факторов: строения среды, истории ее нагружения и т. п. Значение коэффициента может определяться на основе либо экспериментальных данных, либо тех или иных теоретических расчетов.

Рассмотрим пример численного исследования данной задачи с использованием метода дискретных элементов. В последние годы данный метод приобретает все большую популярность. Основная его идея состоит в следующем. Реальное твердое тело, в том числе и массив горных пород, заменяется определенной упаковкой отдельных твердых частиц — дискретных элементов. Частицы могут быть абсолютно жесткими или упругими, в принципе, они могут наделяться и более сложными свойствами. Далее задается закон, в соответствии с которым осуществляется контактное взаимодействие частиц. Затем решается конкретная начальнокраевая задача и делается анализ решения, включая анализ степени адекватности полученного решения реальной ситуации.

В работе [4] предложено ввести в данную схему исследования еще один элемент. Именно, после выбора дискретной модели провести дополнительные численные эксперименты, чтобы построить континуальную модель, эквивалентную выбранной дискретной модели. Причем по-

45

№ 6

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 13-05-00432).

нятие "эквивалентная" понимается в [4] в широком смысле. В некоторых задачах достаточно рассмотреть узкий класс путей нагружения, для которых эквивалентность имеет место, в других задачах класс нагружений должен быть более широким, так что проблема построения континуальной модели превращается в самостоятельную задачу.

В настоящей работе рассмотрен пример реализации данного подхода для первого случая. Предположим, что частицы являются упругими, абсолютно гладкими и не меняют своей формы в процессе нагружения.

ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ

Пусть в пространстве Oxyz задана область S^* — куб, грани которого ориентированы вдоль координатных осей с длиной ребер, равными l^* . Данная область заполняется случайным образом частицами сферической формы радиусами r_i, равномерно распределенными в интервале от r_{\min} до r_{\max} . Соотношение $R^* = r_{\max}/r_{\min}$ задается заранее и в представленной работе $R^* = 1.5$. Значение r_{\min} выбирается с тем условием, чтобы заполнить начальный объем S^* заданным количеством дискретных элементов N, исключая их контакты друг с другом и с границей. В рассматриваемой задаче отношение объема, занятого всеми частицами, ко всему объему области S^* выбрано равным 0.3. Для того чтобы создать исходную плотную упаковку, задается трехосное сжатие области посредством движения всех граней параллельно координатным осям к центру координат с постоянной скоростью $v^* = \text{const}$ (рис. 1*a*).

Рис. 1. Подготовка численного эксперимента: а — исходное состояние; б — плотная упаковка и способ деформирования

При этом частицы вступают в контакт друг с другом и границей. Для описания силы F_{ii}, действующей на контакте между частицами с номерами і и ј, воспользуемся следующим выражением:

$$\mathbf{F}_{ij} = k_{n,ij} \delta_{n,ij} \cdot \mathbf{n}_{ij} + k_{t,ij} \delta_{t,ij} \cdot \mathbf{t}_{ij} \,. \tag{1}$$

Здесь **n**_{*ii*} — единичный вектор, определяющий плоскость контакта между двумя сферическими дискретными элементами; \mathbf{t}_{ij} — единичный вектор, принадлежащий плоскости контакта; $\delta_{n,ij}$ и $\delta_{t,ij}$ — перекрытия частиц в нормальном и касательном направлениях соответствен-46

но. Перекрытие по нормали $\delta_{n,ij} = (r_i + r_j) - l_{ij} > 0$, где l_{ij} — расстояние между центрами частиц, r_i и r_j — их радиусы. Поскольку в первом эксперименте частицы предполагаются абсолютно гладкими, второе слагаемое в (1) равно нулю и будет рассмотрено далее.

Коэффициент $k_{n,ij}$ в (1) равен

$$k_{n,ij} = E_{ij}r_{ij},$$

где

$$E_{ij} = \frac{E_i E_j}{E_i + E_j}, \quad r_{ij} = \frac{r_i r_j}{r_i + r_j}$$

Здесь E_i и E_j — модули упругости *i*-й и *j*-й частиц соответственно. При достижении отношения объема, занятого всеми частицами, к текущему объему области (плотность упаковки) значения 0.65 процесс сжатия останавливается. Среднее значение координационного числа при такой плотности для каждой частицы становится равным 7–8, что соответствует плотной упаковке с развитыми контактами между соседними элементами. При этом у получившейся области S_0 фиксируются длины ребер l_0 , а также сила F_0 , действующая со стороны материала на границу области (рис. 16).

Далее на всех этапах деформирования грани, ориентированные параллельно плоскости *Оху*, предполагаются неподвижными. Таким образом, рассматриваемая задача сводится к плоской деформации, однако предложенная постановка позволяет рассматривать дилатансию в направлении оси *Oz*, которая вносит существенный вклад в деформирование дискретной среды.

