УДК 539.3

РАСПРОСТРАНЕНИЕ ВОЛН В ДВУМЕРНОЙ БЛОЧНОЙ СРЕДЕ С ВЯЗКОУПРУГИМИ ПРОСЛОЙКАМИ (ТЕОРИЯ И ЭКСПЕРИМЕНТ)

В. А. Сарайкин*,**, А. Г. Черников*, Е. Н. Шер*

* Институт горного дела СО РАН, 630091 Новосибирск, Россия

** Новосибирский государственный университет, 630090 Новосибирск, Россия E-mails: vsaraikin@gmail.com, vzrivlab@misd.nsc.ru, ensher@sibmail.ru

Рассмотрена модель среды, состоящей из параллельно расположенных слоев прямоугольных упругих блоков, разделенных деформируемыми вязкоупругими прослойками. Модель предложена для описания низкочастотной части спектра в волнах, распространяющихся в среде с такой структурой. Для двумерной сборки, состоящей из 36 блоков, проведено сравнение результатов численных расчетов с экспериментальными данными.

Ключевые слова: блочная среда, контакт блоков и прослоек, нестационарные волны, низкочастотная часть спектра, вязкость, затухание.

DOI: 10.15372/PMTF20150416

Результаты проведенных в последние годы исследований процесса распространения сейсмических волн в массивах пород свидетельствуют о необходимости учета в математических моделях, используемых в геомеханике и сейсмике, блочного строения горных пород. На эти исследования большое влияние оказала концепция блочно-иерархического строения объектов геосреды, предложенная М. А. Садовским [1]. Согласно данной концепции массив горных пород представляет собой систему вложенных друг в друга блоков разного масштаба, соединенных прослойками из более слабых, трещиноватых пород, деформирование которых является существенно нелинейным и характеризуется сложной реологией. Наличие таких податливых прослоек приводит к тому, что деформирование блочного массива как в статике, так и в динамике происходит в основном за счет их деформации. Некоторые особенности распространения сейсмических волн изучены в работах [2–4] с использованием одномерных моделей блочных сред. Установлено, что при импульсном воздействии в блочной среде возникает широкополосное возмущение, которое по мере распространения разделяется на высокочастотное, характерное для собственных колебаний блоков, и низкочастотное. При этом эксперименты с моделями блочных сред [5–7] показали, что высокочастотные волны быстро затухают и основное сейсмическое воздействие оказывают низкочастотные волны, спектр которых ограничен первой полосой пропускания фильтра низких частот. Из результатов расчетов волнового движения в цепочке упругих стержней, разделенных податливыми прослойками, следует, что низкочастотное возмущение, возникающее при импульсном воздействии, достаточно точно воспроизводится моделью жест-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 11-05-00369).

[©] Сарайкин В. А., Черников А. Г., Шер Е. Н., 2015

Рис. 1. Геометрия блочной среды (горизонтальный слой блоков)

кие блоки — вязкоупругие прослойки [8]. Такой подход был использован в работах [9–11] при описании динамического поведения двумерной блочной среды в предположении, что жесткие блоки имеют прямоугольную форму. В модели среды [10, 11], впервые построенной с использованием такого допущения, учитывалось только движение блока как единого жесткого целого. Считалось, что блоки окружены тонкой деформируемой оболочкой (прослойками на границах блока), более податливой, чем ядро блока. В этом случае скорость распространения возмущений в основном определялась жесткостью связи между блоками. Дальнейшие исследования показали, что такая двумерная модель имеет ограниченную область применения. В случае если связи обладают достаточно большой жесткостью, пренебрежение деформациями в блоках приводит к возникновению большой погрешности при описании скорости распространения низкочастотных бегущих волн. Была предложена поправка, с помощью которой блоки в модели учитывались не только как точечные массы, но и как деформируемые элементы среды, работающие на сдвиг и растяжение-сжатие подобно пружинам в составном элементе структуры блок — прослойка [12–14]. При выводе уравнений для этой модели использование осредненных условий на контактных поверхностях блоков и прослоек позволило определить характеристики такого элемента, зависящие от его линейных размеров и упругих свойств материалов. В настоящее время известны работы, в которых задача о распространении сейсмических волн в среде, состоящей из прямоугольных упругих блоков и вязкоупругих прослоек, рассматривается в точной постановке с использованием теории упругости [15]. Сложность проведения расчетов по предложенным алгоритмам заключается в необходимости использовать многопроцессорные компьютерные системы. Такие расчеты могут быть применены при тестировании более простых моделей.

