О ВОЗМОЖНОСТИ ИНИЦИИРОВАНИЯ ГОРЕНИЯ СМЕСЕЙ СН₄-О₂ (ВОЗДУХ) ПРИ ВОЗБУЖДЕНИИ МОЛЕКУЛ О₂ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ

А. М. Старик, Н. С. Титова

ФГУП Центральный институт авиационного моторостроения им. П. И. Баранова, 111116 Москва star@ciam.ru

Рассмотрена возможность инициирования горения смесей CH_4-O_2 при возбуждении молекул O_2 в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$ лазерным излучением с длиной волны 1,268 мкм и 762 нм. Показано, что возбуждение молекул O_2 приводит к значительному уменьшению периода индукции и к снижению температуры воспламенения вследствие ускорения образования активных атомов и радикалов и интенсификации цепного механизма процесса. Даже при небольшой поглощенной газом удельной энергии лазерного излучения ($\approx 0,1$ эВ/молекула) температура воспламенения смеси $CH_4:O_2$ в соотношении 1:2 может быть уменьшена с 1000 до 300 К.

Ключевые слова: горение, электронно-возбужденные молекулы, лазерное излучение.

ВВЕДЕНИЕ

Возможность управления процессами горения при использовании различных физических воздействий исследуется уже в течение нескольких десятилетий [1–7]. Одним из наиболее перспективных методов является использование лазерного излучения для инициирования цепного механизма горения [8–10]. Ранее было показано, что возбуждение молекул О2 в электронные состояния $a^1\Delta_g$ и $b^1\Sigma_q^+$ лазерным излучением с длиной волны $\lambda_I = 1,268$ мкм и 762 нм соответственно приводит к ускорению процессов образования химически активных атомов О, Н и радикалов ОН при горении кислородно-водородных смесей. Это позволяет существенно (до 300 К) уменьшить температуру воспламенения смесей H₂–O₂ (воздух). Обусловлены эти эффекты возникновением новых интенсивных каналов инициирования цепных реакций [11, 12]. Предложенный метод воздействия на смесь лазерного излучения может быть применен и к движущимся потокам. Так, в [12] было показано, что возбуждение молекул O_2 в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$ излучением с длиной волны 1,268 мкм и 762 нм приводит к инициированию детонационной волны в сверхзвуковом потоке при T > 600 K.

Поскольку молекулярный кислород является окислителем в процессах горения и углеводородных топлив, можно ожидать, что воздействие лазерного излучения с длиной волны $\lambda_I = 1,268$ мкм и 762 нм на смесь $C_n H_{2n+2}$ –O₂ (воздух) может также привести к интенсификации горения. Самым простым углеводородом является метан, кинетика окисления которого достаточно хорошо изучена. С другой стороны, он является наиболее трудновоспламеняемым предельным углеводородом. Поэтому представляет интерес проанализировать, как возбуждение молекул O₂ в состояния $a^1 \Delta_g$ и $b^1 \Sigma_g^+$ лазерным излучением повлияет на процессы образования активных радикалов и динамику воспламенения метанокислородных смесей. Такой анализ и проведен в данной работе.

КИНЕТИЧЕСКАЯ МОДЕЛЬ

Известно, что даже в отсутствие электронно-возбужденных молекул O_2 для описания динамики химических превращений при горении метанокислородных смесей необходимы достаточно сложные кинетические схемы [13–15]. Так, в [15] была предложена схема химических процессов для описания объемной реакции метана с O_2 , содержащая 270 обратимых реакций с участием 43 компонентов, позволяющая получить хорошее соответствие экспериментальным данным по времени задержки воспламенения в достаточно широком диапазоне изменения температуры T_0 и давления p_0 исходной смеси.

Однако не все эти процессы важны для определения механизмов инициирования горе-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (номера проектов 02-01-00703 и 02-02-81016).

Рис. 1. Зависимость времени индукции от начальной температуры смеси $CH_4 + 2O_2$ ($p_0 = 0,1$ МПа) при использовании различных кинетических схем: цифры 1–4 соответствуют рассмотренным схемам

ния при возбуждении молекул О2 лазерным излучением в состояния $a^1\Delta_g$ и $b^1\Sigma_q^+$. Для того чтобы определить минимальный набор реакций, позволяющий правильно описать динамику воспламенения и тепловыделение в смеси $\mathrm{CH}_4\mathrm{-O}_2$ в отсутствие молекул $\mathrm{O}_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_a^+)$, был проведен анализ возможности редукции кинетической схемы [15]. Рассматривалось несколько схем: 1 — содержащая 217 обратимых реакций с участием 35 компонентов; 2 — 172 реакции с участием 29 компонентов (исключены реакции с участием C₂, CH₂CO, CH₃CO, C₂HO, CH₃CHO, CH₃O₂CH₃); 3 -140 реакций с участием 25 компонентов (дополнительно исключены реакции с участием $CH_2OH, CH_3OH, CH_3O_2, CH_3O_2H); 4 - 78$ реакций с участием 19 компонентов (дополнительно, по сравнению со схемой 3, исключены реакции с C₂H, C₂H₂, C₂H₃, C₂H₄, C₂H₅, $C_{2}H_{6}$). На рис. 1 представлены рассчитанные с использованием кинетических схем 1-4 зависимости периода индукции au_{ind} (его значение определялось по моменту времени, соответствующему максимальному градиенту температуры) от начальной температуры T_0 при начальном давлении смеси $p_0 = 0.1$ МПа. Все расчеты проводились для гомогенной стехиометрической смеси CH₄–O₂ в адиабатическом реакторе (полагалось, что все внутренние степени свободы молекул находятся в равновесии с поступательными). Зависимости констант скоростей прямых и обратных реакций от температуры взяты из [15]. Видно, что в области высоких температур ($T_0 > 900$ K) расчет по схемам 1–3 дает одинаковые результаты для τ_{ind} . Использование схемы 4 приводит при $T_0 > 900$ К к существенному (до 6 раз) занижению значений τ_{ind} , в то же время расчет по схеме 3 при $T_0 < 900$ К дает завышенные значения τ_{ind} (в ≈ 20 раз). Расчет по всем рассмотренным схемам дает одинаковые значения конечной температуры продуктов сгорания.

Из приведенного анализа следует, что для исследования механизмов инициирования горения смесей CH_4-O_2 (воздух) в диапазоне температур $T_0 = 600 \div 1400$ К можно использовать редуцированную схему 2. Наличие в смеси молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ приводит к необходимости введения в кинетическую схему дополнительных процессов. В таблице представлен полный список элементарных процессов, включенных в кинетическую модель.

Кинетическая модель

	Реакции с О, Н, О ₂ , О ₃ , Н ₂ , ОН, Н ₂ О, НО ₂ , H ₂ O ₂
1.	$\mathrm{H_2O} + \mathrm{M} = \mathrm{OH} + \mathrm{H} + \mathrm{M}$
2.	$\mathrm{H}_2 + \mathrm{M} = 2\mathrm{H} + \mathrm{M}$
3.	$\mathcal{O}_2(X^3\Sigma_g^-) + \mathcal{M} = 2\mathcal{O} + \mathcal{M}$
4.	$O_2(a^1 \Delta_g) + M = 2O + M$
5.	$O_2(b^1\Sigma_g^+) + M = 2O + M$
6.	$\mathrm{OH} + \mathrm{M} = \mathrm{O} + \mathrm{H} + \mathrm{M}$
7.	$\mathrm{H}_2 + \mathrm{O} = \mathrm{OH} + \mathrm{H}$
8.	$\mathcal{O}_2(X^3\Sigma_g^-) + \mathcal{H} = \mathcal{O}\mathcal{H} + \mathcal{O}$
9.	$\mathcal{O}_2(a^1\Delta_g) + \mathcal{H} = \mathcal{O}\mathcal{H} + \mathcal{O}$
10.	$\mathcal{O}_2(b^1\Sigma_g^+) + \mathcal{H} = \mathcal{O}\mathcal{H} + \mathcal{O}$
11.	$\mathrm{H_2O} + \mathrm{O} = 2\mathrm{OH}$
12.	$\mathrm{H_2O} + \mathrm{H} = \mathrm{OH} + \mathrm{H_2}$
13.	$\mathrm{H}_2 + \mathrm{O}_2(X^3\Sigma_g^-) = 2\mathrm{OH}$
14.	$\mathrm{H}_2 + \mathrm{O}_2(a^1 \Delta_g) = 2\mathrm{OH}$
15.	$\mathrm{H}_2 + \mathrm{O}_2(b^1 \Sigma_g^+) = 2\mathrm{OH}$
16.	$\mathrm{HO}_2 + \mathrm{M} = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{H} + \mathrm{M}$
17.	$\mathrm{HO}_2 + \mathrm{M} = \mathrm{O}_2(a^1 \Delta_g) + \mathrm{H} + \mathrm{M}$
18.	$\mathrm{HO}_2 + \mathrm{M} = \mathrm{O}_2(b^1 \Sigma_g^+) + \mathrm{H} + \mathrm{M}$
19.	$\mathrm{H}_2 + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{H} + \mathrm{HO}_2$
20.	$\mathrm{H}_2 + \mathrm{O}_2(a^1 \Delta_g) = \mathrm{H} + \mathrm{HO}_2$
21.	$\mathrm{H}_2 + \mathrm{O}_2(b^1 \Sigma_g^+) = \mathrm{H} + \mathrm{HO}_2$
22.	$H_2O + O = H + HO_2$

	Окончание таблицы	
248.	$\mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{M} = \mathrm{CH}_3\mathrm{O} + \mathrm{OH} + \mathrm{M}$	
249.	$\mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{OH} = \mathrm{CH}_3\mathrm{O}_2 + \mathrm{H}_2\mathrm{O}$	
Реакции тушения возбужденных состояний O ₂		
250.	$O_2(a^1\Delta_g) + M = O_2(X^3\Sigma_g^-) + M$	
251.	$O_2(b^1\Sigma_a^+) + M = O_2(a^1\Delta_a) + M$	

Если для реакций с участием невозбужденных молекул O_2 константы скоростей для молекулярной системы CH_4-O_2 достаточно хорошо известны, то для процессов с $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ ситуация существенно хуже. Экспериментальные данные имеются лишь для отдельных реакций (№ 9, 20, 58–60, 250, 251). Здесь и далее нумерация реакций соответствует нумерации в таблице.

