УДК 532.59:629.576

ОСОБЕННОСТИ ВОЛНОВОГО СОПРОТИВЛЕНИЯ СВПА ПРИ НЕСТАЦИОНАРНОМ ДВИЖЕНИИ ПО ЛЕДЯНОМУ ПОКРОВУ

А. В. Погорелова

Институт машиноведения и металлургии ДВО РАН, 681005 Комсомольск-на-Амуре E-mail: sasha@imim.ru

Рассматривается прямолинейное нестационарное движение амфибийного судна на воздушной подушке (СВПА) по ледяному покрову с различными режимами скорости. Лед моделируется вязкоупругой ледяной пластиной. Анализируется влияние глубины водоема, толщины и времени релаксации льда, длины судна, ускорения, торможения и скорости равномерного движения на волновое сопротивление судна. Предлагаются способы маневрирования, позволяющие повысить или понизить волновое сопротивление СВПА.

Ключевые слова: несжимаемая жидкость, вязкоупругая ледяная пластина, амфибийное судно на воздушной подушке, нестационарное движение, волновое сопротивление.

1. Гидродинамическая задача о движущемся по сплошному льду амфибийном судне на воздушной подушке (СВПА) моделируется с помощью системы поверхностных давлений [1], перемещающейся над плавающей ледяной пластиной [2]. Рассмотрим бесконечную область, покрытую сплошным льдом, по которой со скоростью u(t) перемещается заданная система поверхностных давлений q. Совмещенная с судном система координат располагается следующим образом: плоскость xOy совпадает с невозмущенной поверхностью раздела лед — вода, направление оси x совпадает с направлением движения судна, ось zнаправлена вертикально вверх. Предполагается, что вода — идеальная несжимаемая жидкость с плотностью ρ_2 , движение жидкости потенциальное. Ледяной покров моделируется вязкоупругой, изначально не напряженной однородной изотропной пластиной. Предполагается, что период волновых процессов в ледяном покрове значительно меньше времени релаксации льда. В соответствии с работой [2] для льда принимается закон деформирования линейной упругозапаздывающей среды Кельвина — Фойгта [3].

Согласно [1, 4] величина волнового сопротивления, действующего на СВПА, вычисляется по формуле

$$R = \iint_{\Omega} q \,\frac{\partial w}{\partial x} \,dx \,dy,\tag{1.1}$$

где Ω — область распределения нагрузки q(x, y, t); w(x, y, t) — перемещение поверхности жидкости или вертикальное перемещение льда.

Линеаризованное кинематическое условие на поверхности раздела лед — вода имеет вид

$$\frac{\partial \Phi}{\partial z}\Big|_{z=0} = \frac{\partial w}{\partial t} - u \frac{\partial w}{\partial x},\tag{1.2}$$

где $\Phi(x, y, z, t)$ — функция потенциала скорости жидкости, удовлетворяющая уравнению Лапласа $\Delta \Phi = 0$.

Работа выполнена в рамках программы "Развитие научного потенциала высшей школы (2006–2008)" (код проекта РНП.2.1.2.1809).

С учетом сделанных предположений линеаризованные граничные условия для w и Φ записываются в виде

$$\frac{Gh^{3}}{3} \left(1 + \tau_{k} \frac{\partial}{\partial t} - \tau_{k} u \frac{\partial}{\partial x} \right) \nabla^{4} w + \rho_{1} h \left(\frac{\partial^{2} w}{\partial t^{2}} - \dot{u} \frac{\partial w}{\partial x} - 2u \frac{\partial^{2} w}{\partial t \partial x} + u^{2} \frac{\partial^{2} w}{\partial x^{2}} \right) =
= -\rho_{2} g w - \rho_{2} \left(\frac{\partial \Phi}{\partial t} - u \frac{\partial \Phi}{\partial x} \right) - q, \qquad z = 0,
\frac{\partial \Phi}{\partial z} = 0, \qquad z = -H.$$
(1.3)

Здесь $G = 0.5E/(1 + \nu)$ — модуль упругости льда при сдвиге; E — модуль Юнга; ν — коэффициент Пуассона; τ_k — время релаксации деформаций льда или время "запаздывания" [2, 3]; h(x, y) — толщина слоя льда; $\rho_1(x, y)$ — плотность льда; $H = H_1 - b$; H_1 — глубина водоема; $b = \rho_1 h/\rho_2$ — глубина погружения льда при статическом равновесии. Для больших глубин, когда H_1 существенно больше h, можно считать $H \approx H_1$. В дальнейшем предполагается, что величины ρ_1 и h — постоянные. В качестве расчетных величин Gи ρ_1 следует принимать их приведенные значения (интегральные величины по толщине пластины).