В данной работе в двумерной постановке строится приближенная система уравнений динамики блочной среды с учетом вязкоупругого взаимодействия блоков и прослоек, в которой учитывается только распространение низкочастотных возмущений. Проводится сравнение результатов расчетов по этой модели с результатами лабораторного эксперимента.

Рассмотрим модель среды, состоящей из параллельно расположенных слоев прямоугольных блоков (на рис. 1 показаны два соседних блока в горизонтальном ряду). Деформируемые блоки с горизонтальным размером $2H_x$ и вертикальным размером $2H_y$ разделены деформируемыми вертикальными прослойками, имеющими толщину $2h_x$, и горизонтальными прослойками толщиной $2h_y$. Блок с номером i, j является центральным в характерной ячейке этой блочной структуры и контактирует с четырьмя блоками, расположенными слева, справа, снизу и сверху от него. Для вывода уравнений движения этого блока необходимо определить силы его взаимодействия с соседними блоками. При динамическом воздействии на данный элемент структуры инерционными свойствами прослоек пренебрегается, поскольку считается, что их толщины существенно меньше линейных размеров блоков.

Исследуем взаимодействие блоков i, j и i + 1, j, находящихся в горизонтальном ряду. Сохраняя в разложениях перемещений относительно центра блока первые степени переменных x и y, для перемещений в блоке i, j получаем

$$u = u_{i,j} + \varepsilon_{xx}^{i,j} x + (\varepsilon_{xy}^{i,j} - \omega_{i,j})y, \qquad v = v_{i,j} + (\varepsilon_{xy}^{i,j} + \omega_{i,j})x_{-} + \varepsilon_{yy}^{i,j}y$$

$$(-H_x < x \leqslant H_x, \quad -H_y < y \leqslant H_y).$$
(1)

Здесь $u_{i,j}, v_{i,j}, \omega_{i,j}$ — горизонтальные и вертикальные перемещения центров блоков и углы их поворотов соответственно; $\varepsilon_{kl}^{i,j}$ — компоненты тензора деформаций в центрах блоков.

Перемещения в деформируемой прослойке будем искать в виде многочленов от координат X, y (см. рис. 1) с неопределенными коэффициентами:

$$U = U_0 + E_{xx}X + (E_{xy} - \Omega)y - aXy, \qquad V = V_0 + (E_{xy} + \Omega)X + E_{yy}y + \gamma aX^2, \gamma = (\lambda_s + \mu_s)/(2\mu_s).$$
(2)

Здесь λ_s , μ_s — упругие модули Ламе материала прослойки.

Перемещениям (2) в прослойке соответствуют напряжения

$$\Sigma_{xx} = (\lambda_s + 2\mu_s)(E_{xx} - ay) + \lambda_s E_{yy}, \qquad \Sigma_{xy} = 2\mu_s E_{xy} + \lambda_s aX,$$

$$\Sigma_{yy} = \lambda_s (E_{xx} - ay) + (\lambda_s + 2\mu_s) E_{yy},$$
(3)

удовлетворяющие уравнениям равновесия.

Чтобы определить усилия, возникающие при взаимодействии рассматриваемых блоков, необходимо величины E_{xx} , E_{yy} , E_{xy} , a в (3) выразить через кинематические характеристики соседних блоков $u_{i,j}$, $u_{i+1,j}$, $v_{i,j}$, $v_{i+1,j}$, $\omega_{i,j}$, $\omega_{i+1,j}$. Для этого запишем условия контакта блоков при наличии прослойки. Во-первых, на границах $X = \pm h_x$ перемещения должны быть непрерывными. Согласно (1), (2)

$$U_{0} + E_{xx}h_{x} + (E_{xy} - \Omega)y - ah_{x}y = u_{i+1,j} - \varepsilon_{xx}^{i+1,j}H_{x} + (\varepsilon_{xy}^{i+1,j} - \omega_{i+1,j})y$$

$$U_{0} - E_{xx}h_{x} + (E_{xy} - \Omega)y + ah_{x}y = u_{i,j} + \varepsilon_{xx}^{i,j}H_{x} + (\varepsilon_{xy}^{i,j} - \omega_{i,j})y,$$

$$V_{0} + (E_{xy} + \Omega)h_{x} + \gamma ah_{x}^{2} = v_{i+1,j} - (\varepsilon_{xy}^{i+1,j} + \omega_{i+1,j})H_{x} + \varepsilon_{yy}^{i+1,j}y,$$

$$V_{0} - (E_{xy} + \Omega)h_{x} + \gamma ah_{x}^{2} = v_{i,j} + (\varepsilon_{xy}^{i,j} + \omega_{i,j})H_{x} + \varepsilon_{yy}^{i,j}y.$$

