ПРОЧНОСТЬ НЕКОТОРЫХ МАРОК СТАЛИ И АРМКО-ЖЕЛЕЗА ПРИ УДАРНО-ВОЛНОВОМ СЖАТИИ И РАЗГРУЗКЕ В ОБЛАСТИ ДАВЛЕНИЙ 2 ÷ 200 ГПа

В. А. Огородников, Е. Ю. Боровкова, С. В. Ерунов

РФЯЦ, ВНИИ экспериментальной физики, Институт экспериментальной газодинамики и физики взрыва 607190 Capob, root@gdd.vniief.ru

Представлены результаты сравнительного экспериментального исследования динамической прочности в условиях ударно-волнового сжатия и растяжения (откола) образцов сталей Ст. 20 и 09Г2С при давлении на фронте ударной волны 1 ÷ 5 ГПа и скорости деформации $10^3 \div 10^4$ c⁻¹, представляющих интерес в качестве конструкционных материалов для силовых корпусов взрывозащитных камер. Проведен сравнительный анализ полученных и имеющихся результатов по динамическому пределу текучести и откольной прочности сталей Ст. 3, Ст. 20, 09Г2С, 12Х18Н10Т, ЭИ712, 30ХГСА, 36НХТЮ, ХВГ, 35Х3НМ и армко-железа, значения прочности и пластичности которых в статических условиях нагружения отличаются до пяти раз. Приведены результаты экспериментов по взрывному нагружению шаров из сталей Ст. 3, Ст. 20, 12Х18Н10Т и 30ХГСА с заметно отличающимися прочностью и пластичностью, квазисферической сходящейся ударной волной, давление в которой вблизи центра 200 ГПа и скорость деформации 10^5 с⁻¹.

Ключевые слова: прочность, пластичность, сталь, ударная волна, сжатие, разгрузка.

В задачах, связанных с созданием взрывостойких конструкций для хранения и транспортировки объектов, содержащих токсичные, радиоактивные и взрывчатые материалы, или проведения в них испытаний, особенно важно знать поведение прочности материалов этих конструкций, в частности сталей различных марок, в широком диапазоне изменения действующих на них давлений ($p = 1 \div 10$ ГПа) при скоростях деформации материала $\dot{\varepsilon} = 10^3 \div$ 10^5 c^{-1} [1, 2]. Кроме того, существует проблема углубленного изучения процессов разрушения, фрагментации и диспергирования материалов под действием динамических нагрузок интенсивностью $p = 50 \div 200$ ГПа при $\dot{\varepsilon} = 10^4 \div 10^6 \text{ c}^{-1} [3, 4].$

Наибольший интерес с точки зрения численного моделирования этих процессов представляют данные по динамическому пределу текучести (Y) и откольной прочности ($\sigma_{\rm p}$), характеризующие сопротивление деформации материала при высокоскоростных сжатии и растяжении [5, 6]. В связи с этим в настоящей работе систематизированы имеющиеся и получены новые результаты по определению величин Y и $\sigma_{\rm p}$ некоторых марок стали (Ст. 3, Ст. 20, 09Г2С, 12Х18Н10Т, ЭИ712, 30ХГСА, 36НХТЮ, ХВГ, 35Х3НМ) и армкожелеза. Статические характеристики исследуемых марок сталей (предел текучести $\sigma_{\rm T}$, предел прочности $\sigma_{\rm B}$, пластичность δ) приведены в табл. 1. При определении динамической прочности $(Y, \sigma_{\rm p})$ в ряде случаев учитывали технологию изготовления и последующую термодеформационную обработку материала, направление действия нагрузок относительно выделенной в материале текстуры (параллельно (||) и перпендикулярно (\perp) направлению прокат-

Материал	$\sigma_{\mathrm{T}},$ ГПа	$ σ_{\rm B}, \Gamma\Pi a $	$\delta, \%$		
Армко-железо	0,25	0,38	52		
Ст. 3	0,24	0,37	22		
Ст. 20	0,25	0,48	26		
09Г2C	0,35	0,46	21		
12X18H10T	0,34	0,52	52		
ЭИ712	0,64	0,81	22		
30ХГСА	0,94	1,10	10		
36НХТЮ	0,97	1,12	16		
ХВГ		1,30			
35X3HM	1,48	1,70	11		

ки), объем исследуемого материала или масштабный фактор.