При условии, что в момент времени t = 0 судно не имеет хода и отсутствуют любые возмущения, кроме статической деформации ледовой пластины, начальные условия для функции $\Phi(x, y, z, t)$ записываются в виде

$$\frac{\partial \Phi}{\partial z}\Big|_{\substack{z=0\\t=0}} = 0, \qquad \left(\frac{\partial \Phi}{\partial t} + \frac{\rho_1 h}{\rho_2} \frac{\partial^2 \Phi}{\partial z \partial t}\right)\Big|_{\substack{z=0\\t=0}} = 0.$$
(1.4)

Предполагается, что закон изменения скорости СВПА в зависимости от времени можно приближенно выразить формулой

$$u = u_{1} \operatorname{th} (\mu_{1}t) + (u_{2} - u_{1}) \frac{\operatorname{th} (\mu_{2}(t - t_{2})) + \operatorname{th} (\mu_{2}t_{2})}{2} + (u_{3} - u_{2}) \frac{\operatorname{th} (\mu_{3}(t - t_{3})) + \operatorname{th} (\mu_{3}t_{3})}{2}, \quad (1.5)$$

где u_1, u_2, u_3 — значения скоростей, на которые последовательно выходит судно; μ_1, μ_2, μ_3 — коэффициенты, характеризующие ускорение (торможение) судна; значения t_2 и t_3 соответствуют моментам времени, в которые ускорение судна равно $\mu_2(u_2-u_1)/2$ и $\mu_3(u_3-u_2)/2$, и являются точками перегиба графика функции u(t).

В данной работе исследуются следующие режимы изменения скорости судна (1.5) (режимы движения) в зависимости от времени: 1) разгон — движение с заданной скоростью; 2) разгон — движение с заданной скоростью — торможение до полной остановки; 3) разгон — движение с первой заданной скоростью — разгон — движение со второй заданной скоростью; 4) разгон — движение с первой заданной скоростью — торможение — движение со второй заданной скоростью; 5) разгон — движение с заданной скоростью — торможение до полной остановки — разгон — движение с заданной скоростью.

В соответствии с (1.5) расстояние, пройденное судном, вычисляется по формуле

$$s = \frac{u_1}{\mu_1} \ln\left(\operatorname{ch}\left(\mu_1 t\right)\right) + \frac{u_2 - u_1}{2} \left(\frac{1}{\mu_2} \ln\left(\frac{\operatorname{ch}\left(\mu_2(t - t_2)\right)}{\operatorname{ch}\left(\mu_2 t_2\right)}\right) + \operatorname{th}\left(\mu_2 t_2\right)t\right) + \frac{u_3 - u_2}{2} \left(\frac{1}{\mu_3} \ln\left(\frac{\operatorname{ch}\left(\mu_3(t - t_3)\right)}{\operatorname{ch}\left(\mu_3 t_3\right)}\right) + \operatorname{th}\left(\mu_3 t_3\right)t\right).$$
(1.6)

Предполагается, что в заданной подвижной системе координат давление q(x, y) не зависит от времени. В качестве системы перемещающихся давлений используется функция q(x, y) в виде [5, 6]

$$q(x,y) = q_0[\operatorname{th}(\alpha_1(x+L/2)) - \operatorname{th}(\alpha_1(x-L/2))] \times \\ \times [\operatorname{th}(\alpha_2(y+L/(2\omega))) - \operatorname{th}(\alpha_2(y-L/(2\omega)))]/4, \quad (1.7)$$

где q_0 — номинальное давление; L — длина судна; $\omega = L/B$ — удлинение судна; B — ширина судна; α_1 , α_2 — параметры, характеризующие отклонение распределения давления в продольном и поперечном направлениях от прямоугольной формы. Чем больше значения α_1 , α_2 , тем ближе форма распределения давления к прямоугольной. При $\alpha_1 \to \infty$, $\alpha_2 \to \infty$ давление q эквивалентно давлению q_0 , равномерно распределенному по прямоугольнику.

2. Для получения аналитического решения задачи перейдем к безразмерной постановке. Для этого введем характерный размер — длину судна L и характерную скорость u_0 , в качестве которой в дальнейшем принимается минимальная фазовая скорость для жидкости бесконечной глубины $u_{\min} = 2(Dg^3/(27\rho_2))^{1/8}$ [2]. Здесь $D = Eh^3/(12(1-\nu^2))$. Введем следующие безразмерные переменные, функции и параметры:

$$\begin{aligned} x' &= \frac{x}{L}, \quad y' = \frac{y}{L}, \quad z' = \frac{z}{L}, \quad t' = \frac{tu_0}{L}, \quad \tau'_k = \frac{\tau_k u_0}{L}, \quad \Phi' = \frac{\Phi u_0}{gL^2}, \quad w' = \frac{w}{L}, \\ q' &= \frac{q}{\rho_2 gL}, \quad u' = \frac{u}{u_0}, \quad s' = \frac{s}{L}, \quad \mu'_i = \frac{\mu_i L}{u_0}, \quad u'_i = \frac{u_i}{u_0}, \quad i = \overline{1, 3} \end{aligned}$$

(в дальнейшем штрихи у безразмерных величин опускаются). Граничное условие (1.3) при z = 0 с учетом (1.2) в безразмерных переменных можно записать в виде

$$\varkappa k_L \left(1 + \tau_k \frac{\partial}{\partial t} - \tau_k u \frac{\partial}{\partial x} \right) \nabla^4 \frac{\partial \Phi}{\partial z} + \varepsilon \left(\frac{\partial^3 \Phi}{\partial z \partial t^2} - \dot{u} \frac{\partial^2 \Phi}{\partial z \partial x} - 2u \frac{\partial^3 \Phi}{\partial t \partial x \partial z} + u^2 \frac{\partial^3 \Phi}{\partial x^2 \partial z} \right) = \\ = -k_L \frac{\partial \Phi}{\partial z} - \left(\frac{\partial^2 \Phi}{\partial t^2} - \dot{u} \frac{\partial \Phi}{\partial x} - 2u \frac{\partial^2 \Phi}{\partial t \partial x} + u^2 \frac{\partial^2 \Phi}{\partial x^2} \right) - \frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x}, \quad (2.1)$$