Во-вторых, вдоль границ $X = \pm h_x$ должны выполняться в обобщенном смысле равенства нормальных и касательных усилий

$$\int_{-H_y}^{H_y} \Sigma_{xx} \, dy = \int_{-H_y}^{H_y} \sigma_{xx} \, dy, \qquad \int_{-H_y}^{H_y} \Sigma_{xy} \, dy = \int_{-H_y}^{H_y} \sigma_{xy} \, dy,$$

которые в данном приближении в результате интегрирования принимают вид

$$(\lambda_s + 2\mu_s)E_{xx} + \lambda_s E_{yy} = (\lambda + 2\mu)\varepsilon_{xx}^{i+1,j} + \lambda\varepsilon_{yy}^{i+1,j}$$
$$(\lambda_s + 2\mu_s)E_{xx} + \lambda_s E_{yy} = (\lambda + 2\mu)\varepsilon_{xx}^{i,j} + \lambda\varepsilon_{yy}^{i,j},$$
$$2\mu_s E_{xy} + \lambda_s ah_x = 2\mu\varepsilon_{xy}^{i+1,j},$$
$$2\mu_s E_{xy} - \lambda_s ah_x = 2\mu\varepsilon_{xy}^{i,j},$$

()

где модули упругости материала блоков λ , μ значительно больше модулей упругости материала прослоек λ_s , μ_s . Исключив из этих выражений деформации, получаем соотношения для E_{xx} , E_{xy} , a

$$E_{xx} = \frac{u_{i+1,j} - u_{i,j}}{2H_x\Delta_x} + \frac{\lambda - \lambda_s}{\lambda + 2\mu} \frac{E_{yy}^+}{\Delta_x},$$

$$E_{xy} = \frac{1}{2H_x\Delta_{xy}} [v_{i+1,j} - v_{i,j} - (H_x + h_x)(\omega_{i+1,j} + \omega_{i,j})],$$

$$ah_x = \frac{\mu}{\lambda_s + 2\mu} (\omega_{i+1,j} - \omega_{i,j}),$$

$$\Delta_x = \frac{\lambda_s + 2\mu_s}{\lambda + 2\mu} + \frac{h_x}{H_x}, \qquad \Delta_{xy} = \left(2 - \frac{\mu_s}{\mu}\right) \frac{h_x}{H_x} + \frac{\mu_s}{\mu}.$$

Заметим, что полученных уравнений недостаточно для определения деформации E_{yy} вдоль вертикальной прослойки. Предполагалось, что величина E_{yy} равна производной по переменной y от вертикального перемещения соседних с прослойкой блоков, т. е.

$$E_{yy} = E_{yy}^{+} = \frac{v_{i+1,j+1} - v_{i+1,j-1}}{4H_y}$$

На верхней границе перемещения в прослойке между блоками i, j + 1 и i, j также зададим в виде простейшего многочлена

$$U = U_0 + E_{xx}x + (E_{yx} - \Phi)Y + \gamma AY^2, V = V_0 + (E_{yx} + \Phi)x + E_{yy}Y - AxY.$$

Эти соотношения позволяют учесть на горизонтальной границе блока связь перемещений рассматриваемого и соседних блоков.

Выполнив сопряжение элементов среды на остальных границах, находим усилия на всем контуре блока. Зная усилия, действующие на контуре блока, можно составить уравнения его движения

$$m\ddot{u}_{i,j} = \oint_L \sigma_{ny} \, dl, \qquad m\ddot{v}_{i,j} = \oint_L \sigma_{ny} \, dl, \qquad J\ddot{\omega}_{i,j} = \oint_L (x\sigma_{ny} - y\sigma_{nx}) \, dl, \tag{4}$$

где m, J — масса и момент инерции блока; σ_{nx}, σ_{ny} — компоненты вектора напряжений на поверхностях блока с внешней нормалью $\boldsymbol{n} = (n_x, n_y)$.

