УДК 541.135+547.0

Электрохимическая минерализация β-нафтола *in situ* активными формами кислорода

Н. В. ЧАЕНКО, Г. В. КОРНИЕНКО, В. Л. КОРНИЕНКО

Институт химии и химической технологии Сибирского отделения РАН, ул. Маркса, 42, Красноярск 660049 (Россия)

E-mail: kvl@icct.ru

(Поступила 09.07.09; после доработки 10.12.09)

Аннотация

Исследован электрохимический способ окисления β -нафтола активными формами кислорода *in situ*, генерированными из O₂, H₂O₂ и H₂O в водных средах с различными значениями pH, с использованием анодов из Pt, Pb/PbO₂ и графитового и газодиффузионного катодов на основе технического углерода. Изучено влияние концентрации реагентов, плотности тока и способа проведения процесса на эффективность окисления β -нафтола.

Ключевые слова: β-нафтол, электрохимическое окисление, активные формы кислорода, минерализация

введение

Электрохимический способ обеззараживания воды с деструкцией присутствующих в ней органических веществ до экологически безопасных соединений рассматривается в настоящее время в качестве альтернативного метода для обработки разбавленных сточных вод (ХПК < 5 г/л) [1]. В качестве окислителей в технологии деструктивного окисления используются активные формы кислорода HO[•], O₃, полученные с помощью электролиза из H₂O, O₂ и H₂O₂. Авторы работ [1–5] рассматривают разные варианты с привлечением различных анодных и катодных материалов, типов и конструкций электродов и электролизеров.

Известно, что в водных растворах сравнительно просто генерировать *in situ* активные формы кислорода (HO[•], HO[•]₂, HO⁻₂) на основе сопряженных процессов катодного восстановления O₂ до H₂O₂ на углеграфитовых материалах и анодного окисления H₂O до HO[•] на платиновых электродах и электродах из диоксида свинца, олова, марганца и т. п., допированных бором алмазных электродах (ДБАЭ) [1–5]. Известно, что наиболее сильным окислителем является HO[•]-радикал ($E^0_{\rm HO^+/Ho^-} = 2.80$ В отн. Н.В.Э.), способный к неселективной окислительной деструкции с минерализацией органических соединений до CO₂ и H₂O.

Согласно существующему механизму электрохимической минерализации в водных средах, вода разряжается (при потенциалах выше 1.23 В отн. НВЭ) на активных центрах анода с образованием адсорбированных НО[•]радикалов[1]:

$$H_2O + M \rightarrow M(HO')_{aug} + H^+ + e^-$$
(1)

Электрогенерированные НО-радикалы вовлекаются в процесс минерализации органических веществ R, присутствующих в водном растворе:

 $R + xM(HO)_{adc} \rightarrow xM +$ продукты минерализации + $yH^+ + ye^-$ (2) где x и y – стехиометрические коэффициенты. Данная реакция конкурирует с побочной реакцией разряда радикалов на аноде до O_2 : $M(HO)_{adc} \rightarrow M + 1/2O_2 + H^+ + e^-$ (3)

Окислительная эффективность материала анода определяется его способностью адсорбировать НО[•]-радикалы, и чем слабее это взаимодействие, приводящее к низкой электрохимической активности в реакции выделения O₂, тем выше реакционная способность при окислении органики. Идеальным в этом плане представляется новый анодный материал – тонкопленочный допированный бором алмазный электрод (ДБА), используемый пока только в лабораторных исследованиях [1].

Однако окислительную способность анода и эффективность использования тока можно повысить за счет привлечения катодной реакции восстановления O_2 до H_2O_2 на углеродных материалах:

$$O_{2} + 2H_{2}O + 2e^{-} = H_{2}O_{2} + 2OH^{-} \quad pH \ge 7$$
(4)
$$O_{2} + 2H^{+} + 2e^{-} = H_{2}O_{2} \qquad pH < 7$$
(5)

Восстановление O_2 происходит через образование активных форм $O_2^{-\bullet}$, HO_2^{\bullet} , которые обладают меньшей окислительной способностью по сравнению с HO^{\bullet} -радикалом.