где $\varkappa = Gh^3/(3\rho_2 gL^4); \ k_L = gL/u_0^2; \ \varepsilon = \rho_1 h/(\rho_2 L).$

Кроме того, предполагается, что функции $\Phi(x, y, z, t)$ и q(x, y) удовлетворяют условиям, необходимым для представления их в виде разложения в интегралы Фурье по переменным x и y. Следуя работам [5, 7], запишем

$$\Phi(x, y, z, t) = \frac{1}{4\pi^2} \int_0^\infty k \, dk \int_{-\pi}^{\pi} d\theta \iint_{\Omega} (F \exp\left(-kz\right) + E \exp\left(kz\right)) \times \\ \times \exp\left(ik((x - x_1)\cos\theta + (y - y_1)\sin\theta)\right) dx_1 \, dy_1,$$

$$q(x, y) = \frac{1}{4\pi^2} \int_0^\infty k \, dk \int_{-\pi}^{\pi} d\theta \iint_{\Omega} q(x_1, y_1) \exp\left(ik((x - x_1)\cos\theta + (y - y_1)\sin\theta)\right) dx_1 \, dy_1$$
(2.2)

(F, E — неизвестные функции переменных x_1, y_1, t, k, θ).

Подставляя выражения (2.2) в граничное условие (2.1) и обезразмеренное граничное условие (1.3) при $z = -\gamma$, где $\gamma = H/L$, можно получить зависимость между величинами F и E и дифференциальное уравнение для F:

$$E = F \exp\left(2k\gamma\right);\tag{2.3}$$

$$\ddot{F} - 2\dot{F}u\sigma + Fu^{2}\sigma^{2} - F\dot{u}\sigma + \frac{k_{L}k\operatorname{th}(k\gamma)(F(1+\varkappa k^{4}(1-\tau_{k}u\sigma)) + \dot{F}\tau_{k}\varkappa k^{4})}{\varepsilon k\operatorname{th}(k\gamma) + 1} = \frac{uq\sigma}{(1+\exp\left(2k\gamma\right))(\varepsilon k\operatorname{th}(k\gamma) + 1)}, \qquad \sigma = ik\cos\theta.$$
(2.4)

Для решения уравнения (2.4) по аналогии с [5, 7] вводится в рассмотрение функция

$$F_1 = F \exp\left(-\sigma s\right),\tag{2.5}$$

где $s(t) = \int_{0}^{t} u(\tau) d\tau$ — безразмерное расстояние, пройденное СВПА за время t.

Подставляя (2.5) в (2.4), получим уравнение

$$\ddot{F}_1 + \dot{F}_1 \frac{k_L \varkappa \tau_k k^5 \operatorname{th} (k\gamma)}{\varepsilon k \operatorname{th} (k\gamma) + 1} + \frac{F_1 k_L k \operatorname{th} (k\gamma)(1 + \varkappa k^4)}{\varepsilon k \operatorname{th} (k\gamma) + 1} = \frac{u(t)q(x_1, y_1)\sigma \exp\left(-\sigma s(t)\right)}{(1 + \exp\left(2k\gamma\right))(\varepsilon k \operatorname{th} (k\gamma) + 1)}.$$

Решая это уравнение с использованием преобразования Лапласа, начальных условий (1.4) и теоремы о свертке, имеем

$$F_{1} = \int_{0}^{t} f(\tau) K_{1} \exp\left(-\frac{\beta_{1}}{2} (t-\tau)\right) d\tau,$$
(2.6)

где

$$f(\tau) = \frac{u(\tau)q(x_1, y_1)\sigma\exp\left(-\sigma s(\tau)\right)}{(1 + \exp\left(2k\gamma\right))(\varepsilon k \operatorname{th}(k\gamma) + 1)}, \qquad K_1 = \begin{cases} \sin\left(\sqrt{\beta}(t - \tau)\right)/\sqrt{\beta}, & \beta > 0, \\ \operatorname{sh}\left(\sqrt{-\beta}\left(t - \tau\right)\right)/\sqrt{-\beta}, & \beta < 0, \\ t - \tau, & \beta = 0, \end{cases}$$

$$\beta = \beta_2 - \frac{\beta_1^2}{4}, \qquad \beta_1 = \frac{\varkappa \tau_k k_L k^5 \operatorname{th} (k\gamma)}{\varepsilon k \operatorname{th} (k\gamma) + 1}, \qquad \beta_2 = \frac{k_L k \operatorname{th} (k\gamma) (1 + \varkappa k^4)}{\varepsilon k \operatorname{th} (k\gamma) + 1}.$$