В результате интегрирования получаем уравнения движения блоков

$$m\ddot{u}_{i,j} = \frac{(\lambda_s + 2\mu_s)H_y}{\Delta_x H_x} \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right) + \frac{2\mu_s H_x}{\Delta_{yx} H_y} \left[u_{i,j+1} - 2u_{i,j} + u_{i,j-1} + H_y(\omega_{i,j+1} - \omega_{i,j-1}) \right] + 2H_y \left(\lambda - \frac{\lambda - \lambda_s}{\Delta_y} \frac{h_y}{H_y} \right) (E_{yy}^+ - E_{yy}^-) + \frac{2\lambda_s \mu H_x}{\lambda_s + 2\mu} (\omega_{i,j+1} - \omega_{i,j-1}); \quad (5)$$

$$m\ddot{v}_{i,j} = \frac{2\mu_s Hy}{\Delta_{xy} H_x} \left[v_{i+1,j} - 2v_{i,j} + v_{i-1,j} - H_x(\omega_{i+1,j} - \omega_{i-1,j}) \right] + \frac{(\lambda_s + 2\mu_s) H_x}{\Delta_y H_y} \left(v_{i,j+1} - 2v_{i,j} + v_{i,j-1} \right) + 2H_x \left(\lambda - \frac{\lambda - \lambda_s}{\Delta_y} \frac{h_y}{H_y} \right) (E_{xx}^+ - E_{xx}^-) - \frac{2\lambda_s \mu H_y}{\lambda_s + 2\mu} \left(\omega_{i+1,j} - \omega_{i-1,j} \right); \quad (6)$$

$$J\ddot{\omega}_{i,j} = 8\mu_s H_x H_y \left[\frac{v_{i+1,j} - v_{i-1,j}}{4H_x \Delta_{xy}} - \frac{u_{i,j+1} - u_{i,j-1}}{4H_y \Delta_{yx}} - \left(\frac{1}{\Delta_{xy}} + \frac{1}{\Delta_{yx}}\right) \omega_{i,j} \right] + \\ + 8H_x^3 H_y \left(\frac{(\lambda_s + 2\mu_s)\mu H_y^2}{3(\lambda_s + 2\mu)h_x H_x} - \frac{\lambda_s \mu}{\lambda_s + 2\mu} - \frac{\mu_s}{\Delta_{xy}} \right) \frac{\omega_{i+1,j} - 2\omega_{i,j} + \omega_{i-1,j}}{4H_x^2} + \\ + 8H_x H_y^3 \left(\frac{(\lambda_s + 2\mu_s)\mu H_x^2}{3(\lambda_s + 2\mu)h_y H_y} + \frac{\lambda_s \mu}{\lambda_s + 2\mu} - \frac{\mu_s}{\Delta_{yx}} \right) \frac{\omega_{i,j+1} - 2\omega_{i,j} + \omega_{i,j-1}}{4H_y^2}; \quad (7) \\ J = \frac{1}{3} m (H_x^2 + H_y^2) = \frac{4}{3} \rho H_x H_y (H_x^2 + H_y^2).$$

При выводе уравнений (5)–(7) полагалось, что упругие свойства горизонтальных и вертикальных прослоек одинаковы. Не вызывает затруднений выполнение обобщения для модели, в которой λ_{sx} , μ_{sx} — модули упругости материала вертикальных прослоек, λ_{sy} , μ_{sy} — модули упругости материала горизонтальных прослоек.

Если линейные размеры элементов структуры стремятся к нулю, то из уравнений движения дискретной среды (5)–(7) следуют уравнения моментной континуальной среды, которые в общем случае являются уравнениями ортотропной среды. Для простого варианта блочной среды подобный предельный переход выполнен в работе [16]. Чтобы получить изотропную среду, полагаем $H_x = H_y = H \rightarrow 0$, $h_x = \alpha H^{\delta} \rightarrow 0$, $h_y = \beta H^{\delta} \rightarrow 0$, $1 < \delta < 2$ (при $\delta = 1$, выполнив предельный переход, имеем частный случай анизотропии). При таком предельном переходе в (5)–(7) получаем уравнения динамики изотропной среды

$$\rho \ddot{u} = (\lambda + 2\mu)u''_{xx} + 2\mu u''_{yy} + \lambda v''_{xy} + 2\left(\mu + \frac{\lambda_s \mu}{\lambda_s + 2\mu}\right)\omega'_y,$$

$$\rho \ddot{v} = 2\mu v''_{xx} + (\lambda + 2\mu)v''_{yy} + \lambda u''_{xy} - 2\left(\mu + \frac{\lambda_s \mu}{\lambda_s + 2\mu}\right)\omega'_x,$$

$$\omega = (v'_x - u'_y)/2$$

с малой погрешностью, равной $\lambda_s \mu / (\lambda_s + 2\mu)$. Таким образом, в предложенной модели дискретной среды сохранена связь с уравнениями движения среды в точной постановке.