Деформирование осуществляется следующим образом. К верхней и нижней граням области прикладывается постоянное давление $P_0 = F_0 / l_0$, а на боковых гранях, параллельных плоскости *Оуг*, задается постоянный вектор скорости $\mathbf{v} = (v_x, 0, 0)$, причем $v_x = \text{const}$. Поскольку в каждый момент времени *t* известна сила F(t), действующая со стороны материала, для обеспечения постоянства давления P_0 необходимо задание силы F(t) в виде

$$F(t) = F_0(1+2v_x t) \, .$$

Такое нагружение эквивалентно деформированию образца материала в лабораторных условиях, когда давление на гранях задается через пресс с абсолютно гладким основанием, а смещение граней с постоянной скоростью — винтом.

Численный эксперимент проводился при следующих значениях физических параметров частиц: $E_i = 10^9$ Па; $r_{\min} = 0.01$ м. Начальная длина ребер $l_0 = 1$ м; начальная сила $F_0 = 10^6$ H; скорость деформации $v_x = 0.05$ м/с. Нагружение осуществлялось в течение 30 с. Таким образом, конечная длина образца увеличилась в 4 раза по сравнению с начальной, и данная постановка позволила исследовать большие деформации. На рис. 2*a* показано изменение относительного объема V' в процессе нагружения. В данном случае V' выражается следующим образом:

$$V' = \frac{V(t) - V_0}{V_0},$$
(2)

где V(t) и V_0 — текущий и начальный объем образца соответственно.

Рассмотрим компоненты тензора деформаций ε_{xx} , ε_{yy} и ε_{xy} . Во-первых, поскольку трение между частицами и границами отсутствует, то $\varepsilon_{xy} \equiv 0$. Далее, деформация ε_{xx} вычисляется в соответствии с граничными условиями:

$$\varepsilon_{xx}(t) = \frac{l_x(t) - l_0}{l_0} = 2v_x t , \qquad (3)$$

здесь $l_x(t)$ — текущая длина образца по оси Oy. Деформация ε_{yy} , рассчитанная как

$$\varepsilon_{yy} = \frac{l_y(t) - l_0}{l_0},\tag{4}$$

где $l_y(t)$ — текущая длина образца вдоль оси *Оу*, носит нелинейный характер и приведена на рис. 2*б*.

Рис. 2. Изменение относительного объема V'(a) и деформации $\varepsilon_{yy}(b)$ при нагружении

Теперь, зная все компоненты тензора деформаций, можно получить компоненты тензора скоростей деформаций e_{xx} , e_{yy} и e_{xy} . Из (3) сразу следует, что $e_{xx} = 0.1$, а из-за отсутствия трения на границах $e_{xy} \equiv 0$. Вертикальная компонента e_{yy} показана на рис. За (сплошная линия), где для сравнения штриховой линией представлена горизонтальная компонента e_{xx} .

Коэффициент бокового распора ξ , равный отношению напряжений $\sigma_{xx} / \sigma_{yy}$, приведен на рис. Зб. Напряжения здесь вычисляются как сумма всех сил, действующих на соответствующей грани, отнесенная к ее площади. Видно, что ξ практически сразу с начала нагружения переходит в стационарное состояние, причем деформации сопровождаются возрастанием объема упаковки (дилатансия положительна и возрастает).

Рис. 3. Изменение вертикальной компоненты тензора скоростей деформаций $e_{yy}(a)$ и коэффициента бокового распора $\xi(\delta)$ при нагружении

Таким образом, численные расчеты показывают, что на макроуровне представленная дискретная среда обладает свойствами дилатансии и кажущегося внутреннего трения. Можно показать, что с определенной степенью точности ей отвечает модель Друкера – Прагера [5 – 7].

Данная модель является одной из классических в механике грунтов и сыпучих сред. Она строится как непосредственное обобщение моделей пластичности, основанное на ассоциированном законе течения. Модель обладает рядом замечательных математических свойств, но вместе с тем приводит к парадоксальному результату. Диссипация энергии в рамках данной модели оказывается пропорциональной сцеплению среды. Это значит, что если сцепление стремится к нулю и остается только внутреннее трение, то диссипация также стремится к нулю.