Подставляя (2.3) и (2.5) в (2.2), получаем выражение для функции Φ

$$\Phi(x, y, z, t) = \frac{1}{4\pi^2} \int_0^\infty k \, dk \int_{-\pi}^{\pi} d\theta \iint_{\Omega} F_1 \exp(\sigma s) (\exp(-kz) + \exp(k(z+2\gamma))) \times \exp(ik((x-x_1)\cos\theta + (y-y_1)\sin\theta)) \, dx_1 \, dy_1. \quad (2.7)$$

Для нахождения волнового сопротивления R по формуле (1.1) необходимо выразить прогиб w через функции Φ и q. Для этого граничное условие (1.3) используется в безразмерном виде:

$$\varkappa \Big(1 + \tau_k \frac{\partial}{\partial t} - \tau_k u \frac{\partial}{\partial x} \Big) \nabla^4 w + w = \varphi(x, y, t),$$

$$\varphi(x, y, t) = -q - \frac{\partial \Phi}{\partial t} \Big|_{z=0} + u \frac{\partial \Phi}{\partial x} \Big|_{z=0} - \varepsilon \frac{\partial^2 \Phi}{\partial z \partial t} \Big|_{z=0} + \varepsilon u \frac{\partial^2 \Phi}{\partial z \partial x} \Big|_{z=0}.$$
(2.8)

Ниже проводится асимптотический анализ уравнения (2.8) в зависимости от параметра \varkappa . Для значений $\varkappa \ll 1$, соответствующих тонкому слою льда и большим размерам судна, асимптотическое решение уравнения (2.8) ищется в виде

$$w_i = w_i^0 + \varkappa w_i^1 + \dots$$
(2.9)

Подставляя (2.9) в (2.8), получим следующие значения для функций w_i^0, w_i^1 и w_i :

$$w_{i}^{0} = \varphi(x, y, t), \qquad w_{i}^{1} = -\left(1 + \tau_{k} \frac{\partial}{\partial t} - \tau_{k} u \frac{\partial}{\partial x}\right) \nabla^{4} \varphi(x, y, t),$$

$$w_{i} = \left(1 - \varkappa \nabla^{4} - \varkappa \tau_{k} \frac{\partial}{\partial t} \nabla^{4} + \varkappa \tau_{k} u \frac{\partial}{\partial x} \nabla^{4}\right) \varphi(x, y, t).$$
(2.10)

Принимая в (2.10) для упрощения решения $\tau_k = 0$ (время релаксации равно нулю, пластина чисто упругая), с учетом вида функции φ (2.8) и разложений (2.2) и (2.7) для w_i можно получить следующее выражение:

$$w_i(x, y, t) = \frac{1}{4\pi^2} \int_0^\infty k \, dk \int_{-\pi}^{\pi} d\theta \iint_{\Omega} \varphi(x_1, y_1, t) (1 - \varkappa k^4) \times \exp\left(ik((x - x_1)\cos\theta + (y - y_1)\sin\theta)\right) dx_1 \, dy_1.$$
(2.11)

Для больших значений \varkappa ($\varkappa \to \infty$) (толстый слой льда, малые размеры судна) асимптотическое решение уравнения (2.8) ищется в виде

$$w_e = w_e^0 + \dots$$

где w_e^0 — решение уравнения

$$\left(1 + \tau_k \frac{\partial}{\partial t} - \tau_k u \frac{\partial}{\partial x}\right) \nabla^4 w = 0.$$
(2.12)

Заметим, что любое решение уравнения $\nabla^4 w = 0$ симметрично относительно плоскости yOz и, следовательно, волновое сопротивление R равно нулю (см. формулу (1.1)). Предполагается, что при $\varkappa \to \infty$ частным решением уравнения (2.12) является решение $w_e^0 = 0$. Тогда с учетом уравнения (2.11) выражение для функции w можно записать в виде

$$w(x, y, t) = \frac{1}{4\pi^2} \int_0^\infty k \, dk \int_{-\pi}^{\pi} d\theta \iint_{\Omega} \varphi(x_1, y_1, t) M(\varkappa) \times \exp\left(ik((x - x_1)\cos\theta + (y - y_1)\sin\theta)\right) dx_1 \, dy_1, \quad (2.13)$$

где

$$M(\varkappa) \to 1 - k^4 \varkappa \qquad (\varkappa \to 0);$$
 (2.14)

$$M(\varkappa) \to 0 \qquad (\varkappa \to \infty).$$
 (2.15)

Таким образом, имеются двусторонние асимптотические разложения функции $M(\varkappa)$ при малых и больших значениях \varkappa . При построении интерполяционной формулы для величины $M(\varkappa)$ в области $0 \leq \varkappa < \infty$ применяется метод асимптотической интерполяции [8, 9]. В соответствии с этим методом величину $M(\varkappa)$ будем искать в виде

$$M(\varkappa) = 1 - k^4 \varkappa \Psi(\varkappa), \qquad \Psi(0) = 1.$$
 (2.16)