Из уравнений движения (5)–(7) для среды с упругими прослойками можно получить уравнения движения для блочной среды с вязкоупругими прослойками, в которых девиаторы напряжений $s_{\alpha\beta}$ и деформаций $e_{\alpha\beta}$ связаны уравнениями состояния

$$s_{\alpha\beta} = 2\mu_s(e_{\alpha\beta} + \eta \dot{e}_{\alpha\beta}), \qquad \sigma = (\lambda_s + 2\mu_s/3)\varepsilon$$
$$s_{\alpha\beta} = \sigma_{\alpha\beta} - \sigma\delta_{\alpha\beta}, \qquad e_{\alpha\beta} = \varepsilon_{\alpha\beta} - \varepsilon\delta_{\alpha\beta}/3,$$

где σ, ε — среднее давление и объемная деформация.

Выполнив переход от девиаторов к напряжениям и деформациям и применив преобразование Лапласа по времени с параметром преобразования *p*, вместо уравнения упругой связи

$$\sigma_{\alpha\beta} = \lambda_s \varepsilon \delta_{\alpha\beta} + 2\mu_s \varepsilon_{\alpha\beta}$$

получаем следующее уравнение связи изображений:

$$\sigma_{\alpha\beta}^{L} = (\lambda_s - (2/3)\mu_s\eta p)\varepsilon^L \delta_{\alpha\beta} + 2\mu_s(1+\eta p)\varepsilon_{\alpha\beta}^L.$$

Таким образом, в уравнениях (5)–(7) нужно перейти к изображениям, а затем выполнить в уравнениях замену упругих постоянных

$$\lambda_s \to \lambda_s - (2/3)\mu_s\eta p, \qquad \mu_s \to \mu_s(1+\eta p).$$

Рис. 2. Экспериментальный стенд (*a*) и схема эксперимента, в котором исследовалось распространение волн в двумерной блочной среде (*б*): 1-6 — блоки, для которых проводились измерения; стрелка — направление и точка удара

После этого, обратив полученные выражения, следует перейти к оригиналам уравнений, которые будут содержать свертки по времени искомых функций с переменными коэффициентами. Например, после замены упругих постоянных в первом слагаемом уравнения (5) получаем следующий коэффициент:

$$a_{xx}^{L}(p) = \frac{\lambda_s + 2\mu_s + (4/3)\mu_s\eta p}{\Delta_x + (4/3)\mu_s\eta p/(\lambda + 2\mu)} = \lambda + 2\mu - \frac{3(\lambda + 2\mu)^2}{4\mu_s\eta} \frac{h_x}{H_x} \frac{1}{p + (3/4)(\lambda + 2\mu)\Delta_x/(\mu_s\eta)}.$$

Применив обратное преобразование Лапласа, находим зависимость коэффициента a_{xx} от времени

$$a_{xx}(t) = (\lambda + 2\mu)\delta(t) - \frac{3(\lambda + 2\mu)^2}{4\mu_s\eta}\frac{h_x}{H_x}\exp\left(-\frac{3(\lambda + 2\mu)}{4\mu_s\eta}\Delta_x t\right)$$

 $(\delta(t)$ — сосредоточенная функция Дирака). После перехода в (5) к оригиналам получаем

$$m\ddot{u}_{i,j} = (H_x/H_y) a_{xx}(t) * (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}) + \dots$$

(знак "*" означает свертку функций по времени).

Полученные уравнения блочной среды с вязкоупругими прослойками использовались при сравнении результатов решения в случае сборки из прямоугольных блоков с данными экспериментов.