Рассмотрим вопрос об определении констант скоростей реакций с участием молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$. Среди всего набора исследуемых химических процессов можно выделить два класса. К первому классу относятся эндотермические реакции с активационным барьером, ко второму — реакции с энергией активации $E_a \approx 0$. В первом случае использовалась процедура уменьшения активационного барьера, аналогичная той, которая проводилась для реакций с участием колебательновозбужденных молекул [16]. Проиллюстрируем эту процедуру на примере обменной реакции

$$AB(e) + C = BC + A$$

где AB(e) — молекула, возбужденная в некоторое электронное состояние e. Константу скорости такой реакции можно представить в виде

$$k(T) = AT^n \exp(-E_a^e/T), \qquad (1)$$

где T — температура газа, A — коэффициент аррениусовской зависимости, n — степенной коэффициент, E_a^e — энергия активации реакции с участием возбужденной молекулы AB(e). Полагаем, как и для процессов с участием колебательно-возбужденных молекул, что форма потенциальной поверхности U_1^e реакций с участием электронно-возбужденных молекул AB(e) совпадает с формой потенциальной поверхности U_1 для молекул AB в основном электронном состоянии. Тогда

$$U_1^e = \Delta H + E_e + E_a^0 \exp(r/r_1).$$
 (2)

Поверхность потенциальной энергии U_2 реакции, протекающей в обратном направлении, при этом имеет следующий вид:

$$U_2 = (\Delta H + E_a^0) \exp(-r/r_2).$$
 (3)

Здесь ΔH — тепловой эффект реакции, E_e энергия электронно-возбужденного состояния молекулы O₂, E_a^0 — энергия активации при протекании реакции в прямом направлении, когда молекула AB не возбуждена, r_1 и r_2 радиусы действия обменных сил для реагентов и продуктов соответственно. Для многих реакций $r_1 \approx r_2$ [16]. Приравнивая U_1^e и U_2 (линия пересечения потенциальных поверхностей), нетрудно получить

$$E_a^e = \frac{1}{2} \Big(\sqrt{(\Delta H + E_e)^2 + 4E_a^0(\Delta H + E_a^0)} - (\Delta H + E_e) \Big). \quad (4)$$

По соотношениям (1) и (4) были определены константы скорости прямых реакций № 4, 5, 10, 14, 15, 21, 24, 25, 29, 30, 40, 41, 65, 66, 72, 73, 75, 76, 89, 90, 97, 98, 115, 116, 123, 124, 132, 133, 143, 144, 162, 163, 185, 186, 188, 189, 198, 199, 216, 217 и обратных реакций № 35, 36, 46, 47, 49, 50, 222, 223.

Отметим, что использование такого достаточно простого подхода для вычисления констант скоростей барьерных реакций с участием электронно-возбужденных молекул $\mathrm{O}_2(a^1\Delta_g)$ и $\mathrm{O}_2(b^1\Sigma_g^+)$ позволяет получить достаточно хорошее соответствие как с экспериментально определенными и рекомендованными в [3] значениями констант скоростей реакций $H + O_2(a^1 \Delta_q) = OH + O, H_2 +$ $O_2(a^1 \Delta_a) = H + HO_2$ (реакции № 9, 20), так и с рассчитанными на основе метода «bondenergy — bond-order» [17] значениями $k_q(T)$ для реакций $H_2O + O_2(a^1\Delta_g) = OH + HO_2$, $CH_4 + O_2(a^1\Delta_g) = CH_3 + HO_2$ (реакции № 24, 65). Так, значения $k_q(T)$, определенные по соотношениям (1), (4) для реакций № 9, 20, всего в два раза меньше значений, приведенных в [3] для *T* ≥ 600 К, для реакции № 24 при $300 \leqslant T \leqslant 1000$ К (область воспламенения) отличаются не более чем в два раза от определенных по методике [17], а для реакции № 65 отличие не больше трех раз.

Для реакций с $E_a \approx 0$, продуктом которых является молекула O_2 в состояниях $X^3 \Sigma_q^-$,

 $a^{1}\Delta_{g}$ и $b^{1}\Sigma_{g}^{+}$, полагалось, что вероятность образования $O_{2}(X^{3}\Sigma_{g}^{-})$, $O_{2}(a^{1}\Delta_{g})$ и $O_{2}(b^{1}\Sigma_{g}^{+})$ пропорциональна кратности вырождения этих состояний: $q_{X} = 0,5$; $q_{a} = 0,33$; $q_{b} = 0,17$ (реакции № 16–18; 51–53; 55–57; 225–227; 228–230; 232–234; 245–247). При этом константы скоростей суммарных процессов взяты такими же, как и в [15].

Для реакций № 10 и 21 с участием молекул $O_2(b^1\Sigma_q^+)$ константы скорости прямых процессов определились по формулам (1) и (4) с учетом того, что в (4) величины ΔH и E_a^0 соответствуют реакциям № 9, 20, а $E_e = \Delta E_{b,a}$, где $E_{b,a}$ — разность энергий состояний $b_1 \Sigma_q^+$ и $a^1 \Delta_g$ молекулы О $_2$ ($\Delta E_{b,a} = 7593$ K). При определении констант скоростей прямых реакций № 43, 44, 101, 102, 243, 244 и обратных № 92, 93 (продуктами которых являются молекулы $O_2(a^1\Delta g)$ и $O_2(b^1\Sigma_q^+)$, а значение E_a для реакций, в которых образуется молекула О₂ в основном электронном состоянии, отлично от нуля) энергетический барьер E_a возрастает на величину энергии соответствующего электронного состояния ($e = a^1 \Delta_q, b^1 \Sigma_q^+$).

Константы скоростей реакций № 9, 20 выбраны на основе рекомендаций [3], а реакций № 58, 59 — рекомендаций [18]. Данные по константам скорости электронно-электронного (E-E) обмена (реакция № 60) и процессов тушения состояний $a^1\Delta_g$ и $b^1\Sigma_g^+$ молекулы О₂ (реакции № 250, 251) для М = О, О₃, О₂, H₂, H₂O, H₂O₂ взяты из [19], а для М = CO₂, CO из [20, 21]. Для М = Н, С полагалось, что тушение происходит с той же вероятностью, что и для М = О, а для М = CH_m, C₂H_m, CH_mO, CH₃O₂, CH₃O₂H — что и для М = H₂O. Скорости обратных реакций определялись на основе принципа детального равновесия.

ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ УРАВНЕНИЯ

Анализ проведем для стехиометрической смеси CH₄–O₂, на которую действует излучение с частотой, соответствующей частоте центра линии связанно-связанного электронно-колебательного перехода в молекуле O₂ $m(e', V', j', K') \rightarrow n(e'', V'', j'', K'')$, где $e' = X^3 \Sigma_g^-$, $e'' = a^1 \Delta_g$ или $b^1 \Sigma_g^+$, V' и V'' — колебательные, а j', K' и j'', K'' вращательные квантовые числа в основном $(X^3 \Sigma_q^-)$ и возбужденных $(a^1 \Delta_g$ или $b^1 \Sigma_q^+)$ состояниях О₂. Пусть V' = V'' = 0, а j' = 10, j'' = K' = K'' = 9. При этом центру спектральной линии перехода $X^3 \Sigma_g^- \to a^1 \Delta_g$ соответствует длина волны $\lambda_I = 1,268$ мкм, а $X^3 \Sigma_g^- \to b^1 \Sigma_g^+ - \lambda_I = 762$ нм. Коэффициенты Эйнштейна A_{mn} для этих переходов равны соответственно $2,58 \cdot 10^{-4}$ и $8,5 \cdot 10^{-2}$ с⁻¹. Будем рассматривать электронно-возбужденные молекулы О₂ как отдельные химические компоненты с соответствующей энтальпией образования.