При $\varkappa \to 0$ формула (2.16) сохраняет тот же порядок точности, что и асимптотика (2.14). Функция $\Psi(\varkappa)$ задается априорно и зависит от нескольких параметров, которые выбираются таким образом, чтобы приближенная формула (2.16) с заданной точностью давала правильную асимптотику и в другом предельном случае при $\varkappa \to \infty$. В частном случае, когда известен только старший член асимптотики $M(\varkappa)$ при $\varkappa \to \infty$, в качестве такой функции используется функция $\Psi(\varkappa) = (1 + C\varkappa^l)^m$ [8, 9]. При m = -1 в результате предельного перехода при $\varkappa \to \infty$ и последующего сопоставления выражений (2.15) и (2.16) получаем $\Psi(\varkappa) = (1 + k^4 \varkappa)^{-1}$ и, следовательно, $M(\varkappa) = (1 + k^4 \varkappa)^{-1}$. Таким образом, с учетом (2.13) выражение для w записывается в виде

$$w(x,y,t) = \frac{1}{4\pi^2} \int_0^\infty k \, dk \int_{-\pi}^{\pi} d\theta \iint_{\Omega} \varphi(x_1,y_1,t) \frac{1}{1+\varkappa k^4} \times \exp\left(ik((x-x_1)\cos\theta + (y-y_1)\sin\theta)\right) dx_1 \, dy_1, \quad (2.17)$$

где $\varphi(x_1, y_1, t)$ и $\Phi(x, y, z, t)$ определяются по формулам (2.8) и (2.7) соответственно.

Подставляя (2.17) в (1.1) с учетом (1.7), (2.2), (2.6)–(2.8) и выполняя замену переменных $k = \lambda$ и $k \cos \theta = \alpha$, после несложных преобразований, аналогичных преобразованиям в [5, 7], можно получить формулу для безразмерного коэффициента волнового сопротивления A:

$$A = \frac{\pi^2 \omega}{(\alpha_1 L)^2 (\alpha_2 L)^2} \int_0^t u(\tau) \int_0^\infty \frac{\exp\left(-\beta_1 (t-\tau)/2\right) K\lambda}{1+\varkappa\lambda^4} \int_0^\lambda \cos\left(\alpha(s(t)-s(\tau))\right) \times \frac{\sin^2(\alpha/2) \sin^2(\sqrt{\lambda^2 - \alpha^2}/(2\omega))\alpha^2}{\operatorname{sh}^2(\pi\alpha/(2\alpha_1 L)) \operatorname{sh}^2(\pi\sqrt{\lambda^2 - \alpha^2}/(2\alpha_2 L))\sqrt{\lambda^2 - \alpha^2}} \, d\alpha \, d\lambda \, d\tau, \quad (2.18)$$

где

$$K = \begin{cases} \cos\left(\sqrt{\beta} \left(t - \tau\right)\right)\left(1 - \beta_1 \operatorname{tg}\left(\sqrt{\beta} \left(t - \tau\right)\right)/(2\sqrt{\beta})\right), & \beta > 0, \\ \operatorname{ch}\left(\sqrt{-\beta} \left(t - \tau\right)\right)\left(1 - \beta_1 \operatorname{th}\left(\sqrt{-\beta} \left(t - \tau\right)\right)/(2\sqrt{-\beta})\right), & \beta < 0, \\ 1 - \beta_1/2, & \beta = 0. \end{cases}$$

$$\beta = \beta_2 - \frac{\beta_1^2}{4}, \qquad \beta_1 = \frac{\varkappa \tau_k k_L \lambda^5 \operatorname{th} (\lambda \gamma)}{\varepsilon \lambda \operatorname{th} (\lambda \gamma) + 1}, \qquad \beta_2 = \frac{k_L \lambda \operatorname{th} (\lambda \gamma) (1 + \varkappa \lambda^4)}{\varepsilon \lambda \operatorname{th} (\lambda \gamma) + 1},$$
$$R/P = Aq_0 / (\rho_2 qL), \qquad P = q_0 LB,$$

безразмерные функции $u(\tau), s(t), s(\tau)$ вычисляются по формулам (1.5) и (1.6).

3. Численные расчеты по формуле (2.18) проводились при следующих значениях параметров: $\rho_2 = 1000 \text{ kr/m}^3$, $\rho_1 = 900 \text{ kr/m}^3$, $E = 5 \cdot 10^9 \text{ H/m}^2$, $\nu = 1/3$, $\alpha_1 L = \alpha_2 L = 10$, $\omega = 2$, $\tau_k = 0.69$ с. Время релаксации τ_k выбиралось в соответствии с результатами работ [10, 11].

На рис. 1 показана зависимость безразмерного коэффициента волнового сопротивления A от времени t при движении судна в первом режиме. Видно, что после разгона и выхода СВПА на равномерное движение его волновое сопротивление с течением времени стремится к некоторым постоянным значениям, зависящим от скорости. В отличие от результатов работы [12], в которой лед моделировался чисто упругой пластиной, зависимости A(t) не имеют колебательного характера. Из рис. 1 следует, что наибольшее волновое сопротивление судно имеет при скоростях, равных $u_{\min} \div 1,4u_{\min}$ (кривые 3–5). При выходе судна после разгона на докритические скорости ($u_1 < u_{\min}$) волновое сопротивление мало (кривые 1, 2), но в отличие от результатов, полученных в работе [12], не равно нулю. Если же судно после разгона выходит на сверхкритические скорости ($u_1 > 1,4u_{\min}$) (кривые 6, 7), то волновое сопротивление сначала увеличивается, затем, не достигнув критических значений, начинает уменьшаться и выходит на некоторые постоянные значения, существенно меньшие по сравнению с критическими. Проведем сравнение значений волнового сопротивления, которые получает судно при равномерном движении после разгона,