Эксперименты проводились на двухосном стенде. Блочная среда моделировалась сборкой прямоугольных блоков из оргстекла с размерами $89 \times 125 \times 250$ мм (рис. 2). Плотность оргстекла равна $\rho = 2040$ кг/м³ (масса блока m = 5,67 кг), продольная скорость c = 2670 м/с. Сборка состояла из шести рядов блоков по шесть штук в каждом ряду. Каждый блок располагался таким образом, что его торцевая грань, на которой размещались акселерометры, имела размеры 89×125 мм. Рассматривались два варианта сборки. В первом варианте роль прослоек между блоками выполняли прокладки из резины толщиной 5 мм, во втором варианте прокладки отсутствовали, а роль весьма тонких прослоек толщиной 0,5 мм выполняли неровности на поверхностях контакта блоков. По всему периметру сборка блоков отделялась от рамы стенда, изготовленной из стальных швеллеров, прокладкой из резины толщиной 5 мм. С помощью домкратов сборку блоков в испытательном стенде можно было сжимать в вертикальном и горизонтальном направлениях. Эксперименты проводились при различной степени сжатия сборки блоков. В данной работе приведены результаты экспериментов, которые проводились при начальном напражении в вертикальном направлении (по оси Y), равном 268 кПа, в горизонтальном направлении (по оси X) — 191 кПа.

Упругие волны в сборке возбуждались ударом подвешенного на нити стального шара диаметром 50 мм и массой 0,51 кг. Шар отклонялся от положения равновесия на угол 50° в точке контакта со стержневым ударником, один конец которого соприкасался с поверхностью воспринимающего ударную нагрузку блока (стрелка на рис. 2). При ударе по стержневому ударнику формировался импульс в виде полупериода синусоиды длительностью 200 мкс. Измерения проводились в блоках 1–6 (см. рис. 2). Приходящая в блоки сейсмическая волна фиксировалась акселерометрами КД-91, установленными в центрах торцевых граней под углом 90° относительно друг друга. Фиксировались X- и Y-компоненты ускорений. Данные сохранялись в компьютере, после их обработки были получены осциллограммы ускорений и скоростей блоков в эксперименте.

Ниже проводится сравнение результатов экспериментов и расчетов по модели блочной среды. Ударный импульс задан в виде

$$P_x = \begin{cases} p \sin(\pi t/T), & 0 \leq t \leq T, \\ 0, & t > T, \end{cases}$$

где $T = 2 \cdot 10^{-4}$ с = 200 мкс.

На рис. 3, 4 приведены результаты расчетов и соответствующие им данные эксперимента для сборки с прослойками. Расчеты проводились при размерах блочной среды $h_x = h_y = 0,0025 \text{ м}, H_x = 0,0445 \text{ м}, H_y = 0,0625 \text{ м}$ и модулях упругости $\mu_{sx} = 10^7/1,3 \text{ Па}, \mu_{sy} = 1,35 \cdot 10^7/1,3 \text{ Па}, \mu_s = 0,6 \cdot 10^8/1,3 \text{ Па}.$ Здесь коэффициент Пуассона для всех материалов сборки полагался равным $\nu = 0,3; \mu_s$ — модуль сдвига резиновой прокладки по периметру сборки. Модуль упругости λ вычислялся через постоянные μ, ν . Значения модулей сдвига прослоек подбирались на основе условия согласования теоретических и экспериментальных данных о скорости распространения низкочастотной волны, ее зату-хании и форме колебаний.

При интегрировании уравнений движения по явной схеме осуществлялся подбор параметра вязкости η . Он увеличивался до значения, при превышении которого возникала расходимость расчетной схемы. Затем устойчивость схемы проверялась при максимально возможном значении параметра вязкости путем решения задачи для промежутка времени, превышающего 1 с. При расчетах параметр вязкости был равен 0,8 с.

На рис. 3 показаны теоретические и экспериментальные осциллограммы горизонтальных ускорений в блоках 1–3, расположенных на линии удара. Из экспериментальных осциллограмм следует, что колебания блока 1 имеют низко- и высокочастотные составляющие. Последние, как и в одномерном случае, при распространении в сборке достаточно быстро затухают. На рис. 3 видно, что теоретические значения ускорения в блоках, соответствующие основной, низкой частоте, хорошо согласуются с экспериментальными данными.