Напомним основные положения данной модели в случае плоской деформации. Пусть σ_{xx} , σ_{yy} , σ_{xy} — компоненты тензора напряжений. Условие предельного состояния Кулона запишется в виде

$$\frac{1}{2}\sqrt{(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2} = -\sin\varphi \frac{\sigma_{xx} + \sigma_{yy}}{2} + k\cos\varphi.$$
(5)

Здесь φ — угол внутреннего трения, k — сцепление. Отсюда следует уравнение поверхности нагружения

$$f(\sigma) = \frac{1}{2}\sqrt{(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2} + \sin\varphi \frac{\sigma_{xx} + \sigma_{yy}}{2} - k\cos\varphi = 0.$$
 (6)

Ассоциированный закон течения имеет вид

$$e_{xx} = \lambda \frac{\partial f}{\partial \sigma_{xx}} = \frac{\lambda}{2} \left(\frac{\sigma_{xx} - \sigma_{yy}}{\sqrt{(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2}} + \sin\varphi \right),$$

$$e_{yy} = \lambda \frac{\partial f}{\partial \sigma_{yy}} = \frac{\lambda}{2} \left(\frac{-(\sigma_{xx} - \sigma_{yy})}{\sqrt{(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2}} + \sin\varphi \right),$$

$$2e_{xy} = \frac{\lambda}{2} \frac{4\sigma_{xy}}{\sqrt{(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2}},$$
(7)

где, как и выше, e_{xx} , e_{yy} , e_{xy} — компоненты тензора скоростей деформаций; λ определяется в процессе решения задачи.

Рассмотрим следствия из системы (7). Во-первых, из (7) вытекает соосность тензоров напряжений и скоростей деформаций:

$$\frac{2e_{xy}}{e_{xx} - e_{yy}} = \frac{2\sigma_{xy}}{\sigma_{xx} - \sigma_{yy}}.$$
(8)

Во-вторых, видно, что λ имеет смысл максимальной скорости сдвига:

$$\lambda = \sqrt{(e_{xx} - e_{yy})^2 + 4e_{xy}^2} .$$
(9)

Далее, из первых двух равенств (7) следуют дилатансионные соотношения

$$e_{xx} + e_{yy} = \sin \varphi \sqrt{(e_{xx} - e_{yy})^2 + 4e_{xy}^2} .$$
 (10)

Значит, дилатансия всегда положительная и ее угол совпадает с углом внутреннего трения.

49

Подсчитаем теперь удельную скорость диссипации энергии:

$$D = \sigma_{xx}e_{xx} + \sigma_{yy}e_{yy} + \sigma_{xy}e_{xy} = \lambda k\cos\varphi = k\cos\varphi \sqrt{(e_{xx} - e_{yy})^2 + 4e_{xy}^2}.$$
 (11)

Таким образом, дилатансия среды всегда оказывается положительной и, кроме того, с неограниченным увеличением сдвига — неограниченной. Диссипации энергии оказалась пропорциональной сцеплению. В [8] показано, что модели Друкера – Прагера соответствует гранулированная среда с абсолютно гладкими частицами.

При рассмотрении графиков на рис. За видно, что при t < 0.2, когда деформация ε_{xx} меньше чем 0.01 от начального размера образца, а скорости e_{xx} и e_{yy} постоянны, подстановка их значений в (10) дает значение угла внутреннего трения φ в пределах от 5 до 12°. Поскольку в рассматриваемой задаче напряжение σ_{yy} постоянно, из графиков рис. Зб и формулы (5) следует, что значение φ в среднем равно 5°. Результаты численного эксперимента подтверждают приведенные выше выкладки на начальном этапе деформирования.

Рассмотрим теперь влияние внешнего трения между частицами на деформирование. Вернемся к формуле (1). Здесь коэффициент $k_{t,ij}$ задается виде

$$k_{t,ij} = k^* k_{n,ij}, (12)$$

где $k^* = \text{const}$. Касательная составляющая $\delta_{t,ij}$ определяется в терминах приращений. Когда контакт впервые сформирован, $\delta_{t,ij}$ устанавливается равным нулю. Каждое последующее приращение сдвига в плоскости контакта вычисляется как

$$\Delta \delta_{t,ij} = (\Delta \mathbf{u}_i - \Delta \mathbf{u}_j) \cdot \mathbf{t}_{ij},$$

причем вектор \mathbf{t}_{ij} направлен вдоль вектора относительного смещения частиц в плоскости контакта; $\Delta \mathbf{u}_i$ и $\Delta \mathbf{u}_j$ — приращения смещений частиц. Таким образом, полное значение касательного перекрытия в момент времени *t* вычисляется так:

$$\delta_{t,ij} = \int_{t_0}^t v_{t,ij}(\tau) d\tau , \qquad (13)$$

где t_0 — время установления контакта. На каждом шаге интегрирования уравнений движения частиц определяются значения $F_{n,ij}$ и проверяется выполнение неравенства

$$F_{t,ij} \big| > \operatorname{tg} \varphi_{ij} \big| F_{n,ij} \big|,$$

где φ_{ij} — заранее заданный угол внешнего трения скольжения между частицами. Если это неравенство не выполняется, то значение силы $F_{t,ij}$ остается определенным в соответствии с (1) и (12), (13). Если неравенство выполнено, то частицы начинают проскальзывать друг по другу и на текущем шаге нагружения касательная составляющая силы отталкивания вычисляется по закону