Известно, что газодиффузионные электроды-катоды (ГДЭ), состоящие из технического углерода и гидрофобизатора (фторопласта-4Д), значительно интенсифицируют процесс получения H_2O_2 за счет развития поверхности трехфазного контакта [6].

Образующийся на катоде по реакциям (4), (5) H_2O_2 может быть окислен на аноде:

$$\mathrm{H}_{2}\mathrm{O}_{2} \to \mathrm{HO}_{2}^{\bullet} + \mathrm{H}^{+} + e^{-} \tag{6}$$

$$\mathrm{HO}_{2}^{\bullet} \to \mathrm{O}_{2} + \mathrm{H}^{+} + e^{-} \tag{7}$$

Известно, что β -нафтол относится к токсичным, трудно окисляемым соединениям, ПДК которого составляет 4.0 мг/л [7]. Его электрохимическое окисление с минерализацией до CO₂ и H₂O протекает по следующей схеме: C₁₀H₈O + 19H₂O \rightarrow 10CO₂ + 46H₂O + 46e⁻ (8)

Цель настоящей работы – исследование процесса деструктивного окисления β-нафтола активными формами кислорода, *in situ* электрогенерированными из O₂, H₂O и H₂O₂ с использованием в качестве катодов ГДЭ и спектрального графита, с анодами из Pt и Pb/PbO₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Опыты проводили в электрохимических ячейках без разделения катодного и анодного пространства при использовании ГДЭ и графита для генеририрования H_2O_2 из O_2 , а также в стандартной электрохимической ячейке с фильтрующей диафрагмой при добавлении в анодную камеру H_2O_2 .

Газодиффузионный катод представлял собой плоский диск с общей пористостью 6570 % и толщиной 0.8-0.9 мм из смеси сажи А 437-Э (60 мас. %) и ФП-4Д (40 мас. %). Конструкция подобной ячейки описана в работе [6]. Анод – платиновая пластинка (4×25мм). Потенциал электрода контролировали на фронтальной стороне ГДЭ относительно хлоридсеребряного электрода сравнения. Плотность тока рассчитывали на единицу видимой фронтальной поверхности, составляющей 5 см², объем электролитной камеры составлял 50 мл. В экспериментах с ГДЭ окисление β-нафтола проводили при плотности тока, равной 50, 70, 90 и 150 мА/см², без дополнительного перемешивания электролита. Исходное содержание β-нафтола составляло 200-500 и 1000 мг/ л. Электролит - раствор 0.1 M NaOH.

Для электролизов с графитовым катодом использовали стандартную электрохимическую ячейку с магнитной мешалкой для перемешивания раствора. Площадь катода – 3 см², аноды – Pt, Pb/PbO₂. Свинцовый анод готовили по методике, описанной в работе [8]. Окисление модельных растворов β-нафтола проводили при силе тока 250–500 мА. Исходное содержание β-нафтола составляло 300, 500 и 1000 мг/л. Электролиты – растворы 0.1 М NaOH и 0.5 M H₂SO₄. Объем ячейки – 50 мл.

Изменение содержания β-нафтола и других органических интермедиатов в ходе электролиза контролировали по изменению показателя химического потребления кислорода (ХПК) [9] и с помощью фотометрического метода анализа [10]. Состав продуктов окисления анализировали методом УФ-спектроскопии.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ряде работ по деструктивному окислению [11, 12] было показано, что при электрохимическом окислении органических субстратов могут наблюдаться два порядка реакции – нулевой и первый. В связи с этим формальная кинетика окисления β-нафтола рассмотрена с учетом двух возможных механизмов этой реакции. Один механизм описывается реакцией первого порядка, второй – реакцией нулевого порядка и общим уравнением следующего вида:

$$dC/dt = -k_1 C - k_0 (9)$$

Установлено, что вклад величины k_0 в общую скорость окисления существеннен только в области малых значений отношения C/C_0 , поэтому кинетические кривые изменения концентрации β-нафтола рассмотрены в соответствии с уравнением:

ln (C/C_0) = $k_1 t$ (10) где C_0 , C – исходное и текущее содержание β -нафтола соответственно; k_1 – константа скорости окисления.