При распространении возмущений от ударного импульса в сборке формируется низкочастотная волна, распространяющаяся в горизонтальном направлении со скоростью

$$c_x = \sqrt{\frac{\lambda_{sx} + 2\mu_{sx}}{\rho\Delta_x}}$$

 $(c_x \approx 1100 \text{ m/c}).$

Для вертикальных составляющих ускорения наилучшее соответствие величин амплитуд достигнуто в случае, когда низкочастотная волна распространяется в вертикальном направлении с той же скоростью

$$c_y = \sqrt{\frac{\lambda_{sy} + 2\mu_{sy}}{\rho\Delta_y}}$$

 $(c_{y} \approx 1100 \text{ m/c}).$

В целом движение блоков перпендикулярно направлению удара описывается моделью хуже, чем движение блоков в горизонтальном направлении. На рис. 4 приведены тео-

Рис. 4. Осциллограммы вертикальных ускорений \ddot{v} блоков 1 (*a*), 2 (*б*) в сборке с резиновыми прослойками (обозначения те же, что на рис. 3)

ретические и экспериментальные осциллограммы вертикального ускорения блоков 1, 2. Видно, что высокочастотные составляющие, не описываемые теорией, на начальном этапе движения блока 1 преобладают, а затем затухают, наблюдается удовлетворительное соответствие между теоретической кривой и экспериментальными данными. На блоке 2 амплитуда указанных волн существенно меньше. После их затухания устанавливаются низкочастотные колебания, амплитуды которых значительно меньше теоретических.

С использованием предложенной модели проведены расчеты для сборки без прослоек между блоками. В этом случае роль прослоек выполняли неровности поверхностей блоков. Предполагалось, что средний размер зазора между блоками в зонах дефектов контакта равен 0,5 мм, т. е. $h_x = h_y = 0,000\,25$ м.

Наилучшие результаты при сравнении расчетов получены в случае, когда упругие характеристики межблочного контакта имели следующие значения: $\mu_{sx} = 0.9 \cdot 10^6/1.3 \, \Pi a$, $\mu_{sy} = 1.5 \cdot 10^6/1.3 \, \Pi a$, $\mu_s = 0.6 \cdot 10^8/1.3 \, \Pi a$. Этим значениям соответствуют скорости распространения низкочастотной составляющей в горизонтальном и вертикальном направлениях, близкие к полученным в сборке с прослойками: $c_x \approx 1200 \, \text{м/c}$, $c_y \approx 1100 \, \text{м/c}$.

На рис. 5 приведены теоретические и экспериментальные осциллограммы горизонтальных ускорений в блоках 1–3 сборки без прослоек. В целом в этом случае также наблюдается корреляция теоретических и экспериментальных результатов. В отличие от случая сборки блоков с резиновыми прослойками значения скорости распространения волн хорошо согласуются, в то время как значения основной частоты колебаний различаются. Возможно, это обусловлено нелинейным взаимодействием элементов шероховатости поверхностей блоков при их взаимодействии и использованием другого закона демпфирования колебаний.

На рис. 6 приведены осциллограммы вертикального ускорения. В эксперименте зафиксированы большие амплитуды высокочастотных колебаний как блока 1, так и блока 2 в начале колебательного процесса, причем эти амплитуды сохраняются в течение более длительного периода, чем в сборке с прослойками. Для вертикальной составляющей результаты расчетов по модели отличаются от экспериментальных данных. Тем не менее данные, полученные в рамках модели, позволяют получить представление о характере движения блоков в волне.

Рис. 5. Осциллограммы горизонтальных ускорений \ddot{u} блоков 1 (*a*), 2 (*б*), 3 (*в*) в сборке без прослоек:

сплошные линии — результаты расчета пр
и $c_x=1200$ м/с, $c_y=1100$ м/с, h=0,5мм, штриховые — экспериментальные данные

Проведенные экспериментальные исследования показывают, что в блочных средах в двумерном случае, как и в одномерном, при импульсном нагружении среди распространяющихся волн выделяются низкочастотные волны, обусловленные колебаниями блоков, разделенных прослойками, и высокочастотные, вызванные собственными колебаниями блоков. Расчеты низкочастотных компонент волн проведены по предложенной упрощенной модели взаимодействия блоков, разделенных податливыми вязкоупругими прослойками, не учитывающей распространение возмущений внутри блоков. Сравнение теоретических и экспериментальных данных, проведенное для сборки из 36 блоков, находящихся под действием ударной нагрузки, показало, что можно подобрать деформационные характеристики вязкоупругих прослоек, моделирующие свойства реальных прослоек в эксперименте, при которых амплитуды, скорости и частоты распространяющихся в сборке низкочастотных волн хорошо согласуются. Следует отметить, что это сравнение проведено для сборки, имеющей малые размеры, в случае когда низкочастотная волна не сформирована, отсутствует "разбег" гармоник колебаний, обусловленный дисперсией частот, и значительное влияние на форму волн оказывают полнота и точность учета краевых условий на границе сборки.