В дальнейшем эти данные использовали при выборе различных марок стали с заметно отличающимися прочностными и деформационными характеристиками. Эксперименты по взрывному нагружению шаров из таких материалов проводили с целью установления влияния амплитуды давления в ударной волне (УВ) $p \approx 200 \ \Gamma \Pi a$ на динамическую прочность, которую оценивали по размеру образующейся полости после разгрузки шаров [7, 8]. Согласно существующим представлениям с увеличением давления в УВ до 100 ÷ 300 ГПа различия в динамической прочности материалов нивелируются из-за теплового разогрева [9]. Обычно в таких исследованиях в качестве материалов с различной прочностью использовали металлы с заметно отличающимися физикомеханическими характеристиками, например, алюминий, свинец, медь, сталь [10, 11]. Изза различной сжимаемости этих материалов такой подход не совсем корректен. В данной работе для исследования возможного влияния давления на фронте УВ $p \leq 200$ ГПа, предшествующей растяжению материала, на прочность, оцениваемую по размеру образующейся в центре шара полости, использовали марки стали с минимальными, промежуточными и максимальными прочностными характеристиками, значения которых различались до 5 раз в области давлений на фронте УВ $p \leq 10$ ГПа.

Экспериментальные данные по определению величин Y и $\sigma_{\rm p}$, полученные с использованием профилей скорости свободной поверхности ударно-нагруженных образцов W(t), для армко-железа и ряда марок стали опубликованы в [12–16]. Остановимся на результатах, полученных в последнее время для Ст. 20 и 09Г2С. Эти марки стали представляют практический интерес при изготовлении силовых оболочек взрывозащитных камер большого размера. Исследуемые образцы изготавливали в виде диска с осью, ориентированной в поперечном и продольном направлениях относительно выделенной в материале текстуры. Опыты, как и [12–16], проводили в одинаковой постановке. Исследуемые образцы диаметром 50 мм запрессовывали в обойму из стали Ст. 3 с наружным диаметром 95 мм и толщиной, равной толщине образца $h_{\rm M} = 5, 10,$ 20 мм. Такие мишени устанавливали в посадочном месте ствола баллистической ударной трубы БУТ-76 [17] и нагружали ударниками из стали Ст. 3 диаметром 75 мм и толщиной 2.5, 5, 10 мм соответственно. Ударники закрепляли на снарядах, которые разгоняли энергией сжатого воздуха в вакуумированном стволе БУТ-76. При выбранных толщинах ударника и мишени создавали режим одномерного сжатия и последующего растяжения исследуемого материала. Для каждой пары ударник — мишень проводили серии опытов, в которых скорость ударника W_0 изменяли таким образом, чтобы реализовались следующие условия разрушения образцов в мишени: А — отсутствие зародышей разрушения; Б — появление отдельных зародышей разрушения в виде микропор или микротрещин; В — слияние зародышей разрушения в магистральную трещину; Г — разделение образца на части. Скорость ударников измеряли в каждом опыте с погрешностью не хуже ± 0.1 %. Мишень с образцом после нагружения сохраняли, тормозя ее в малоплотной среде (полиэтиленовая стружка), после чего разрезали и проводили металлографический анализ состояния образца в продольном сечении. В каждом опыте емкостным датчиком [18] диаметром 10 мм регистрировали профиль скорости свободной поверхности W(t) образцов. Неподвижной обкладкой датчика служил диск из малоплотного пенопласта ($\rho_0 \approx 0.15 \text{ г/см}^3$) толщиной 7 мм, на поверхность которого наносили в качестве электрода слой меди толщиной несколько десятков микрометров. Столкновение образцов из стали с такой подложкой при скоростях $\approx 100 \div 300$ м/с не приводило к заметным необратимым изменениям в структуре их материала. По профилю W(t) определяли динамический предел текучести, откольную прочность и скорость деформации исследуемого материала:

$$Y = 0.5 \frac{1 - 2\nu}{1 - \nu} \rho_0 c_l W_{\rm ynp},$$

$$\sigma_p = 0.5\rho_0 c_0 (W_1 - W_2 + \delta W), \quad \dot{\varepsilon} = \frac{\partial W_1}{\partial t} \Big/ 2c_0,$$

где ρ_0, c_l, c_0, ν — плотность, продольная и объемная скорости звука и коэффициент Пуассона; $W_{\text{упр}}, W_1, W_2$ — скорость свободной поверхности на упругом предвестнике, в первых максимуме и минимуме на профиле $W(t), \delta W$ упругопластическая поправка [19].

На рис. 1,*а*-г представлены фотографии микрошлифов продольного сечения образцов

Рис. 1. Микро- и макроструктура образцов сталей Ст. 20 и 09Г2С: || — действие нагрузки параллельно, ⊥ — перпендикулярно направлению проката

стали Ст. 20, на рис. 1, *д*-*з* — стали 09Г2С. Образцы нагружали в продольном и поперечном направлениях относительно выделенной в них технологической текстуры, связанной с прокатом. На рис. 2 приведены профили скорости свободной поверхности образцов, зарегистрированные в опытах, в табл. 2 — результаты их обработки.

Анализ характера повреждений продольных сечений плоских образцов свидетельствует о наличии особенностей в кинетике разрушения образцов, нагружаемых в направлении выделенной текстуры, которые были отмечены для стали в работе [20]. Микроочаги разрушения в виде цепочки микротрещин формируются в направлении действия нагрузки, и только при определенном уровне нагрузки (или значении W_0) эти очаги объединяются откольной макротрещиной, идущей в поперечном направлении относительно действия нагрузки. Причем для образцов из стали 09Г2С эта особенность выражена наиболее сильно и появление откольной трещины в поперечном направлении наблюдается при достаточно высоких скоростях ударника — $W_0 \ge 300 \text{ м/c}$, а при $W_0 \cong 130 \div 300 \text{ м/c}$ образцы разрушаются на ряд фрагментов в продольном направлении. Для образцов, нагружаемых перпендикулярно направлению выделенной текстуры, особенностей, как и в [20], не обнаружено.

Форма регистрируемых профилей W(t)свидетельствует об упругопластическом характере деформирования образцов из обеих марок стали. Динамические пределы текучести Yобразцов толщиной 5, 10, и 20 мм, нагружаемых в продольном и поперечном направлени-

Рис. 2. Профили скорости свободной поверхности образцов сталей Ст. 20 (a, δ) и 09Г2С (e, c), зарегистрированные в опытах с продольным (δ, c) и поперечным (a, b) нагружением: номера кривых соответствуют номерам опытов в табл. 2