Рис. 1. Зависимость волнового сопротивления СВПА от времени при L = 10 м, h = 0,2 м, $\varepsilon = 0,018$, $\varkappa = 0,038$, $u_{\min} = 8,721$ м/с, $\tau_k = 0,69$ с, $\gamma = 4$, $\mu_1 = 0,5$ с⁻¹: $1 - u_1 = u_2 = u_3 = 0,6u_{\min}$; $2 - u_1 = u_2 = u_3 = 0,8u_{\min}$; $3 - u_1 = u_2 = u_3 = u_{\min}$; $4 - u_1 = u_2 = u_3 = 1,2u_{\min}$; $5 - u_1 = u_2 = u_3 = 1,4u_{\min}$; $6 - u_1 = u_2 = u_3 = 2u_{\min}$; $7 - u_1 = u_2 = u_3 = 3u_{\min}$

и результатов, полученных для стационарной задачи о движении судна по вязкоупругой пластине [6].

На рис. 2, 3 представлены зависимости волнового сопротивления судна от скорости движения для тонкого и толстого слоев льда соответственно. Кривые 1–3 соответствуют результатам, полученным по формуле (2.18) (нестационарное решение) при t = 100 в случае равномерного движения с заданной скоростью u_1 после разгона (первый режим движения), кривые 4–6 — результатам расчетов по формулам из работы [6] (стационарное решение задачи). Из рис. 2, 3 следует, что нестационарное решение близко к стационарно-му и несколько превышает его в случае сверхкритических скоростей ($u > 1,4u_{\min}$), а при критических и докритических скоростях различие результатов более существенно. Тем не менее значения скоростей, соответствующие максимальному волновому сопротивлению, для стационарного и нестационарного решений совпадают: для малой и конечной глубин критическая скорость близка к значению \sqrt{gH} , а для большой и бесконечной глубин — к значениям $1,1u_{\min} \div 1,2u_{\min}$. Увеличение толщины слоя льда приводит к уменьшению коэффициента волнового сопротивления. При движении на сверхкритических скоростях уменьшение глубины водоема приводит к некоторому уменьшению волнового сопротивления ния при различной толщине слоя льда.

На рис. 4 показаны максимальные значения волнового сопротивления A_* при различной глубине водоема γ в случае равномерного движения. Кривые 1, 2 соответствуют нестационарному решению (формула (2.18)) и равномерному движению судна после разгона, кривые 3, 4 — стационарному решению задачи [6]. Видно, что при нестационарном решении задачи зависимость максимального значения волнового сопротивления от глубины является немонотонной: максимум волнового сопротивления в зависимости от толщины слоя льда находится в диапазоне $\gamma = 0.5 \div 1.0$. С увеличением глубины волновое сопротивления и при $\gamma > 1.5$ выходит на постоянное значение. Для очень малой глубины нестационарное решение также дает меньшие значения волнового сопротивления. Аналогичный эффект на малой глубине наблюдался в экспериментах [13]. С уменьшением глубины в случае стационарного решения для тонкого слоя льда происходит увеличение волнового сопротивления, а для толстого — уменьшение, причем при малых значениях γ

Рис. 2

Рис. 2. Зависимость волнового сопротивления СВПА от скорости *u* при равномерном движении в случае нестационарного (1–3) и стационарного (4–6) решений при $L = 10 \text{ м}, h = 0,1 \text{ м}, \varepsilon = 0,009, \varkappa = 4,783 \cdot 10^{-3}, u_{\min} = 6,725 \text{ м/с}, \tau_k = 0,69 \text{ c}:$ $1 - u_1 = u_2 = u_3 = u, \mu_1 = 0,5 \text{ c}^{-1}, t = 100 \text{ c}, \gamma = 0,3; 2 - u_1 = u_2 = u_3 = u, \mu_1 = 0,5 \text{ c}^{-1}, t = 100 \text{ c}, \gamma = 0,7; 3 - u_1 = u_2 = u_3 = u, \mu_1 = 0,5 \text{ c}^{-1}, t = 100 \text{ c}, \gamma = 4; 4 - \gamma = 0,3; 5 - \gamma = 0,7; 6 - \gamma = 4$

Рис. 3. Зависимость волнового сопротивления СВПА от скорости u при равномерном движении в случае нестационарного (1–3) и стационарного (4–6) решений при L = 20 м, h = 0.5 м, $\varepsilon = 0.023$, $\varkappa = 0.037$, $u_{\min} = 12,297$ м/с, $\tau_k = 0.69$ с:

 $\begin{array}{l} 1-u_1=u_2=u_3=u,\ \mu_1=0.5\ \mathrm{c}^{-1},\ t=100\ \mathrm{c},\ \gamma=0.25;\ 2-u_1=u_2=u_3=u,\ \mu_1=0.5\ \mathrm{c}^{-1},\ t=100\ \mathrm{c},\ \gamma=0.7;\ 3-u_1=u_2=u_3=u,\ \mu_1=0.5\ \mathrm{c}^{-1},\ t=100\ \mathrm{c},\ \gamma=3;\ 4-\gamma=0.25;\ 5-\gamma=0.7;\ 6-\gamma=3\end{array}$