Рис. 6. Осциллограммы вертикальных ускорений \ddot{v} блоков 1 (*a*), 2 (*б*) в сборке без прослоек (обозначения те же, что на рис. 5)

Таким образом, показана возможность применения предложенной модели динамического взаимодействия блоков, разделенных податливыми прослойками, для расчета сейсмических волн в блочных средах. Заметим, что проблема определения деформационных параметров прослоек остается нерешенной.

ЛИТЕРАТУРА

- 1. Садовский М. А. Естественная кусковатость горной породы // Докл. АН СССР. 1979. Т. 247, № 4. С. 829–831.
- Курленя М. В., Опарин В. Н., Востриков В. И. О формировании упругих волновых пакетов при импульсном возбуждении блочных сред. Волны маятникового типа V_µ // Докл. AH. 1993. Т. 333, № 4. С. 515–521.
- Курленя М. В., Опарин В. Н., Востриков В. И. и др. Волны маятникового типа.
 Данные натурных измерений // Физ.-техн. пробл. разраб. полез. ископаемых. 1996. № 5. С. 14–29.
- 4. Варыгина М. П., Похабова М. А., Садовская О. В., Садовский В. М. Вычислительные алгоритмы для анализа упругих волн в блочных средах с тонкими прослойками // Вычисл. методы и программирование: новые вычисл. технологии. 2011. Т. 12. С. 435–442.
- 5. Курленя М. В., Опарин В. Н., Востриков В. И. Волны маятникового типа. 2. Методика экспериментов и основные результаты физического моделирования // Физ.-техн. пробл. разраб. полез. ископаемых. 1996. № 4. С. 3–39.
- 6. Александрова Н. И., Шер Е. Н. Моделирование процесса распространения волн в блочных средах // Физ.-техн. пробл. разраб. полез. ископаемых. 2004. № 6. С. 49–57.
- 7. Александрова Н. И., Шер Е. Н., Черников А. Г. Влияние вязкости прослоек на распространение низкочастотных маятниковых волн в блочных иерархических средах // Физ.-техн. пробл. разраб. полез. ископаемых. 2008. № 3. С. 3–13.
- 8. Александрова Н. И. О распространении упругих волн в блочной среде при импульсном нагружении // Физ.-техн. пробл. разраб. полез. ископаемых. 2003. № 6. С. 38–47.

- Слепян Л. И., Кулахметова Ш. А. Распространение трещины в массиве, состоящем из жестких блоков с упругими прослойками // Изв. АН СССР. Физика Земли. 1986. № 12. С. 17–23.
- 10. Сарайкин В. А., Степаненко М. В., Царева О. В. Упругие волны в среде с блочной структурой // Физ.-техн. пробл. разраб. полез. ископаемых. 1988. № 1. С. 14–21.
- Сарайкин В. А. Уравнения движения блочной среды // Проблемы механики деформируемых твердых тел и горных пород: Сб. ст. к 75-летию Е. И. Шемякина / Под ред. Д. Д. Ивлева, Н. Ф. Морозова. М.: Физматлит, 2006. С. 652–658.
- 12. Сарайкин В. А. Расчет волн, распространяющихся в двумерной сборке из прямоугольных блоков // Физ.-техн. пробл. разраб. полез. ископаемых. 2008. № 4. С. 32–42.
- Сарайкин В. А. Учет упругих свойств блоков в низкочастотной составляющей волны возмущений, распространяющейся в двумерной среде // Физ.-техн. пробл. разраб. полез. ископаемых. 2009. № 3. С. 9–24.
- 14. Сарайкин В. А. Распространение низкочастотной составляющей волны в модели блочной среды // ПМТФ. 2009. Т. 50, № 6. С. 177–185.
- 15. Садовский В. М., Садовская О. В., Варыгина М. П. Анализ резонансного возбуждения блочной среды на основе уравнений моментного континуума Коссера // Радиоэлектроника. Наносистемы. Информ. технологии. 2013. Т. 5, № 1. С. 111–118.
- Sulem J., Muhlhaus H.-B. A continuum model for periodic two-dimensional block structures // Mech. Cohesive-friction. Materials. 1997. V. 2. P. 31–46.

Поступила в редакцию 20/XII 2013 г., в окончательном варианте — 27/VI 2014 г.