В отсутствие химических реакций концентрация возбужденных молекул O₂ определяется скоростью индуцированных переходов W_I (или временем $\tau_I = W_I^{-1}$) и скоростью (временем τ_Q) электронно-поступательной (Е-Т) релаксации (радиационные времена жизни для $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_q^+)$ аномально велики):

$$W_I = \frac{\sigma_{mn}I}{h\nu_I}, \quad \sigma_{mn} = \frac{\lambda_{mn}^2}{4\pi b_D} A_{mn} \sqrt{\frac{\ln 2}{\pi}} H(x,a).$$

Здесь І — интенсивность воздействующего излучения; ν_I — его частота; h — постоянная Планка; λ_{mn} — длина волны, соответствующая центру спектральной линии перехода $m \rightarrow$ *n*, а *b*_D — доплеровская ширина этой линии на полувысоте, H(x, a) — функция Фойхгта. Для типичных условий эксперимента (T_0 = 500÷1100 K, $p_0 = 10^3 \div 10^5$ Ha), $\tau_Q \approx 0.01 \div 3$ c, a $\tau_I = 10^{-3} \div 10^{-5}$ с при $I_0 = 1 \div 10$ кBT/см². То есть $\tau_I \ll \tau_O$, и даже при небольших значениях I₀ можно обеспечить высокую эффективность возбуждения молекул О₂. В то же время при таких значениях $I_0 \tau_I \gg \tau_t, \tau_R, \tau_V,$ где τ_t , τ_R и τ_V — характерные времена поступательной, вращательной и колебательной релаксации. Будем, как обычно, полагать, что между колебательными, вращательными и поступательными степенями свободы существует термодинамическое равновесие.

Пусть на газ действует импульс лазерного излучения длительностью τ_p с гауссовым распределением интенсивности по радиусу $I(r,t) = I_0(t) \exp(-r^2/R_a^2)$, где R_a — характерный радиус пучка, а $I_0(t) = I_0$ при $0 < t \leq \tau_p$ и $I_0(t) = 0$ при $t > \tau_p$. Динамика изменения гидродинамических параметров в зоне облучения определяется иерархией характерных времен различных процессов макро- и микропереноса. В отсутствие химических превращений это время распространения акустических возмущений поперек области воздействия τ_a ,

времена многокомпонентной диффузии $\tau_{D,i}$ и термодиффузии $\tau_{T,i}$ для *i*-го компонента смеси, время теплопроводности τ_{λ} , время индуцированных переходов τ_I , время тушения возбужденных состояний $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ τ_Q и время изменения параметров среды вследствие действия стрикционной силы τ_F [22]. При протекании химических процессов, стимулированных лазерным излучением, необходимо дополнительно ввести характерные времена реакций, ответственных за тепловыделение (например, реакции рекомбинации), и реакций распространения цепного механизма горения $\tau_{i,q}^{ch}$. Последние определяют время задержки воспламенения или период индукции τ_{ind} .

Проведем теперь оценку характерных времен при воздействии на смесь CH₄ + 2O₂ излучения с $\lambda_I = 762$ нм для условий численного эксперимента и $R_a = 10$ см. При указанных ранее значениях I_0 , p_0 и T_0 имеем $\tau_a =$ $2 \cdot 10^{-4}$ c, $\tau_{D,i} \approx \tau_{T,i} \approx \tau_{\lambda} = 0.3 \div 10$ c, $\tau_F = 0.5 \div 10$ с. Коэффициент поглощения излучения с $\lambda_I = 762$ нм при этом меняется в диапазоне $k_{\nu} = 5 \cdot 10^{-5} \div 2 \cdot 10^{-3}$ см⁻¹, а для излучения с $\lambda_I = 1,268$ мкм он в 50 ÷ 75 раз меньше и, следовательно, $k_{\nu}^{-1} \ge R_a$, т. е. характерный радиус пучка R_a существенно меньше длины поглощения $L_{\nu} = 1/k_{\nu}$ (при условиях, рассматриваемых в статье, длина поглощения изменяется от 500 до 20000 см). Поэтому возбуждение кислорода можно осуществить многократным проходом достаточно узкого пучка (диаметром $0,1 \div 1$ см и менее) в рассматриваемой области. При этом можно использовать приближение тонкого оптического слоя.

Будем рассматривать режимы, когда $\tau_a \ll \tau_p \approx \tau_I \leqslant \tau_{ind} \ll \tau_D, \tau_F$. В этом случае уравнения, описывающие состояние среды в центральной зоне облучения, можно представить в виде

$$\frac{dN_i}{dt} = G_i + q_{I,i} + \frac{N_i}{\rho} \frac{d\rho}{dt},\tag{5}$$

$$\rho \frac{dH}{dt} = k_{\nu}I,$$

$$H = \sum_{i=1}^{M} \frac{h_{0,i}}{\mu} \gamma_i + C_pT,$$

$$C_p = \frac{R}{\mu} \left(\frac{5}{2} + \sum_{i=1}^{S} C_{R,i} \gamma_i + \sum_{i=1}^{S} C_{V,i} \gamma_i\right),$$

$$\mu = \sum_{i=1}^{M} \mu_i \gamma_i, \quad p = \frac{\rho RT}{\mu},$$
$$C_{V,i} = \sum_{j=1}^{L} \left(\frac{\theta_{ij}}{T}\right)^2 \frac{\exp(\theta_{ij}/T)}{[\exp(\theta_{ij}/T) - 1]^2},$$
$$\gamma_i = \frac{N_i}{N}, \quad N = \sum_{i=1}^{M} N_i,$$

$$G_{i} = \sum_{q=1}^{M_{1}} S_{i,q}, \quad S_{i,q} = (\alpha_{i,q}^{-} - \alpha_{i,q}^{+})[R_{q}^{+} - R_{q}^{-}],$$
$$R_{q}^{+(-)} = k_{+(-)q} \prod_{j=1}^{n_{q}^{+(-)}} N_{j}^{\alpha_{i,q}^{+(-)}},$$
$$q_{I,i} = l_{i,I}W_{I} \left(\frac{g_{n}}{g_{m}}N_{m} - N_{n}\right),$$

$$k_{\nu} = \sigma_{mn} \left(\frac{g_n}{g_m} N_m - N_n \right), \quad N_m = N_1 \varphi_m,$$

$$N_n = N_l \varphi_n, \quad l = 2$$
или 3,

$$\varphi_m = \frac{g_m B_{V'}}{kT} \frac{\exp(-\theta_1 V'/T)}{1 - \exp(-\theta_1/T)} \exp\left(-\frac{E_{j'}}{kT}\right),$$

$$\varphi_n = \frac{g_n B_{V''}}{kT} \frac{\exp(-\theta_l V''/T)}{1 - \exp(-\theta_l/T)} \exp\left(-\frac{E_{j''}}{kT}\right).$$

Здесь p, ρ, T — давление, плотность и температура газа; N_i — плотность молекул (атомов) *i*-го сорта (i = 1, 2, 3 соответствуют $O_2(X^3\Sigma_g^-), O_2(a^1\Delta_g), O_2(b^1\Sigma_g^+)); \mu_i$ — их молекулярная масса; $h_{0,i}$ — энтальпия образования *i*-го компонента при T = 298 K; M — число атомарных и молекулярных компонентов в смеси, а S — число только молекулярных компонентов; $C_{R,i} = 1$ — для компонентов из линейных молекул и $C_{R,i} = 1,5$ — для компонентов из нелинейных молекул; θ_{ij} — характеристическая колебательная температура *j*-й моды для *i*-го компонента $(j = 1, \ldots, L); M_1$ — число реакций, приводящих к образованию (уничтожению) *i*-го компонента; $\alpha_{i,q}^+$ и $\alpha_{i,q}^-$ — стехиометрические коэффициенты *q*-й реакции; $n_q^{+(-)}$ — число компонентов, участвующих в прямой (+) (обратной (-)) реакции; $k_{+(-)q}$ — константы скорости этих реакций; R — универсальная газовая постоянная; k — постоянная Больцмана; $l_{i,I}$ — число квантов, теряемых (приобретаемых) *i*-м компонентом при индуцированных переходах; N_m и N_n — число молекул в нижнем и верхнем состояниях поглощающего перехода $m \rightarrow n$; g_m и g_n — кратности вырождения этих состояний; B_V — вращательная постоянная молекулы O₂ в состоянии V ($V' \in m$, $V'' \in n$); $E_{j'}$ и $E_{j''}$ — вращательные энергии молекулы O₂ в состояниях m и n. Их значения вычислялись с учетом расцепления уровня j' в состоянии $X^3\Sigma_g^-$ на три компонента с j' = K' + 1, j' = K' и j' = K' - 1 [23].

Численное интегрирование уравнений (5) проводилось так же, как и в [12], с использованием неявной разностной схемы второго порядка аппроксимации.