Марка стали	Нагру-	Номер	$W_0,$	$h_{\rm M},$	Y, $\Gamma \Pi a$	$\delta W,$	$σ_{\rm p},$ ΓΠα	$\dot{\varepsilon},$ 10^4 c^{-1}	Разру-
	Поперечно	1 2 3	$ 100 \\ 139,7 \\ 196,2 $	5	$0,78 \\ 0,79 \\ 0,65$		1,55 1,63	1,94 2,05	А Б Г
		4 9e 5 6	84 134,2 188,9	10	$0,67 \\ 0,87 \\ 0,86$	 1,0 1,5	1,37 1,43	0,71 0,88	А В Г
		7 8 9 10	72,2 97,5 130,7 180,5	20	0,83 0,88 0,78 0.82	 1,4 1,6 2,7	 1,31 1,46 1,72	01,87 0,95 0.86	А Б В Г
Ст. 20	Продольно	11 12 13 14	$ \begin{array}{r} 98,6 \\ 143,7 \\ 193,1 \\ 249.1 \end{array} $	5	0,82 0,86 0,85 0,96 0,89	2,1 - 1,3 1,6 2.5	1,72 1,77 1,84 1.81	- 1,94 2,29 2.65	А Б В Г
		be 15 16 17	$ \begin{array}{r} 100,2 \\ 151,1 \\ 188,3 \end{array} $	10	0,78 0,98 0,86	 1,8 1,3	- 1,12 1,46	$ \begin{array}{c} \\ 1,12 \\ 0,67 \end{array} $	А В Г
		18 19 20 21	$75,7 \\107,1 \\138,2 \\180,6$	20	$0,84 \\ 0,91 \\ 0,89 \\ 0,84$	 1,6 2,0 2,5		$ \begin{array}{c}$	А Б В Г
	Поперечно	22 23 24 25	96,8 126,8 140,6 191,6	5	$1,02 \\ 1,04 \\ 0,85 \\ 0,87$			$\begin{array}{r}\\ 1,24\\ 1,19\\ 1,75\end{array}$	А Б В Г
		e 26 27 28 29	$72,8 \\102,3 \\115,2 \\145,4$	10					А Б В Г
09Г2C		30 31 32 33	$ \begin{array}{r} 40,1\\69,9\\115,2\\140,5\end{array} $	20		2,52 1,92 2,92 2,81	$0,68 \\ 0,79 \\ 1,42 \\ 1,66$	$1,22 \\ 0,82 \\ 0,69 \\ 0,78$	Б В Г Г
	Продольно	34 35 36 37	$78,3 \\ 200 \\ 304,7 \\ 376,4$	5			$ \begin{array}{c} \\ 1,23 \\ 1,28 \\ 1,02 \\ \end{array} $	$\begin{array}{c}\\ 2,30\\ 2,43\\ 3,32 \end{array}$	А Б В* Г*
		38 39 9e 40 41	88 136,6 193,3 306,7	10		$\begin{array}{c}\\ 2,55\\ 1,73\\ 0\end{array}$	$ \begin{array}{c}\\ 0,99\\ 1,22\\ 1,38 \end{array} $		$\begin{array}{c} A\\ B\\ B^{*}\\ \Gamma^{*} \end{array}$
		42 43 44 45 46	53,6100,7131,9290,3 365	20	$ \begin{array}{c}$		$ \begin{array}{c}$	$ \begin{array}{c}$	Α Β Β* Γ*

Таблица 2

Примечание. *Образцы разрушались по типу рис. 1,*з*.

ях относительно выделенной текстуры, отличаются мало и составляют 0,9 ÷ 1,2 ГПа для стали 09Г2С и 0,8 ÷ 0,9 ГПа для стали Ст. 20.

Откольная прочность образцов из стали 09Г2С увеличивается с 0,7 до 1,4 ГПа при уменьшении толщины образцов с 20 до 5 мм или при увеличении скорости деформации с $5 \cdot 10^3$ до $2 \cdot 10^4$ с⁻¹. При этом она зависит от направления действия растягивающих напряжений относительно направления выделенной текстуры, что связано, по-видимому, с отмеченными выше особенностями кинетики разрушения. Кроме того, для образцов из стали 09Г2С толщиной 20 мм наблюдается разрушение при давлении в образце, не превышающем динамического предела текучести, т. е. в упругой области деформирования (см. рис. 2, в, кривые 30–32). Для стали Ст. 20 откольная прочность выше и составляет $\sigma_{\rm p} = 1.3 \div 1.6$ и 1,6 ÷ 1,8 ГПа для образцов с действием растягивающих напряжений соответственно в поперечном и продольном направлениях относительно выделенной текстуры образца. Для обеих марок стали величина растягивающих напряжений возрастает с увеличением амплитуды УВ в образце перед растяжением [11], а при близких скоростях ударников степень разрушения более толстых образцов всегда больше, что свидетельствует о наличии масштабных эффектов энергетической природы [12].