Для оценки эффективности работы электрохимической ячейки в процессе деструктивного окисления β -нафтола определяли ее коэффициент полезного действия (КПД) [13] в реакции деструктивного окисления до СО₂ и H₂O, т. е. эффективность использования тока в электролизере (η):

$$\eta = n_e N_{\rm Hadyt} / N_e \tag{11}$$

где n_e – число электронов (для формального деструктивного окисления одной молекулы β -нафтола n_e = 46); $N_{\text{нафт}}$ – число окисленных молекул β -нафтола; N_e – число электронов, пропущенных через электрохимическую ячейку.

$$N_{\text{Hadyt}} = cVN_A, N_e = It/e$$
 (12)
Torga

 $dN/dt = (dC/dt)VN_A$ (13)

$$dN_e/dt = I/e \tag{11}$$

Таким образом, уравнение (11) можно записать в следующем виде:

 $η = kcVN_A n_e/(I/e) = kcVFn_e/(MI3600)$ (15) где c – содержание β-нафтола мг/л; V – объем ячейки, л; k – константа скорости реакции, ч⁻¹; M – молярная масса; 3600 – время, с; I – сила тока, A; e – заряд электрона; N_A – число Авогадро; F – константа Фарадея. Иной вариант записи уравнения (11):

 $\eta = kCVF46/3600I$ (16) где C – исходная концентрация, моль/л. Это соотношение позволяет оценить КПД электрохимической ячейки (η) в процессе окисления β-нафтола, используя значения k₁ и силы тока I, и выбрать оптимальные условия электролиза.

Найденные значения k₁ и η при использовании различных схем окисления β-нафтола представлены в табл. 1, 3, 4.

Из данных табл. 1 видно, что скорость окисления β-нафтола растет с увеличением плотности тока, т. е. с увеличением скорости генерации окислителя. Снижение значений k_1 при одной и той же плотности тока с увеличением концентрации субстрата обусловлено, прежде всего, наличием диффузионных ограничений по подводу субстрата. С ростом концентрации β-нафтола КПД ячейки (как и ожидалось) увеличивается. При содержании β-нафтола 200-500 мг/л для окисления целесообразно использовать плотность тока, равную 50 мА/см² (η = 15.3 %). При содержании субстрата 1000 мг/л ячейка более эффективно работает при i = 90 мА/см² ($\eta = 28.5$ %). Необходимо отметить, что при переходе к конструкции щелевого электролизера с протоком электролита величина η ячейки должна возрастать за счет снижения диффузионных ограничений по подводу субстрата, как это наблюдалось в работе [13] при окислении фенола.

Оценку эффективности минерализации β -нафтола до CO₂ и H₂O в зависимости от количества пропущенного электричества (Q) проводили на основании данных по изменению XIIК. Приведенные в табл. 2 данные свидетельствуют о возможности проведения процесса с эффективным окислением до CO₂ и H₂O.

В табл. 3 приведены результаты по окислению β-нафтола с катодом из графита для получения H₂O₂ из O₂ и анодами из Pt и Pb/PbO₂.

ТАБЛИЦА 1

Данные по константе скорости окисления k_1 и эффективности использования тока η в электролизах с ГДЭ в p-pe 0.1 М NaOH, Pt-анод

С _{нафт} , мг/л	$\frac{k_1, \mathbf{u}^{-1}}{i, \ \mathbf{MA/cM}^2}$				η, %	η, %				
					i, mA/cm ²					
	50	70	90	150	50	70	90	150		
200	0.45	0.5	0.6	0.6	15.3	12.15	11.3	6.8		
500	0.2	0.25	0.3	0.5	17.1	15.27	14.3	11.1		
1000	0.15	0.20	0.3	0.4	25.8	24.4	28.5	22.8		

ТАБЛИЦА 2

Эффективность минерализации β-нафтола (η) при использовании ГДЭ-катода и Pt-анода в растворе 0.1 M NaOH в зависимости от количества пропущенного электричества Q