Рис. 4. Зависимость максимального волнового сопротивления судна A_* от глубины водоема γ при равномерном движении в случае нестационарного (1, 2) и стационарного (3, 4) решений при $\tau_k = 0.69$ с:

 $\begin{array}{l} 1-u_1=u_2=u_3=u,\,\mu_1=0.5\;\mathrm{c}^{-1},\,t=100\;\mathrm{c},\,L=10\;\mathrm{m},\,h=0.1\;\mathrm{m},\,\varepsilon=0.009,\,\varkappa=4.783\cdot10^{-3},\,u_{\mathrm{min}}=6.725\;\mathrm{m/c};\,2-u_1=u_2=u_3=u,\,\mu_1=0.5\;\mathrm{c}^{-1},\,t=100\;\mathrm{c},\,L=20\;\mathrm{m},\,h=0.5\;\mathrm{m},\,\varepsilon=0.023,\,\varkappa=0.037,\,u_{\mathrm{min}}=12.297\;\mathrm{m/c};\,3-L=10\;\mathrm{m},\,h=0.1\;\mathrm{m},\,\varepsilon=0.009,\,\varkappa=4.783\cdot10^{-3};\,4-L=20\;\mathrm{m},\,h=0.5\;\mathrm{m},\,\varepsilon=0.023,\,\varkappa=0.037\end{array}$

Рис. 5. Зависимости волнового сопротивления (a) и скорости (б) СВПА от времени при L = 10 м, h = 0,2 м, $\varepsilon = 0,018$, $\varkappa = 0,038$, $u_{\min} = 8,721$ м/с, $\tau_k = 0,69$ с, $\gamma = 4$: $1 - u_1 = u_2 = u_3 = 3u_{\min}$, $\mu_1 = 0,5$ с⁻¹; $2 - u_1 = u_2 = u_3 = 3u_{\min}$, $\mu_1 = 0,05$ с⁻¹; $3 - u_1 = 3u_{\min}$, $u_2 = u_3 = 0$, $\mu_1 = 0,5$ с⁻¹, $\mu_2 = 0,6$ с⁻¹, $t_2 = 15$ с; $4 - u_1 = 3u_{\min}$, $u_2 = u_3 = 0$, $\mu_1 = 0,5$ с⁻¹, $t_2 = 30$ с; $5 - u_1 = 3u_{\min}$, $u_2 = u_{\min}$, $\mu_3 = 3u_{\min}$, $\mu_1 = \mu_2 = 0,5$ с⁻¹, $\mu_2 = 0,1$ с⁻¹, $t_2 = 30$ с; $5 - u_1 = 3u_{\min}$, $u_2 = u_3 = 1, \mu_2 = 0,1$ с⁻¹, $t_2 = 30$ с; $7 - u_1 = u_2 = u_3 = 1,2u_{\min}$, $\mu_1 = 0,5$ с⁻¹

решение расходится. Для толстого слоя льда при нестационарном режиме движения значение γ почти не влияет на максимальное значение волнового сопротивления. Различие стационарных и нестационарных значений волнового сопротивления при малых γ , повидимому, объясняется некоторым несовершенством линейной теории волн. Как известно, применение линейной теории волн более оправданно при нестационарном решении задачи [5].

На рис. 5 показано влияние различных режимов ускорения и торможения на волновое сопротивление СВПА. Из анализа кривых 1 и 2 следует: чем больше начальное ускорение при выходе судна на сверхкритическую скорость, тем меньше максимум волнового сопротивления СВПА. Данный вывод согласуется с результатами работ [5, 7] в случае равноускоренного движения СВПА по чистой воде и в поле битого льда. Кривые 3, 4 соответствуют волновому сопротивлению при выходе на сверхкритическую скорость с последующим торможением до полной остановки. При этом волновое сопротивление по абсолютной величине тем больше, чем меньше абсолютная величина коэффициента торможения. Из анализа кривой 5 следует, что выход на сверхкритическую скорость, а затем торможение до докритической скорости с последующим разгоном до сверхкритической скорости также обеспечивают увеличение волнового сопротивления. Из анализа кривой 6следует, что при торможении от сверхкритической скорости до докритической с малым коэффициентом торможения происходит увеличение волнового сопротивления. Кривая 7, приведенная для сравнения, представляет собой зависимость волнового сопротивления от времени при разгоне до критической скорости и дальнейшем движении с критической скоростью.

4. Анализ полученных результатов позволяет сделать следующие выводы.

СВПА имеет наименьшее волновое сопротивление, если оно движется на докритических скоростях либо выходит на сверхкритические скорости с максимальным ускорением и далее движется на сверхкритических скоростях. При движении со сверхкритической скоростью по льду СВПА во избежание максимального волнового сопротивления и возможного разрушения льда тормозить необходимо с максимально допустимым абсолютным коэффициентом торможения.