В табл. З приведены имеющиеся и вновь полученные результаты по динамическому пределу текучести и откольной прочности рассматриваемых марок стали по описанной выше схеме. Для сравнения приведены коэффициенты динамического упрочнения материала в случае, когда направление нагрузки совпадает с направлением технологического проката, а также указаны значения отношений $\sigma_{\rm B}/\sigma_{\rm T}, \, \sigma_{\rm p}^{\parallel}/\sigma_{\rm B}$ и $\sigma_{\rm p}/Y$ в статических и динамических условиях испытаний. Из анализа этих результатов следует, что прочность исследуемых сталей при давлении на фронте УВ $p \leq$ 10 ГПа в зоне, предшествующей разгрузке, является структурно-чувствительной характеристикой материала, зависит от технологического и масштабного факторов, динамичности нагружения и может изменяться в несколько раз. Динамический предел текучести У слабо зависит от направления действия нагрузки относительно направления выделенной в материале текстуры для сталей с различной пластичностью в исходном состоянии (Ст. 20, 09Г2С, 30XГСА, 35Х3HM). Для низкопрочных и высокопластичных сталей наблюдается значительное упрочнение при переходе от статических условий к динамическим условиям нагружения (значение У увеличивается в 2–3 раза), в то время как для высокопрочных и менее пластичных сталей динамического упрочнения практически не наблюдается, что отмечалось в [14]. Откольная прочность оказалась более чувствительной характеристикой материала. Причем если отношение предела прочности к пределу текучести ($\sigma_{\rm B}/\sigma_{\rm T}$) по мере увеличения прочности рассматриваемых сталей в статике уменьшается с 1,5 до 1,2, то в динамике оно $(\sigma_{\rm p}/Y)$ увеличивается до четырех раз, главным образом за счет возрастания откольной прочности, особенно высокопрочных сталей.

В отличие от экспериментов по исследованию ударно-волнового деформирования материалов при их нагружении плоскими УВ эксперименты с применением шаров позволяют реализовать вблизи центра образца давление более 200 ГПа за счет эффекта сферической сходящейся УВ [7, 8]. Сферическую сходящуюся УВ в шаре создавали при инициировании на его поверхности взрывчатого вещества (ВВ) толщиной несколько миллиметров. В результате разгрузки шара после отражения УВ в центре шара возникают отрицательные растягивающие напряжения, приводящие к разрыву материала и образованию полости. В такого рода исследованиях невозможна инструментальная регистрация параметров, связанных с протеканием процессов деформирования и разрушения материала. Экспериментальной информацией о воздействии на материал ударно-волновых нагрузок (сжатия и растяжения) является исследование состояния шара после опыта, его наружного диаметра и размера полости. По размеру полости с помощью численного моделирования можно определить значения Y и $\sigma_{\rm p}$ [7, 8].

Опыты по нагружению шаров из стали (в состоянии поставки) с начальным радиусом $R_0 = 24$ мм проводили в одинаковой постановке по схеме, приведенной на рис. 3. С учетом данных табл. 1 и 3 для экспериментов с шарами выбрана сталь марок Ст. 3, Ст. 20, 12X18H10Т и 30XГСА. Первые две стали имеют минимальную откольную прочность и промежуточную пластичность. Сталь 30XГСА обладает наибольшей откольной прочностью и минимальной пластичностью, а сталь 12X18H10Т — промежуточной откольной прочностью и макси-

116

Рис. 3. Схема постановки опытов и фотографии сечений сохраненных после опыта образцов: 1 — шар, 2 — прокладка из полиэтилена, 3 — ВВ; a — Ст. 3, б — Ст. 20, в — 12Х18Н10Т, г — 30ХГСА