ДИНАМИКА ВОСПЛАМЕНЕНИЯ СМЕСИ СН₄-О₂ ПРИ ВОЗДЕЙСТВИИ ИЗЛУЧЕНИЯ

Известно, что воспламенение углеводородно-кислородных смесей обусловлено цепными реакциями. Для смеси CH₄–O₂ это реакции с участием атомов О, Н и радикалов ОН, CH₃, CH_2O . Для развития цепного механизма, а следовательно, и для воспламенения смеси необходимо, чтобы скорость образования этих радикалов была больше скорости их разрушения в реакциях обрыва цепи и больше скорости их ухода из зоны реакции вследствие диффузионных процессов (их характерное время определяется временем диффузии самых легких носителей цепного механизма — атомов H, $\tau_{D,H}$). Поскольку $\tau_{ind} \sim \tau_{i,q}^{ch}$ ($i = H, O, OH, CH_3$, $CH_2O, CH_3O)$, то условие воспламенения в первом приближении можно представить в виде $\tau_{ind} \leqslant \tau_{D,\mathrm{H}}.$

На рис. 2 показаны рассчитанные зависимости периода индукции и времени диффузии атомов Н при $R_a = 10$ см от начальной температуры смеси CH₄ + 2O₂ при $p_0 = 10^4$ Па в случае воздействия излучения с $\lambda_I = 1,268$ мкм и 762 нм, $\tau_p = 10^{-3}$ с при значениях потока энергии лазерного излучения $E_0 = 1$ и 10 Дж/см² ($E_0 = I_0 \tau_p$). Видно, что воздействие излучения как с $\lambda_I = 762$ нм, так и с $\lambda_I = 1,268$ мкм приводит к заметному уменьшению периода индукции и температуры воспламенения T_{iqn} , которая в первом приближе-

Рис. 2. Зависимости $\tau_{D,\mathrm{H}}(T_0)$ (пунктирная линия) и $\tau_{ind}(T_0)$ для смеси CH₄ + 2O₂ ($p_0 = 10^4$ Па) в случае воздействия излучения с $\lambda_I = 1,268$ мкм (штриховые линии) и 762 нм (сплошные линии) при $I_0 = 1$ и 10 кВт/см² (кривые 1, 2) и $\tau_p = 10^{-3}$ с:

штрихпунктирная линия соответствует зависимости $\tau_{ind}(T_0)$ при $I_0=0$

нии может быть определена из соотношения $au_{ind}(T_{ign}, p_0) = au_{D, H}(T_{ign}, p_0)$. Так, при воздействии излучения с $\lambda_I = 762$ нм значение T_{ign} может быть уменьшено с 1050 К $(E_0 = 0)$ до 300 К при $E_0 = 10$ Дж/см². Уменьшение значений τ_{ind} и T_{iqn} при воздействии излучения с $\lambda_I = 1,268$ мкм существенно меньше. Объясняется это тем, что в этом случае меньшая доля подведенного к среде излучения поглощается молекулами O_2 . Так, при $T_0 = 700$ K, $p_0=10^4$ Па, $I_0=10~{\rm \kappa Br/cm^2},~\tau_p=10^{-3}~{\rm c}$ величина энергии излучения с $\lambda_I=762~{\rm нм},$ поглощенная одной молекулой О2, составляет 0,104 эВ, а для излучения с $\lambda_I = 1,268$ мкм только 1,3 $\cdot 10^{-3}$ эВ. При облучении смеси $CH_4 O_2$ с $p_0 = 10^4$ Па на длине волны 1,268 мкм может возникнуть несколько областей воспламенения. Так, при $E_0 = 10 \ \text{Дж/см}^2$ возникают две области начальных температур, в которых возможно воспламенение: $680 < T_0 < 820$ К и $T_0 > 1\,000$ K.

Уменьшение τ_{ind} и T_{ign} при возбуждении молекул O₂ в состояния $a^1\Delta_g(\lambda_I = 1,268 \text{ мкм})$ и $b^1\Sigma_g^+$ ($\lambda_I = 762 \text{ нм}$) обусловлено в основном изменением кинетики образования активных атомов O, H и радикалов OH, CH₃, CH₂O. Это иллюстрирует рис. 3, на котором показано изменение во времени концентраций основных компонентов, ответственных за развитие

Рис. 3. Изменение мольных долей компонентов во времени при воспламенении смеси CH_4+2O_2 ($p_0 = 10^4 \text{ Па}, T_0 = 900 \text{ K}$) в отсутствие излучения (a) и при воздействии излучения с $\lambda_I = 1,268 \text{ мкм}$ (b) и 762 нм (b), $I_0 = 10 \text{ kBt/cm}^2$, $\tau_p = 10^{-3} \text{ c}$

Рис. 4. Изменение температуры при воспламенении смеси CH₄ + 2O₂ ($T_0 = 900$ K, $p_0 = 10^4$ Па) излучением с $\lambda_I = 1,268$ мкм (пунктирные линии) и 762 нм (сплошные линии) при $I_0 = 1; 5$ и 10 Дж/см² (линии 1–3), $\tau_p = 10^{-3}$ с: штриховая линия соответствует случаю $I_0 = 0$

цепного механизма воспламенения смеси СН₄-О2, при отсутствии излучения и при воздействии излучения с $\lambda_I=1,268\,$ мкм и 762 нм, $I_0=10\,\,{\rm kBt/cm^2},\,\tau_p=10^{-3}$ с. Видно, что возбуждение молекул O_2 в состояния $a^1 \Delta_q$ и $b^1 \Sigma_q^+$ приводит к более интенсивному образованию химически активных радикалов CH_3 , CH_2O , O, H, OH на интервале $[0; \tau_{ind}]$ по сравнению со случаем отсутствия облучения. Другим интересным обстоятельством является то, что перед самым воспламенением (резкое увеличение температуры) концентрация молекул H₂ при облучении газа на длине волны 762 нм становится больше, чем концентрация С₂H₆ (при $I_0 = 0$ наблюдается противоположная ситуация). Следует отметить, что при возбуждении молекул О₂ в состояние $b^1\Sigma_q^+$ увеличивается и концентрация молекул $O_2(a^1\Delta_q)$. Обусловлено это процессом Е-Т-релаксации по каналу № 251. При этом несколько увеличивается и температура газа. В случае возбуждения состояния $a^1 \Delta_g$ излучением с $\lambda_I = 1,268$ мкм изменение температуры на интервале $[0; \tau_{ind}]$ существенно меньше. Это хорошо видно из рис. 4, где показано изменение температуры во времени при воздействии на смесь CH₄ + 2O₂ $(T_0 = 900 \text{ K}, p_0 = 10^4 \text{ Па})$ излучения с $\lambda_I =$ 1,268 мкм и 762 нм при $E_0=1,\,5$ и 10 Дж/см² $(\tau_p = 10^{-3} \text{ c})$. Для излучения с $\lambda_I = 762$ нм при указанных параметрах смеси температура на интервале $[0; \tau_{ind}]$ меняется от 900 до 936 К при $E_0 = 5 \ \text{Дж/см}^2$ и до 999 К при $E_0 = 10 \ \text{Дж/см}^2$. При этом к моменту времени $t = \tau_p$ нарабатывается достаточно молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$. Так, при $E_0 = 10 \ \text{Дж/см}^2 \ \gamma_{O_2(a^1\Delta_g)} = 2,4\cdot 10^{-2}$, а $\gamma_{O_2(b^1\Sigma_g^+)} = 1,18\cdot 10^{-4}$. Если бы работал только тепловой механизм воспламенения, то значение τ_{ind} при этом составляло бы 3,07 с для $E_0 = 5 \ \text{Дж/см}^2$ и 1,4 с для $E_0 = 10 \ \text{Дж/см}^2$, что даже ниже предела воспламенения ($\tau_{ind} > \tau_{D,H}$). Поэтому сокращение времени задержки воспламенения при возбуждении молекул O₂ связано не с нагревом среды вследствие поглощения излучения, а с ускорением образования активных радикалов и интенсификацией цепного механизма процесса.

На рис. 5 показаны схемы развития процесса воспламенения смеси CH_4-O_2 ($T_0 \leq$ 900 К) в случае отсутствия облучения и при воздействии излучения с $\lambda_I = 762$ нм. Для любых углеводородных топлив при низких начальных температурах ($T_0 \leqslant 900$ K) реакцией инициирования цепи является реакция взаимодействия первичного предельного углеводорода (в данном случае СН₄) с молекулярным кислородом. Продуктами ее являются метильный радикал и НО₂ (реакция № 64). Последние так же взаимодействуют с О₂ в реакциях № 71, 74 и в реакции № 51, протекающей в обратном направлении. При этом образуются химически активные радикалы CH₂O, OH и озон. Диссоциация озона приводит к генерации химически активных атомов О (реакция № 42). Атомы О и радикалы OH взаимодействуют с CH₄, образуя вновь СН₃ и ОН (реакции № 63, 77). Однако при $T \leq 1000$ К образовавшихся радикалов недостаточно для реализации воспламенения, тем более что радикалы СН₃ при таких температурах интенсивно рекомбинируют, образуя пассивные соединения C₂H₆ и CH₃O₂ (реакции № 128 и 221, протекающие в обратном направлении). Эти реакции идут с выделением энергии и приводят к разогреву смеси. В результате скорости этих реакций уменьшаются и концентрация CH₃ увеличивается. При этом растет и скорость реакции № 74, в которой образуются радикалы CH₃O и атомы O. Распад радикалов CH₃O (реакция № 118) приводит к образованию CH₂O и атомов Н. Последние, реагируя с О₂, дают опять атомы О и радикалы ОН (реакция № 8). Эти процессы, так же как и реакция № 63, являются реакциями разветвле-

Рис. 5. Схема развития процесса воспламенения в смеси CH₄+2O₂ ($T_0 \leq 900$ K) в отсутствие излучения (*a*) и при воздействии излучения с $\lambda_I = 762$ нм (δ):

сплошные линии соответствуют реакциям, скорости которых максимальны при $t < 10^{-4}$ с (*a*) и $t < 10^{-5}$ с (б), штриховые — реакциям, ответственным за инициирование горения в более поздние моменты времени

ния цепи. Обилие активных центров О, Н, ОН, CH₃ приводит к разрушению пассивного C₂H₆ (реакции № 130, 134, 141, 145) и образованию химически активного радикала C₂H₅, что также ускоряет процесс воспламенения. Положительным моментом является и образование H₂ (реакции № 62, 108), поскольку молекулы H₂ быстро реагируют с атомами О в реакции разветвления цепи № 7.