η, %		
$i = 50 \text{ mA/cm}^2$	$i = 150 \text{ mA/cm}^2$	
48.8/40.2	51.3/40.6	
60.6/50.0	62.0/54.7	
	90.4/78.3	
	$\frac{\eta, \%}{i = 50 \text{ mA/cm}^2}$ $\frac{48.8/40.2}{60.6/50.0}$	$\frac{\eta, \ \%}{i = 50 \text{ mA/cm}^2} \frac{i = 150 \text{ mA/cm}^2}{48.8/40.2} \frac{i = 150 \text{ mA/cm}^2}{51.3/40.6}$ $\frac{60.6/50.0}{90.4/78.3}$

Примечание. Первое значение – при содержании β-нафтола 500 мг/л, второе – при 1000 г/л.

Сравнительный анализ данных табл. 1 и 3 для электролизов в NaOH с Pt-анодом показывает, что снижение диффузионных ограничений по массопереносу за счет перемешивания раствора (ячейка с графитовым катодом) нивелируется низкой продуктивностью этого катода в реакции генерации Н₂O₂. В бездиафрагменном электролизере при силе тока в 500 мА через 0.5 ч работы в щелочной среде (pH 10.5) $C_{\text{H}_2\text{O}_2} = 6 \cdot 10^{-3}$ моль/л; в кислой среде (pH 2-3) $\tilde{C}_{\text{H}_2\text{O}_2} = 2 \cdot 10^{-3}$ моль/л; в ячей-ке с ГДЭ – 7.1 · 10⁻² моль/л при pH 10.5. В результате величина η снижается до 12.8 % (I = 250 мА) по сравнению с электролизами с ГДЭ (η = 17.1 %). Параллельное определение концентрации Н₂О₂ в ходе электролиза показало, что в экспериментах с графитовым катодом в ходе электролиза потребляется весь нарабатываемый H₂O₂, а в случае использования ГДЭ определяется остаточное содержа-

ТАБЛИЦА 3

Электролизы с графитовым катодом для генераци
и $\mathrm{H_2O_2}$ из $\mathrm{O_2}$

С _{нафт} , мг/л	<i>I</i> , мА	Электролит	Анод	k_1 , ч $^{-1}$	η, %
500	250	Р-р 0.1 М NaOH	Pt	0.15	12.8
	500			0.35	14.9
300	250	P-p 0.1 M NaOH	Pt	0.20	10.3
	500			0.40	10.3
500	250	P-p 0.1 M NaOH	Pb/PbO_2	0.08	6.8
	500			0.15	6.4
300	250	P-p 0.1 M NaOH	Pb/PbO_2	0.20	10.3
	500			0.30	7.7
300	250	P-p 0.5 M H_2SO_4	Pt	0.30	15.4
	500			0.45	11.6
300	250	P-p 0.5 M H_2SO_4	Pb/PbO_2	0.15	7.7
	500			0.25	6.4

ние H_2O_2 . Для $Q = 1.25 \text{ A} \cdot \text{ч}$ при содержании β-нафтола, равном 1000 мг/л, концентрация H_2O_2 составляет $8.5 \cdot 10^{-2}$ моль/л

Сравнение данных по кинетике окисления β-нафтола в обеих ячейках указывает на возможность управления процессом окисления. Так, при исходном содержании β-нафтола 500 мг/л и количестве пропущенного электричества $Q = 0.175 \, \text{A} \cdot \text{ч}$ в ячейке с ГДЭ (без принудительного перемешивания раствора) остаточное содержание β-нафтола составило 347.1 мг/л, а в электролизере с графитовым катодом (барботирование О₂) – 265.8 мг/л. При $Q = 0.7 \text{ A} \cdot \text{ч}$ остаточное содержание β -нафтола в ячейке с ГДЭ и в ячейке с графитовым катодом составило 125.0 и 62.1 мг/л соответственно. При $Q = 1.75 \text{ A} \cdot \text{ч}$ содержание β -нафтола в ячейке с ГДЭ достигает 37.2 мг/л, в то время как в ячейке с катодом из графита β-нафтол не обнаружен. По данным УФ-спектроскопии, в продуктах после электролиза с графитовым катодом определяются только алифатические карбоксильные соединения (относительно слабое поглощение в области 240-200 нм). В растворе с ГДЭ присутствуют β-нафтол и интермедиаты его окисления, в частности соединения с хинонной структурой (λ = 320-360 нм). Это может быть связано с наличием в ячейке с ГДЭ застойных зон изза ее конструкционного несовершенства. Известно, что гидроксилирование бензольного кольца и последующее его раскрытие происходят быстрее, чем минерализация HO'-