Сталь	$R_1,$ MM	$R_2, _{_{\rm MM}}$	$r_1,$ MM	$r_2, _{\rm MM}$	ε_1	ε_2
Ст. 3	$24,\!5$	24,5	8,8	7,8	$1,\!02$	$1,\!02$
Ст. 20	24,6	25,3	$8 \div 9$	9,7	1,03	1,05
12X18H10T	24,8	24,6	$_{9,9}$	9,2	1,03	1,03
30ХГСА	24,3	24,4	8,4	8,1	1,01	1,02

Таблица 4

мальной пластичностью. Сферическую сходящуюся УВ создавали при подрыве на наружной поверхности шара пластического заряда ВВ толщиной 3 мм. Между слоем ВВ и шаром из исследуемой стали устанавливали прокладку из полиэтилена толщиной 3 мм. Это позволило, согласно расчетам, создать в УВ при ее схождении к радиусу 1 мм давление $\approx 200 \ \Gamma \Pi a$. Образцы после нагружения сохраняли и разрезали в меридиональном направлении с целью определения размеров и формы образующейся полости. На рис. 3 представлены фотографии меридиональных сечений сохраненных после опыта шаров из исследуемых марок стали. В табл. 4 приведены результаты измерения радиуса шара в полюсе (R_1) и в экваторе (R_2) , радиуса полости, образовавшейся внутри шара, измеренного в меридиональном (r_1) и экваториальном (r_2) направлениях, а также значения необратимой пластической деформации в меридиональном ($\varepsilon_1 = R_1/R_0$) и экваториальном ($\varepsilon_2 = R_2/R_0$) направлениях соответственно.

Из анализа полученных результатов (см. рис. 3, табл. 4) можно сделать вывод о различной степени анизотропии свойств исследуемых марок стали, вызванных технологическим фактором. Из рис. 3 видно, что имеются в различной степени развитые трещины, идущие по материалу шара в меридиональном направлении от полюсов стенок полости, совпадающем с направлением прокатки. Это согласуется с результатами исследования откола в образцах плоской геометрии. Наибольший (9÷10 мм) и наименьший (8,0÷8,5 мм) размеры полости наблюдаются для высокопластичной ($\delta = 52$ %) и низкопластичной ($\delta = 10$ %) сталей 12X18H10T и ЗОХГСА соответственно. Для сталей Ст. 20 и Ст. 3 со средней пластичностью $\delta = 22 \div 26 \%$ зафиксирован промежуточный размер полости 8 ÷ 9 мм. Поскольку прочность этих сталей меньше прочности стали 12Х18Н10Т, то, казалось бы, должен быть больше и размер образующейся полости, чего не наблюдается. Эти обстоятельства указывают на то, что влияние прочности материала шара на размеры образующейся полости, после воздействия на него УВ с давлением на фронте $\approx 200 \ \Gamma \Pi a$, невелико. Это может быть связано с тем, что различие значений прочности исследуемых сталей, достигающее 2–3 раз при давлениях ≤ 10 ГПа, при увеличении давления до 200 ГПа нивелируется за счет теплового разогрева.