В случае возбуждения молекул О2 как в состояние $a^{1}\Delta_{g}$ (λ_{I} = 1,268 мкм), так и в состояние $b^1 \Sigma_q^+$ схема процесса образования активных атомов и радикалов остается в основном прежней, с той лишь разницей, что скорости всех процессов, в которых участвуют возбужденные молекулы $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$, резко (до 10⁵ раз) возрастают. Прежде всего, это относится к реакциям инициирования и продолжения цепи (реакции № 65, 66, 75, 76). Поскольку в результате воздействия излучения увеличиваются концентрации всех активных радикалов, то возрастают скорости даже тех реакций, в которых возбужденные молекулы ${\rm O}_2(a^1\Delta_g)$ и ${\rm O}_2(b^1\Sigma_g^+)$ не принимают непосредственного участия. Вследствие того, что воздействие излучения с $\lambda_I = 762$ нм приводит к образованию в смеси не только молекул $O_2(b^1\Sigma_q^+)$, которые более химически активны, чем молекулы $O_2(a^1\Delta_q)$, но и молекул $O_2(a^1 \Delta_q)$, причем в бо́льшем количестве, чем при непосредственном возбуждении молекул О₂ в состояние $a^1\Delta_q$ излучением с $\lambda_I =$ 1,268 мкм, скорости реакций при воздействии излучения с $\lambda_I = 762$ нм увеличиваются значительно сильнее.

Метод, основанный на возбуждении электронных состояний О2 лазерным излучением, намного эффективнее, чем широко рассматриваемый в настоящее время метод инициирования горения, основанный на локальном нагреве смеси лазерным излучением. Это иллюстрирует рис. 6, на котором показана зависимость τ_{ind} от начального давления смеси ($T_0 = 900 \text{ K}$) при различных значениях E_0 для случая, когда вся поглощенная энергия излучения с $\lambda_I = 762$ нм переходит в поступательные степени свободы, т. е. расходуется на нагрев газа, и когда энергия излучения идет на возбуждение молекул О2 в состояние $b^1 \Sigma_q^+$. Для сравнения здесь же дана зависимость $\tau_{ind}(p_0)$ при $E_0 = 0$. Видно, что величина τ_{ind} при возбуждении молекул О₂ излучением с $\lambda_I = 762$ нм может быть при невы-

Рис. 6. Зависимость $\tau_{ind}(p_0)$ для смеси CH₄ + 2O₂ ($T_0 = 900$ K) при возбуждении молекул O₂ с $\lambda_I = 762$ нм (сплошные линии) и в случае, когда вся поглощенная энергия излучения идет на нагрев газа (пунктирные линии) при $E_0 = 1$, 5 и 10 Дж/см² (линии 1–3) и $\tau_p = 10^{-3}$ с: штриховая линия соответствует зависимости $\tau_{ind}(p_0)$ в отсутствие облучения

соких давлениях ($p_0 < 10^5 \text{ Па}$) в $10^2 \div 10^3$ раз меньше, чем при чисто тепловом воздействии лазерного излучения. Даже при высоких давлениях смеси ($p_0 = 10^6 \text{ Па}$) воздействие излучения с $\lambda_I = 762$ нм при небольших значениях потока лазерного излучения ($E_0 = 5 \text{ Дж/см}^2$) позволяет уменьшить время задержки воспламенения в пять раз.

ЗАКЛЮЧЕНИЕ

Возбуждение молекул О $_2$ в состояния $a^1\Delta_g$ и $b^1 \Sigma_a^+$ резонансным лазерным излучением ускоряет образование активных атомов и радикалов в смеси CH_4-O_2 и интенсифицирует цепные реакции. В результате существенно уменьшаются период индукции и температура воспламенения. При этом возможно возникновение нескольких областей воспламенения по температуре. Возбуждение молекул О₂ излучением с $\lambda_I = 762$ нм более эффективно с точки зрения уменьшения au_{ind} , чем возбуждение излучением с $\lambda_I = 1,268$ мкм. Даже при небольшом значении потока энергии лазерного излучения с $\lambda_I = 762$ нм, подведенного к газу (5 Дж/см²), температура воспламенения при $p_0 = 10^4$ Па для стехиометрической смеси CH₄-O₂ может быть уменьшена с 1100 до 620 К. Важную роль в интенсификации цепного механизма при возбуждении молекул O_2 в состояние $b^1 \Sigma_q^+$ излучением с $\lambda_I = 762$ нм играет образование в этом случае молекул $O_2(a^1\Delta_g)$ вследствие столкновительного тушения $O_2(b^1\Sigma_g^+)$. Возбуждение молекул O_2 в состояние $b^1\Sigma_g^+$ лазерным излучением существенно (в сотни раз) эффективнее для воспламенения смеси CH_4 – O_2 , чем термический нагрев среды лазерным излучением. Поскольку механизмы окисления CH_4 и более тяжелых углеводородов (C_3H_8 , C_4H_{10} и др.) похожи, то можно ожидать, что предлагаемый метод интенсификации цепных реакций будет весьма эффективен и для других горючих смесей на основе углеводородов.

ЛИТЕРАТУРА

- Advanced Combustion Methods / F. J. Wenberg (Ed.). London: Academic Press, 1986.
- Brown R. C. A theoretical study of vibrationally induced reactions in combustion processes // Combust. Flame. 1985. V. 62, N 1. P. 1–12.
- 3. Басевич В. Я., Беляев А. А. Расчет увеличения скорости водородно-кислородного пламени при добавках синглетного кислорода // Хим. физика. 1989. Т. 8, № 8. С. 1124–1127.
- Старик А. М., Даутов Н. Г. О возможности ускорения горения смеси H₂+O₂ при возбуждении колебательных степеней свободы молекул // Докл. АН. 1994. Т. 336, № 5. С. 617– 622.
- Kof L. M., Starikovskaia S. M., Starikovskii A. Yu. Ignition delay time reduction by nanosecond gas discharge // 12th Intern. Conf. on Gas Discharge and Their Applications. Greifswaild, 1997. V. 1. P. 380.
- Селезнев А. А., Алейников А. Ю., Ярошенко В. В. Влияние радиолиза на смещение пределов воспламенения водород-кислородной газовой смеси // Хим. физика. 1999. Т. 18, № 5. С. 65–71.
- Старик А. М., Титова Н. С. Низкотемпературное инициирование детонационного горения газовых смесей в сверхзвуковом потоке при возбуждении молекулярного кислорода в состояние О₂(a¹Δ_g) // Докл. АН. 2001. Т. 380, № 3. С. 332–337.
- Ronney P. D. Laser versus conventional ignition of flames // Optical Engng. 1994. V. 33, N 2. P. 510–521.
- Tanoff M. A., Smooke M. D., Teets R. E., Sell J. A. Computational and experimental studies of laser-induced thermal ignition in premixed ethylene-oxidizer mixtures // Combust. Flame. 1995. V. 103, N 4. P. 253–280.