Для увеличения волнового сопротивления (что необходимо, например, при резонансном разрушении ледяного покрова судами на воздушной подушке) можно использовать следующие режимы движения:

— выход на сверхкритическую скорость с минимально возможным ускорением;

— выход на критическую скорость и движение с этой скоростью;

— выход на сверхкритическую скорость, затем торможение до полной остановки либо до значения докритической скорости с последующим выходом на сверхкритическую скорость;

— выход на сверхкритическую скорость с последующим торможением до полной остановки с наименьшим по абсолютной величине коэффициентом торможения.

Применение метода асимптотической интерполяции при получении формулы (2.18) для прогиба пластины w дает хорошее соответствие известному стационарному решению при различных значениях толщины слоя льда, длины судна, глубины водоема и скорости движения судна. Тем не менее следует отметить, что для сравнения выбирались достаточно малые значения $\varkappa = Gh^3/(3\rho_2gL^4)$. Однако из экспериментальных результатов работы [14] следует, что разрушение ледяного покрова резонансным методом происходит только при $\varkappa < 0,025$. В случае больших значений \varkappa (толщина слоя льда велика, длина судна мала) безразмерный коэффициент волнового сопротивления судна A очень мал, а прогиб волны недостаточно велик для разрушения ледяного покрова. Например, в работе [12] показано, что для стационарного и нестационарного решений при увеличении толщины слоя льда с 0,1 до 0,5 м волновое сопротивление судна длиной L = 10 м уменьшается в 20 раз при прочих неизменных параметрах судна, водоема и льда (при этом значение \varkappa меняется в диапазоне от 0,005 до 0,598).

В отличие от результатов работы [12] учет вязкостных свойств ледяной пластины приводит к тому, что, во-первых, при выходе на режим равномерного движения волновое сопротивление судна не имеет колебательного характера, во-вторых, на докритических скоростях судно имеет хотя и малое, но не нулевое волновое сопротивление.

ЛИТЕРАТУРА

- 1. Бенуа Ю. Ю. Основы теории судов на воздушной подушке / Ю. Ю. Бенуа, В. К. Дьяченко, Б. А. Колызаев и др. Л.: Судостроение, 1970.
- 2. Хейсин Д. Е. Динамика ледяного покрова. Л.: Гидрометеоиздат, 1967.
- 3. **Фрейденталь А.** Математические модели неупругой сплошной среды / А. Фрейденталь, Х. Гейрингер. М.: Физматгиз, 1962.
- Большаков В. П. Волновое сопротивление системы поверхностных давлений // Тр. 13-й Науч.-техн. конф. Науч.-техн. о-ва судостроит. пром-сти по теории корабля, Ленинград, 10–15 сент. 1963 г. Л.: Изд-во Центр. науч.-исслед. ин-та им. А. Н. Крылова, 1963. Вып. 49. С. 68–88.
- Doctors L. J., Sharma S. D. The wave resistance of an aircushion vehicle in steady and acceleration motion // J. Ship Res. 1972. V. 16, N 4. P. 248–260.
- 6. Козин В. М., Погорелова А. В. Волновое сопротивление амфибийных судов на воздушной подушке при движении по ледяному покрову // ПМТФ. 2003. Т. 44, № 2. С. 49–55.
- 7. Козин В. М., Погорелова А. В. Влияние битого льда на волновое сопротивление СВПА при нестационарном режиме движения // ПМТФ. 1999. Т. 40, № 6. С. 48–53.

- 8. Полянин А. Д., Дильман В. В. Асимптотическая интерполяция в задачах массо- и теплопереноса и гидродинамики // Теорет. основы хим. технологии. 1985. Т. 19, № 1. С. 3–11.
- Polyanin A. D., Dil'man V. V. New methods of the mass and heat transfer theory. 2. The methods of asymptotic interpolation and extrapolation // Intern. J. Heat Mass Transfer. 1985. V. 28, N 1. P. 45–58.
- Squire V. A. Moving loads on ice plates / V. A. Squire, R. J. Hosking, A. D. Kerr, P. J. Langhorne. Dordrecht: Kluwer Acad. Publ., 1996.
- Takizava T. Deflection of a floating sea ice sheet induced by a moving load // Cold Regions Sci. Technol. 1985. V. 11. P. 171–180.
- Kozin V. M., Pogorelova A. V. Nonstationary motion of an amphibian air-cushion vehicle on ice fields // Proc. of the 7th ISOPE PACOMS, Dalian (China), Sept. 17–21, 2006 [Electron. resource]. Cupertino (Cal.): Intern. Soc. Offshore Polar Engrs, 2006. P. 81–86.
- 13. Козин В. М., Милованова А. В., Онищук А. В. Экспериментальное и теоретическое исследование движения СВПА в поле битого льда // Прикладные задачи механики деформируемого твердого тела и прогрессивные технологии в машиностроении: Сб. тр. Ин-та машиноведения и металлургии ДВО РАН. Владивосток: Дальнаука, 1997. С. 120–129.
- 14. **Козин В. М.** Резонансный метод разрушения ледяного покрова: Автореф. дис. . . . д-ра техн. наук. Владивосток, 1993.

Поступила в редакцию 31/X 2006 г., в окончательном варианте — 11/I 2007 г.