$C_{_{\rm Hadyr}}$, мг/л	Анод	Электролит	<i>I</i> , мА	k_1 , ч ⁻¹	η, % С _{H2O2} , моль/л		
				$\overline{C_{{\rm H_2O_2}}},$ моль/л			
				0.1 0.2 0.1*	0.1 0.2 0.1^*		
300	Pb/PbO_2	P-p 0.5 M H_2SO_4	250	0.11 0.24 -	7.6 12.3 -		
			500	$0.15 \ \ 0.25 \ \ 0.65$	3.8 6.4 16.6		
500	Pt	Р-р 0.1 М NaOH	250	$0.22 \ \ 0.39 \ \ -$	18.8 33.3 -		
			500	0.41 0.48 -	9.4 20.5 -		
	Pb/PbO_2	Р-р 0.1 М NaOH	250	$0.10 \ 0.21 \ -$	8.6 17.9 -		
			500	$0.14 \ \ 0.18 \ \ 0.22$	6.0 7.7 9.5		
1000	Pt	Р-р 0.1 М NaOH	500	0.36 0.41	30.7 35.0 -		

Электролизы с добавлением в анодную камеру раствора H₂O₂

*Добавление H₂O₂ дозировано по 0.1 мл через 0.5 ч.

радикалами биоутилизируемых алифатических кислот [14, 15]. Таким образом, электролиз можно остановить на стадии образования биоутилизируемых алифатических кислот, что потребует меньшего числа электронов.

Увеличения окислительной способности анода также можно добиться за счет добавления в анодную камеру электролизера H_2O_2 , который, окисляясь на аноде, поставляет дополнительно в объем электролита высокореакционные радикалы по реакциям (6), (7). Результаты электролизов представлены в табл. 4, 5.

Из данных табл. 4 следует, что электролизы в щелочном электролите протекают более эффективно с платиновым анодом. При этом добавлять H₂O₂ в раствор лучше дозированно, небольшими порциями.

Влияние добавленного H₂O₂ на эффективность минерализации β-нафтола (300-500 мг/л) более заметно (см. табл. 5) в кислой среде (p-p

ТАБЛИЦА 5

ТАБЛИЦА 4

С _{нафт} , мг/л	Анод	Электролит	<i>I</i> , мА	Q, A·ч	η, %		
					$\overline{C_{\mathrm{H_2O_2}}}$, моль/л		
					0.1	0.2	0.1*
300	Pb/PbO_2	P-p 0.5 M H_2SO_4	250	0.75	21.0	50.3	-
				1.25	34.1	68.3	-
			500	0.75	24.1	50.0	31.0
				1.25	62.0	75.8	67.2
				2.00	99.9	99.9	99.9
500	Pb/PbO_2	Р-р 0.1 М NaOH	250	0.75	19.1	20.2	-
				1.25	40.4	46.8	_
			500	0.75	6.8	10.6	25.5
				1.25	27.6	36.2	47.9
				2.50	57.7	59.6	68.1
500	Pt	Р-р 0.1 М NaOH	500	0.75	63.8	67.9	-
				1.25	68.0	74.5	-
				2.50	77.7	81.9	-
1000	Pt	Р-р 0.1 М NaOH	500	0.75	53.8	56.0	-
				1.25	56.5	67.1	-
				2.50	58.3	82.9	-

*Добавление $\rm H_2O_2$ дозировано по 0.1 мл через 0.5 ч.