- Phuoc T. X., White F. P. Laser-induced spark ignition of CH₄/air mixtures // Combust. Flame. 1999. V. 119, N 3. P. 203–216.
 Starik A. M., Titova N. S. Kinetics
- Starik A. M., Titova N. S. Kinetics of detonation initiation in supersonic flow of combustible mixtures under excitation of vibrational and electronic states of reacting molecules // Nonequilibrium Processes and Their Applications: VI Intern. School-Seminar. Contributed Paper. Minsk, 2002. P. 99–103.
- Starik A. M., Titova N. S. Kinetics of ignition of gaseous mixtures by resonant laser radiation // Confined Detonations and Pulse Detonation Engines / G. Roy et al. (Eds). Moskow: Torus Press, 2002. P. 87–104.
- Sloane T. M. Ignition and flame propagation modeling with an improved methane oxidation mechanism // Combust. Sci. Technol. 1989. V. 63, N 4–6. P. 287–313.
- Leung K. M., Lindstedt R. P. Detailed kinetic modeling of C₁-C₃ alkane diffusion flames // Combust. Flame. 1995. V. 102, N 1/2. P. 129–160.
- Даутов Н. Г., Старик А. М. К вопросу о выборе кинетической схемы при описании объемной реакции метана с воздухом // Кинетика и катализ. 1997. Т. 38, № 2. С. 207–230.
- Русанов В. Д., Фридман А. А. Физика химически активной плазмы. М.: Наука, 1984.
- Mayer S. W. and Schieler L. Activation energies and rate constants computed for reactions of oxygen with hydrocarbons // J. Phys. Chem. 1968. V. 72, N 7. P. 2628–2631.
- Baulch D. L., Cox R. A., Crutzen P. J., et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement I // J. Phys. Chem. Ref. Data. 1982. V. 11, N 2. P. 327–496.
- Кулагин Ю. А., Шелепин Л. А., Ярыгина В. И. Кинетика процессов в газовых средах, содержащих метастабильный кислород // Тр. ФИАН им. Л. Н. Лебедева. 1994. Т. 212. С. 166–227.
- Дидюков А. И., Кулагин Ю. А., Шелепин Л. А., Ярыгина В. Н. Анализ скоростей процессов с участием молекул синглетного кислорода // Квант. электроника. 1989. Т. 16, № 5. С. 892–904.
- Мак-Ивен М., Филлипс Л. Химия атмосферы. М.: Мир, 1978.
- Грабовский В. И., Старик А. М. Влияние процессов макропереноса на изменение газодинамических параметров при воздействии импульса резонансного излучения // Докл. АН. 1992. Т. 322, № 4. С. 674–680.
 Ландау Л. Д., Лифшиц Е. М. Квантовая
- Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989.

Поступила в редакцию 27/V 2003 г., в окончательном варианте — 2/II 2004 г.

	Продолжение таблицы
23.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) = \mathrm{OH} + \mathrm{HO}_{2}$
24.	$H_2O + O_2(a^1\Delta_g) = OH + HO_2$
25.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathrm{OH} + \mathrm{HO}_{2}$
26.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{OH} = \mathrm{H}_{2} + \mathrm{HO}_{2}$
27.	$2\mathrm{OH} = \mathrm{H} + \mathrm{HO}_2$
28.	$OH + O_2(X^3 \Sigma_g^-) = O + HO_2$
29.	$OH + O_2(a^1 \Delta_g) = O + HO_2$
30.	$\mathbf{OH} + \mathbf{O}_2(b^1 \Sigma_g^+) = \mathbf{O} + \mathbf{HO}_2$
31.	$\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{M} = 2\mathrm{OH} + \mathrm{M}$
32.	$\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{H} = \mathrm{H}_{2} + \mathrm{HO}_{2}$
33.	$\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{H} = \mathrm{H}_{2}\mathrm{O} + \mathrm{OH}$
34.	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(X^3\Sigma_g^-)$
35.	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(a^1\Delta_g)$
36.	$2HO_2 = H_2O_2 + O_2(b^1\Sigma_g^+)$
37.	$\mathrm{HO}_2 + \mathrm{H}_2\mathrm{O} = \mathrm{H}_2\mathrm{O}_2 + \mathrm{OH}$
38.	$\mathrm{OH} + \mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}$
39.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}$
40.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}$
41.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}$
42.	$\mathcal{O}_3 + \mathcal{M} = \mathcal{O}_2(X^3\Sigma_g^-) + \mathcal{O} + \mathcal{M}$
43.	$O_3 + M = O_2(a^1 \Delta_g) + O + M$
44.	$\mathcal{O}_3 + \mathcal{M} = \mathcal{O}_2(b^1 \Sigma_g^+) + \mathcal{O} + \mathcal{M}$
45.	$O_3 + H = OH + O_2(X^3 \Sigma_g^-)$
46.	$O_3 + H = OH + O_2(a^1 \Delta_g)$
47.	$\mathcal{O}_3 + \mathcal{H} = \mathcal{O}\mathcal{H} + \mathcal{O}_2(b^1 \Sigma_g^+)$
48.	$\mathcal{O}_3 + \mathcal{O} = 2\mathcal{O}_2(X^3\Sigma_g^-)$
49.	$\mathcal{O}_3 + \mathcal{O} = \mathcal{O}_2(X^3 \Sigma_g^-) + \mathcal{O}_2(a^1 \Delta_g)$
50.	$\mathcal{O}_3 + \mathcal{O} = \mathcal{O}_2(X^3\Sigma_g^-) + \mathcal{O}_2(b^1\Sigma_g^+)$
51.	$O_3 + OH = HO_2 + O_2(X^3 \Sigma_g^-)$
52.	$O_3 + OH = HO_2 + O_2(a^1 \Delta_g)$
53.	$O_3 + OH = HO_2 + O_2(b^1 \Sigma_g^+)$
54.	$\mathrm{O}_3 + \mathrm{H}_2 = \mathrm{OH} + \mathrm{HO}_2$
55.	$O_3 + HO_2 = OH + 2O_2(X^3\Sigma_g^-)$
56.	$O_3 + HO_2 = OH + O_2(X^{\circ}\Sigma_g) + O_2(a^1\Lambda_z)$

50. $C_3 + O_2(a^1 \Delta_g)$ 57. $O_3 + HO_2 = OH + O_2(X^3 \Sigma_g^-) + O_2(b^1 \Sigma_g^+)$ $+ O_2(b^1 \Sigma_g^+)$

58.
$$O_3 + O_2(a^1 \Delta_g) = 2O_2(X^3 \Sigma_g^-) + O_3$$

59.
$$O_3 + O_2(b^1 \Sigma_g^+) = 2O_2(X^3 \Sigma_g^-) + O_2(X^3 \Sigma_$$

60.
$$2O_2(a^1\Delta_g) = O_2(b^1\Sigma_g^+) + O_2$$

	Продолжение таблицы
Pea (акции с C, CO, CO ₂ , CH, CH ₂ , CH ₃ , CH ₄ , HCO, CH ₂ O, CH ₃ O
61.	$\mathrm{CH}_4 + \mathrm{M} = \mathrm{CH}_3 + \mathrm{H} + \mathrm{M}$
62.	$\mathrm{CH}_4 + \mathrm{H} = \mathrm{CH}_3 + \mathrm{H}_2$
63.	$\mathrm{CH}_4 + \mathrm{O} = \mathrm{CH}_3 + \mathrm{OH}$
64.	$\mathrm{CH}_4 + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{CH}_3 + \mathrm{HO}_2$
65.	$\mathrm{CH}_4 + \mathrm{O}_2(a^1 \Delta_g) = \mathrm{CH}_3 + \mathrm{HO}_2$
66.	$\mathrm{CH}_4 + \mathrm{O}_2(b^1 \Sigma_g^+) = \mathrm{CH}_3 + \mathrm{HO}_2$
67.	$\mathrm{CH}_3 + \mathrm{M} = \mathrm{CH}_2 + \mathrm{H} + \mathrm{M}$
68.	$\mathrm{CH}_3 + \mathrm{M} = \mathrm{CH} + \mathrm{H}_2 + \mathrm{M}$
69.	$\mathrm{CH}_3 + \mathrm{O} = \mathrm{CH}_2\mathrm{O} + \mathrm{H}$
70.	$\mathrm{CH}_3 + \mathrm{OH} = \mathrm{CH}_2\mathrm{O} + \mathrm{H}_2$
71.	$\mathrm{CH}_3 + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{CH}_2\mathrm{O} + \mathrm{OH}$
72.	$\mathrm{CH}_3 + \mathrm{O}_2(a^1 \Delta_g) = \mathrm{CH}_2\mathrm{O} + \mathrm{OH}$
73.	$\mathrm{CH}_3 + \mathrm{O}_2(b^1 \Sigma_g^+) = \mathrm{CH}_2\mathrm{O} + \mathrm{OH}$
74.	$\mathrm{CH}_3 + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{CH}_3\mathrm{O} + \mathrm{O}$
75.	$\mathrm{CH}_3 + \mathrm{O}_2(a^1 \Delta_g) = \mathrm{CH}_3\mathrm{O} + \mathrm{O}$
76.	$\mathrm{CH}_3 + \mathrm{O}_2(b^1 \Sigma_g^+) = \mathrm{CH}_3\mathrm{O} + \mathrm{O}$
77.	$\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O} = \mathrm{CH}_4 + \mathrm{OH}$
78.	$\mathrm{CH}_3 + \mathrm{HO}_2 = \mathrm{CH}_3\mathrm{O} + \mathrm{OH}$
79.	$\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O}_2 = \mathrm{CH}_4 + \mathrm{HO}_2$
80.	$\mathrm{CH}_3 + \mathrm{HCO} = \mathrm{CH}_4 + \mathrm{CO}$
81.	$\mathrm{CH}_3 + \mathrm{CH}_2\mathrm{O} = \mathrm{CH}_4 + \mathrm{HCO}$
82.	$\mathrm{CH}_2 + \mathrm{M} = \mathrm{CH} + \mathrm{H} + \mathrm{M}$
83.	$\mathrm{CH}_2 + \mathrm{M} = \mathrm{C} + \mathrm{H}_2 + \mathrm{M}$
84.	$\mathrm{CH}_2 + \mathrm{O} = \mathrm{CH} + \mathrm{OH}$
85.	$\mathrm{CH}_2 + \mathrm{OH} = \mathrm{CH} + \mathrm{H}_2\mathrm{O}$
86.	$\mathrm{CH} + \mathrm{M} = \mathrm{C} + \mathrm{H} + \mathrm{M}$
87.	$\mathrm{CH} + \mathrm{H} = \mathrm{C} + \mathrm{H}_2$
88.	$\mathrm{CH} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{CO} + \mathrm{OH}$
89.	$CH + O_2(a^1 \Delta_g) = CO + OH$
90.	$\mathrm{CH} + \mathrm{O}_2(b^1 \Sigma_g^+) = \mathrm{CO} + \mathrm{OH}$
91.	$CH + O_2(X^3 \Sigma_g^-) = HCO + O$
92.	$CH + O_2(a^1 \Delta_g) = HCO + O$
93.	$CH + O_2(b^1 \Sigma_g^+) = HCO + O$
94.	$\rm CO + OH = H + CO_2$
95.	$\rm CO + H_2 = HCO + H$
96.	$\mathrm{CO} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{CO}_2 + \mathrm{O}$
97.	$\mathrm{CO} + \mathrm{O}_2(a^1 \Delta_g) = \mathrm{CO}_2 + \mathrm{O}$