$$F_{t,ij} = \operatorname{tg} \varphi_{ij} F_{n,ij} \,. \tag{14}$$

После определения значений нормальной и касательной компонентов силы, действующих на каждом контакте, происходит переход к следующему шагу нагружения, и данная схема повторяется для существующих и вновь образовавшихся контактов. Если в какой-то момент нагружения для нормальной составляющей перекрытия выполняется условие $\delta_{n,ij} \leq 0$, то такой контакт считается исчерпанным и в дальнейшем не рассматривается.

50

Результаты численных экспериментов представлены на рис. 4. Здесь $\varphi_{ij} = 45^{\circ}$, т. е. коэффициент внешнего трения между частицами принят равным единице. Для сравнения на графиках штриховыми линиями приведены результаты для абсолютно гладких частиц.

Рис. 4. Изменение при деформировании относительного объема образца (*a*), деформации ε_{yy} (*б*), скорости деформации e_{yy} (*в*), коэффициента бокового распора (*г*). Штриховая линия – внешнее трение между частицами отсутствует; сплошная линия – коэффициент внешнего трения между частицами равен 1

Согласно рис. 4, процесс деформирования разделяется на две стадии. Первая заключается в переупаковке изначально нагруженного объема и сопровождается спадом напряжения σ_{xx} при постоянном значении σ_{yy} (рис. 4*г*). На второй стадии, когда трение становится развитым по всей области, скорость деформации e_{yy} становится аналогичной скорости, полученной при абсолютно гладких частицах, а напряжение σ_{yy} стабилизируется. Таким образом, среда переходит в устойчивое состояние. Однако в этом случае соотношения (5) и (10) не выполняются, т. е. модель Друкера – Прагера на основе ассоциированного закона течения становится неприменимой.

Можно сказать, что соотношения континуальной модели Друкера – Прагера выполняются для дискретной модели с абсолютно гладкими частицами. Однако здесь необходимо сделать одну оговорку. В модели угол внутреннего трения является постоянным. Это приводит к неограниченности дилатансии в случае, если сдвиги неограниченно возрастают. В модели дискретных элементов это не так. Угол дилатансии (и значит, видимого внутреннего трения) с увеличением сдвигов уменьшается, что приводит к уменьшению скорости дилатансии. Следовательно, даже в самом простейшем варианте дискретная модель является более реалистичной, чем континуальная с постоянным углом дилатансии. Основной вывод на данном этапе состоит в том, что модели Друкера – Прагера отвечают идеально гладкие частицы и именно этим обстоятельством объясняется основной парадокс модели — отсутствие диссипации энергии. Отметим, что такой же вывод получен в [8] на основе модели среды с внутренними переменными, где внутренние переменные описывали эффективную регулярную упаковку дискретных частиц на микроуровне. Если принять, что контакты между частицами на микроуровне обладают свойством сухого трения, то в континуальной модели придем к неассоциированному закону течения.

выводы

На основе метода дискретных элементов проведено численное моделирование процесса деформирования сыпучей среды в трехмерной постановке в случае больших деформаций для двух предельных значений угла внешнего трения φ между частицами ($\varphi = 0^\circ$ и $\varphi = 45^\circ$).

Показано, что коэффициент бокового распора переходит в стационарное состояние, а деформация области сопровождается возрастанием объема упаковки.

Продемонстрировано выполнение соотношения континуальной модели Друкера – Прагера на начальной стадии нагружения при отсутствии трения между дискретными элементами.

Авторы благодарят А. Ф. Ревуженко за обсуждение результатов работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Булычев Н. С. Механика подземных сооружений. М.: Недра, 1994.
- 2. Турчанинов И. А., Иофис М. А., Каспарьян Э. В. Основы механики горных пород. Л.: Недра, 1989.
- 3. Клейн Г. К. Расчет подпорных стен. М.: Высш. шк., 1964.
- 4. Ревуженко А. Ф., Клишин С. В. Численный метод построения континуальной модели деформирования твердого тела, эквивалентной заданной модели дискретных элементов // Физ. мезомеханика. — 2012. — Т. 15. — № 6.
- 5. Соколовский В. В. Теория пластичности. М.: Высш. шк., 1969.
- 6. Надаи А. Пластичность и разрушение твердых тел. М.: Мир, 1969. Т. 2.
- 7. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1988.
- **8.** Ревуженко А. Ф. Механика упругопластических сред и нестандартный анализ. Новосибирск: Изд. НГУ, 2000.

Поступила в редакцию 28/Х 2013