0.5 М H₂SO₄). При этом при проведении электролиза с периодическим добавлением H₂O₂ в объем электролита величина η (см. табл. 4) и эффективность минерализации возрастают.

После прохождения $Q = 1.25 \text{ A} \cdot \text{ч}$ в составе продуктов электролиза (p-p 0.1 M NaOH, анод – Pb/PbO₂, дозированное добавление H₂O₂) β-нафтола и его ароматических производных не обнаружено, эффективность минерализации составляет 47.9 %.

На основании полученных нами и литературных данных по окислению на ДБАЭ [16, 17] предложена следующая схема окисления β-нафтола: β-нафтол > гидроксилированные производные нафтола > хиноны > кетоны > алифатические органические кислоты > продукты минерализации (СО₂ и H₂O).

Скорость раскрытия бензольного кольца и разрушение хиноидных структур до карбоксильных соединений определяеюся плотностью тока электролиза и режимом перемецивания раствора.

ЗАКЛЮЧЕНИЕ

На примере окисления β-нафтола показано, что данный метод представляет собой экологически безопасный способ утилизации токсичных органических веществ и позволяет провести его минерализацию до CO₂ и H₂O либо остановить электролиз на стадии образования биоутилизируемых алифатических карбоксильных соединений.

СПИСОК ЛИТЕРАТУРЫ

- 1 Kapalka A., Foti G., Comninellis C. // J. Appl. Electrochem. 2008. Vol. 38, No. 1. P. 7.
- 2 Oturan M. A., Brillas E. // Portugal. Electrochim. Acta. 2007. Vol. 25. P. 1.
- 3 Sires I., Garrido J. A., Rodriguez R. M., Centellas F., Arias C., Brillas E. // J. Electrochem. Soc. 2006. Vol. 153, No. 1. P. D1.
- 4 Leng W. N., Zhu W. C., Ni J., Zhang Z., Zhang J. Q., Cao C. N. // Appl. Catal. A-Gen. 2006. Vol. 300, No. 1. P. 24.
- 5 Хуи В., Ксиужуан Ю., Лан В., Квиан В., Дежи С. // Электрохимия. 2005. Т. 41, № 7. С. 810.
- 6 Корниенко В. Л., Колягин Г. А., Васильева И. С. // Химия уст. разв. 1999. Т. 7, № 6. С. 681.
- 7 Сан Пин № 4630-88. Санитарные правила и нормы охраны поверхностных вод от загрязнителей. Минздрав СССР Москва, 1988. С. 1-62.
- 8 Корниенко Г. В., Чаенко Н. В., Корниенко В. Л., Максимов Н. Г. // Химия уст. разв. 2007. Т. 15, № 4. С. 441.
- 9 Унифицированные методы анализа. / под ред. Ю. Лурье. М.: Химия, 1971. 375 С.
- 10 Коренман Н. М. Фотометрический анализ. Определение органических соединений. М.: Химия, 1975.
- 11 Li S., Bejan D., McDowell M. S., Bunce N. J. // J. Appl. Elertrochem. 2008. Vol. 38, No. 2. P. 151.
- 12 Waterston K., Wang J. W., Bejan D., Bunce N. J. // J. Appl. Elertrochem. 2007. Vol. 37, No. 3. P. 367.
- 13 Корниенко Г. В., Максимов Н. Г., Корниенко В. Л. // Химия уст. разв. 2004. Т. 12, № 6. С. 555.
- 14 Oturan M. A. // J. Appl. Elertrochem. 2000. Vol. 30, No. 4. P. 475.
- 15 Guivarch E., Oturan N., Oturan M. A. // Env. Chem. Lett. 2003. Vol. 1, No. 3. P. 165.
- 16 Panizza M., Cerisola G. // Electrochim. Acta. 2003. Vol. 48, No. 23. P. 3491.
- 17 Panizza M., Michaud P. A., Cerisola G., Commninellis Ch. // J. Electroanal. Chem. 2001. Vol. 507, No. 1–2. P. 206.