	Продолжение таблицы
98.	$\mathrm{CO} + \mathrm{O}_2(b^1 \Sigma_g^+) = \mathrm{CO}_2 + \mathrm{O}$
99.	$\rm CO + HO_2 = OH + CO_2$
100.	$\mathrm{CO} + \mathrm{HO}_2 = \mathrm{HCO} + \mathrm{O}_2(X^3 \Sigma_g^-)$
101.	$\mathrm{CO} + \mathrm{HO}_2 = \mathrm{HCO} + \mathrm{O}_2(a^1 \Delta_g)$
102.	$\mathrm{CO} + \mathrm{HO}_2 = \mathrm{HCO} + \mathrm{O}_2(b^1 \Sigma_g^+)$
103.	$\mathrm{CO}_2 + \mathrm{M} = \mathrm{CO} + \mathrm{O} + \mathrm{M}$
104.	$\rm HCO + M = \rm H + \rm CO + \rm M$
105.	HCO + O = OH + CO
106.	$\mathrm{HCO} + \mathrm{O} = \mathrm{H} + \mathrm{CO}_2$
107.	$\mathrm{HCO} + \mathrm{OH} = \mathrm{H_2O} + \mathrm{CO}$
108.	$\mathrm{HCO} + \mathrm{H}_2 = \mathrm{CH}_2\mathrm{O} + \mathrm{H}$
109.	$2\mathrm{HCO}=\mathrm{H}_{2}+2\mathrm{CO}$
110.	$2\mathrm{HCO} = \mathrm{CH}_{2}\mathrm{O} + \mathrm{CO}$
111.	$\mathrm{CH}_{2}\mathrm{O} + \mathrm{M} = \mathrm{H} + \mathrm{H}\mathrm{CO} + \mathrm{M}$
112.	$\mathrm{CH}_2\mathrm{O} + \mathrm{O} = \mathrm{HCO} + \mathrm{OH}$
113.	$\mathrm{CH}_2\mathrm{O} + \mathrm{OH} = \mathrm{HCO} + \mathrm{H}_2\mathrm{O}$
114.	$\mathrm{CH}_{2}\mathrm{O} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) = \mathrm{HO}_{2} + \mathrm{HCO}$
115.	$CH_2O + O_2(a^1\Delta_g) = HO_2 + HCO$
116.	$\mathrm{CH}_{2}\mathrm{O} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathrm{HO}_{2} + \mathrm{HCO}$
117.	$\mathrm{CH}_2\mathrm{O} + \mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{HCO}$
118.	$\mathrm{CH}_3\mathrm{O} + \mathrm{M} = \mathrm{CH}_2\mathrm{O} + \mathrm{H} + \mathrm{M}$
119.	$\mathrm{CH}_3\mathrm{O} + \mathrm{H} = \mathrm{CH}_2\mathrm{O} + \mathrm{H}_2$
120.	$\mathrm{CH}_3\mathrm{O} + \mathrm{O} = \mathrm{CH}_2\mathrm{O} + \mathrm{OH}$
121.	$\mathrm{CH}_3\mathrm{O} + \mathrm{OH} = \mathrm{CH}_2\mathrm{O} + \mathrm{H}_2\mathrm{O}$
122.	$\mathrm{CH}_3\mathrm{O} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{CH}_2\mathrm{O} + \mathrm{HO}_2$
123.	$\mathrm{CH}_{3}\mathrm{O} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{CH}_{2}\mathrm{O} + \mathrm{HO}_{2}$
124.	$\mathrm{CH}_{3}\mathrm{O} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathrm{CH}_{2}\mathrm{O} + \mathrm{HO}_{2}$
125.	$\mathrm{CH}_3\mathrm{O} + \mathrm{HO}_2 = \mathrm{CH}_2\mathrm{O} + \mathrm{H}_2\mathrm{O}_2$
126.	$\mathrm{CH}_3\mathrm{O} + \mathrm{CH}_3 = \mathrm{CH}_2\mathrm{O} + \mathrm{CH}_4$
127.	$\mathrm{CH}_3\mathrm{O} + \mathrm{CO} = \mathrm{CH}_3 + \mathrm{CO}_2$
Pe	еакции с C_2H_n , CH_2OH , CH_3OH , CH_3O_2 , CH_3O_2H
128.	$\mathrm{C_{2}H_{6}+M}=2\mathrm{CH_{3}+M}$
129.	$\mathrm{C}_{2}\mathrm{H}_{6}+\mathrm{M}=\mathrm{C}_{2}\mathrm{H}_{5}+\mathrm{H}+\mathrm{M}$
130.	$\mathrm{C}_{2}\mathrm{H}_{6}+\mathrm{O}=\mathrm{C}_{2}\mathrm{H}_{5}+\mathrm{OH}$
131.	$C_2H_6 + O_2(X^3\Sigma_g^-) = C_2H_5 + HO_2$
132.	$C_2H_6 + O_2(a^1\Delta_g) = C_2H_5 + HO_2$
133.	$\mathrm{C}_{2}\mathrm{H}_{6} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathrm{C}_{2}\mathrm{H}_{5} + \mathrm{HO}_{2}$
134.	$\mathrm{C}_{2}\mathrm{H}_{6}+\mathrm{C}\mathrm{H}_{3}=\mathrm{C}\mathrm{H}_{4}+\mathrm{C}_{2}\mathrm{H}_{5}$