ЛИТЕРАТУРА

- 1. Иванов А. Г., Федоренко А. Г., Сырунин М. А. О возможности повышения безопасности ядерного оружия // Физика горения и взрыва. 1995. Т. 31, № 2. С. 169–171.
- 2. Рыжанский В. А., Иванов А. Г., Жуков В. В., Минеев В. Н. Взрывостойкость цилиндрической части корпуса быстрого реактора // Атомная энергия. 1995. Т. 79, вып. 3. С. 178–188.
- Михайлов А. Л., Огородников В. А., Хохлов Н. П. и др. Взрывное разрушение, фрагментация и диспергирование конструкционных материалов // Хим. физика. 2001. Т. 20, № 8. С. 73–79.
- Разрушение разномасштабных объектов при взрыве / В. А. Рыжанский, А. Г. Федоренко, М. А. Сырунин и др. Под. ред. А. Г. Иванова. Саров: РФЯЦ-ВНИИЭФ, 2001. С. 481.
- Фракталы в прикладной физике / Б. Л. Глушак, И. Р. Трунин, С. А. Новиков, А. И. Рузанов. Под ред. А. Е. Дубинина. Арзамас-16: РФЯЦ-ВНИИЭФ, 1995. С. 59.
- Огородников В. А., Садовой А. А., Софронов В. А. и др. Кинетическая модель пластического разрушения с учетом диссипативных процессов // Хим. физика. 2002. Т. 21, № 9. С. 104–109.
- 7. Бахрах С. М., Ковалев Н. П., Надыкто Б. А. и др. Исследование пластических и прочностных свойств меди в условиях всестороннего растяжения // Докл. АН СССР. 1974. № 5. С. 1090–1093.
- Огородников В. А., Садовой А. А., Софронов В. Н. Роль диссипативных процессов в экспериментах по реализации всестороннего сжатия и растяжения шаров при взрывном нагружении // Физика горения и взрыва. 1998. Т. 34, № 1. С. 96–101.
- Канель Г. И., Разоренов С. В., Уткин А. В., Фортов В. Е. Исследования механических свойств материалов при ударноволновом нагружении // Механика твердого тела. 1999. № 5. С. 173–188.
- Батьков Ю. В., Глушак Б. Л., Новиков С. А. Прочность алюминия, меди и стали за фронтом УВ // Физика горения и взрыва. 1989. Т. 25, № 5. С. 126–132.
- 11. Огородников В. А., Иванов А. Г., Тюнькин Е. С. и др. Зависимость откольной прочности металлов от амплитуды ударно-волновой

нагрузки // Физика горения и взрыва. 1992. Т. 28, № 1. С. 94–98.

- 12. Огородников В. А., Иванов А. Г., Лучинин В. И. и др. Влияние масштабного и технологического факторов и предварительной деформации на высокоскоростное разрушение (откол) титанового сплава ПТ-3В и стали 12X18H10T // Физика горения и взрыва. 1995. Т. 31, № 6. С. 130–139.
- Arnold W. Dynamisches Werkstoffeverhalten von Armco-Eisen bei Stroβwellenbelastung // Fortschr. Ber. VDI. Reihe 5. № 247. Dusseldorf, Germany, VDI-Verlag, 1992.
- 14. Клещевников О. А., Тюняев Ю. Н., Софронов В. Н. и др. Динамический предел текучести и работа отрыва при отколе ряда конструкционных сталей // Физика горения и взрыва. 1986. Т. 22, № 4. С. 102–106.
- Молодец А. М. Измерение откольной прочности трех сталей // Детонация. Критические явления. Физико-химические превращения в ударных волнах. Черноголовка, 1978.
- 16. Глузман В. Д., Канель Г. И., Лоскутов В. Ф. и др. Сопротивление деформированию и разрушению стали 35Х3НМ в условиях ударного нагружения // Проблемы прочности. 1985. № 8. С. 52–57.
- Минеев В. Н., Погорелов В. П., Иванов А. Г. и др. Установка для исследования поведения конструкционных материалов и конструкций при динамических нагрузках // Физика горения и взрыва. 1978. Т. 14, № 3. С. 129–133.
- Иванов А. Г., Новиков С. А. Метод емкостного датчика для регистрации мгновенной скорости движущейся поверхности // Приборы и техника эксперимента. 1963. № 1. С. 135–139.
- Степанов Г. В. Откольное разрушение материалов плоскими упругопластическими волнами // Проблемы прочности. 1976. № 8. С. 66– 69.
- 20. Огородников В. А. О кинетике разрушения при отколе в широком диапазоне изменения амплитуды и длительности ударно-волновых нагрузок // Физика горения и взрыва. 2002. Т. 38, № 4. С. 119–123.

Поступила в редакцию 9/IX 2003 г.