	Продолжение таблицы
135.	$\mathrm{C_2H_6} + \mathrm{HCO} = \mathrm{CH_2O} + \mathrm{C_2H_5}$
136.	$\mathrm{C}_{2}\mathrm{H}_{5}+\mathrm{M}=\mathrm{C}_{2}\mathrm{H}_{4}+\mathrm{H}+\mathrm{M}$
137.	$C_2H_5 + H = 2CH_3$
138.	$\mathrm{C_2H_5} + \mathrm{O} = \mathrm{CH_2O} + \mathrm{CH_3}$
139.	$\mathrm{C_2H_5} + \mathrm{OH} = \mathrm{C_2H_4} + \mathrm{H_2O}$
140.	$\mathrm{C}_{2}\mathrm{H}_{5} + \mathrm{OH} = \mathrm{CH}_{3} + \mathrm{H} + \mathrm{CH}_{2}\mathrm{O}$
141.	$\mathrm{C_2H_5} + \mathrm{H_2} = \mathrm{C_2H_6} + \mathrm{H}$
142.	$C_2H_5 + O_2(X^3\Sigma_g^-) = C_2H_4 + HO_2$
143.	$C_2H_5 + O_2(a^1\Delta_g) = C_2H_4 + HO_2$
144.	$C_2H_5 + O_2(b^1\Sigma_g^+) = C_2H_4 + HO_2$
145.	$\mathrm{C_2H_5} + \mathrm{H_2O} = \mathrm{C_2H_6} + \mathrm{OH}$
146.	$\mathrm{C_2H_5} + \mathrm{HO_2} = \mathrm{CH_3} + \mathrm{CH_2O} + \mathrm{OH}$
147.	$\mathrm{C_2H_5} + \mathrm{HO_2} = \mathrm{C_2H_4} + \mathrm{H_2O_2}$
148.	$\mathrm{C_2H_5} + \mathrm{H_2O_2} = \mathrm{C_2H_6} + \mathrm{HO_2}$
149.	$\mathrm{C_2H_5} + \mathrm{HCO} = \mathrm{C_2H_6} + \mathrm{CO}$
150.	$\mathrm{C}_{2}\mathrm{H}_{5}+\mathrm{C}\mathrm{H}_{3}=\mathrm{C}\mathrm{H}_{4}+\mathrm{C}_{2}\mathrm{H}_{4}$
151.	$C_2H_5 + C_2H_4 = C_2H_6 + C_2H_3$
152.	$2C_2H_5 = C_2H_4 + C_2H_6$
153.	$\mathrm{C_2H_4} + \mathrm{M} = \mathrm{C_2H_2} + \mathrm{H_2} + \mathrm{M}$
154.	$\mathrm{C_2H_4} + \mathrm{M} = \mathrm{C_2H_3} + \mathrm{H} + \mathrm{M}$
155.	$\mathrm{C}_{2}\mathrm{H}_{4}+\mathrm{H}=\mathrm{C}_{2}\mathrm{H}_{3}+\mathrm{H}_{2}$
156.	$C_2H_4 + O = CH_3 + HCO$
157.	$\mathrm{C_2H_4} + \mathrm{O} = \mathrm{CH_2O} + \mathrm{CH_2}$
158.	$\mathrm{C_2H_4} + \mathrm{OH} = \mathrm{CH_3} + \mathrm{CH_2O}$
159.	$\mathrm{C_2H_4} + \mathrm{OH} = \mathrm{C_2H_3} + \mathrm{H_2O}$
160.	$\mathrm{C_2H_4} + \mathrm{H_2} = \mathrm{C_2H_5} + \mathrm{H}$
161.	$C_2H_4 + O_2(X^3\Sigma_g^-) = C_2H_3 + HO_2$
162.	$C_2H_4 + O_2(a^1\Delta_g) = C_2H_3 + HO_2$
163.	$C_2H_4 + O_2(b^1\Sigma_g^+) = C_2H_3 + HO_2$
164.	$C_2H_4 + CO = C_2H_3 + HCO$
165.	$\mathrm{C}_{2}\mathrm{H}_{4}+\mathrm{C}\mathrm{H}_{3}=\mathrm{C}_{2}\mathrm{H}_{3}+\mathrm{C}\mathrm{H}_{4}$
166.	$2C_2H_4 = C_2H_3 + C_2H_5$
167.	$\mathrm{C_2H_3} + \mathrm{M} = \mathrm{C_2H_2} + \mathrm{H} + \mathrm{M}$
168.	$\mathrm{C_2H_3} + \mathrm{H} = \mathrm{C_2H_2} + \mathrm{H_2}$
169.	$\mathrm{C_2H_3} + \mathrm{OH} = \mathrm{H_2O} + \mathrm{C_2H_2}$
170.	$C_2H_3 + O_2(X^3\Sigma_g^-) = C_2H_2 + HO_2$
171.	$C_2H_3 + O_2(a^{\scriptscriptstyle \perp}\Delta_g) = C_2H_2 + HO_2$
172.	$C_2H_3 + O_2(b^{\perp}\Sigma_g^+) = C_2H_2 + HO_2$
173.	$C_2H_3 + HO_2 = OH + CH_3 + CO$

	Продолжение таблицы
174.	$\mathrm{C_2H_3} + \mathrm{H_2O_2} = \mathrm{C_2H_4} + \mathrm{HO_2}$
175.	$\mathrm{C}_{2}\mathrm{H}_{3}+\mathrm{C}\mathrm{H}_{3}=\mathrm{C}_{2}\mathrm{H}_{2}+\mathrm{C}\mathrm{H}_{4}$
176.	$2C_2H_3 = C_2H_4 + C_2H_2$
177.	$C_2H_3 + C_2H_5 = C_2H_2 + C_2H_6$
178.	$\mathrm{C_2H_3} + \mathrm{CH_2O} = \mathrm{C_2H_4} + \mathrm{HCO}$
179.	$\mathrm{C}_{2}\mathrm{H}_{2}+\mathrm{M}=\mathrm{C}_{2}\mathrm{H}+\mathrm{H}+\mathrm{M}$
180.	$\mathrm{C}_{2}\mathrm{H}_{2}+\mathrm{H}=\mathrm{C}_{2}\mathrm{H}+\mathrm{H}_{2}$
181.	$\mathrm{C_2H_2} + \mathrm{O} = \mathrm{CH_2} + \mathrm{CO}$
182.	$\mathrm{C}_{2}\mathrm{H}_{2} + \mathrm{OH} = \mathrm{CH}_{3} + \mathrm{CO}$
183.	$\mathrm{C_2H_2} + \mathrm{OH} = \mathrm{C_2H} + \mathrm{H_2O}$
184.	$C_2H_2 + O_2(X^3\Sigma_g^-) = C_2H + HO_2$
185.	$C_2H_2 + O_2(a^1\Delta_g) = C_2H + HO_2$
186.	$\mathbf{C}_{2}\mathbf{H}_{2} + \mathbf{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathbf{C}_{2}\mathbf{H} + \mathbf{H}\mathbf{O}_{2}$
187.	$C_2H_2 + O_2(X^3\Sigma_g^-) = 2HCO$
188.	$C_2H_2 + O_2(a^1\Delta_g) = 2HCO$
189.	$C_2H_2 + O_2(b^1\Sigma_g^+) = 2HCO$
190.	$\mathrm{C}_{2}\mathrm{H}_{2}+\mathrm{C}\mathrm{H}_{3}=\mathrm{C}\mathrm{H}_{4}+\mathrm{C}_{2}\mathrm{H}$
191.	$2C_2H_2=C_2H_3+C_2H$
192.	$\mathrm{C}_2\mathrm{H}_2+\mathrm{C}_2\mathrm{H}_5=\mathrm{C}_2\mathrm{H}+\mathrm{C}_2\mathrm{H}_6$
193.	$C_2H_2 + CO = C_2H + HCO$
194.	$C_2H + O = CH + CO$
195.	$\mathrm{C_2H} + \mathrm{OH} = \mathrm{C_2H_2} + \mathrm{O}$
196.	$\mathrm{C}_{2}\mathrm{H} + \mathrm{O}\mathrm{H} = \mathrm{C}\mathrm{H}_{2} + \mathrm{C}\mathrm{O}$
197.	$C_2H + O_2(X^3\Sigma_g^-) = CO + HCO$
198.	$C_2H + O_2(a^1\Delta_g) = CO + HCO$
199.	$C_2H + O_2(b^1\Sigma_g^+) = CO + HCO$
200.	$\mathrm{C}_{2}\mathrm{H}+\mathrm{C}_{2}\mathrm{H}_{5}=\mathrm{C}_{2}\mathrm{H}_{2}+\mathrm{C}_{2}\mathrm{H}_{4}$
201.	$\mathrm{CH}_3\mathrm{O} + \mathrm{CH}_4 = \mathrm{CH}_3\mathrm{OH} + \mathrm{CH}_3$
202.	$\mathrm{CH}_3\mathrm{O} + \mathrm{C}_2\mathrm{H} = \mathrm{CH}_2\mathrm{O} + \mathrm{C}_2\mathrm{H}_2$
203.	$\mathrm{CH}_3\mathrm{O} + \mathrm{C}_2\mathrm{H}_3 = \mathrm{CH}_2\mathrm{O} + \mathrm{C}_2\mathrm{H}_4$
204.	$\mathrm{CH}_3\mathrm{O} + \mathrm{C}_2\mathrm{H}_5 = \mathrm{CH}_2\mathrm{O} + \mathrm{C}_2\mathrm{H}_6$
205.	$\mathrm{CH}_3\mathrm{O} + \mathrm{C}_2\mathrm{H}_6 = \mathrm{CH}_3\mathrm{OH} + \mathrm{C}_2\mathrm{H}_5$
206.	$\mathrm{CH}_3\mathrm{O} + \mathrm{HCO} = \mathrm{CH}_3\mathrm{OH} + \mathrm{CO}$
207.	$\mathrm{CH}_3\mathrm{O} + \mathrm{CH}_2\mathrm{O} = \mathrm{CH}_3\mathrm{OH} + \mathrm{HCO}$
208.	$\mathrm{CH}_3\mathrm{O} + \mathrm{CH}_3\mathrm{O}_2 = \mathrm{CH}_2\mathrm{O} + \mathrm{CH}_3\mathrm{O}_2\mathrm{H}$
209.	$\mathrm{CH}_2\mathrm{OH} + \mathrm{M} = \mathrm{CH}_2\mathrm{O} + \mathrm{H} + \mathrm{M}$
210.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{M} = \mathrm{CH}_3 + \mathrm{OH} + \mathrm{M}$

Продолжение таблицы

	продоліністию таклінды
211.	$\rm CH_3OH + O = \rm CH_2OH + OH$
212.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{H} = \mathrm{CH}_2\mathrm{OH} + \mathrm{H}_2$
213.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{H} = \mathrm{CH}_3 + \mathrm{H}_2\mathrm{O}$
214.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{OH} = \mathrm{CH}_2\mathrm{OH} + \mathrm{H}_2\mathrm{O}$
215.	$\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) = \mathrm{CH}_{2}\mathrm{O} + \mathrm{HO}_{2}$
216.	$\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{CH}_{2}\mathrm{O} + \mathrm{HO}_{2}$
217.	$\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) = \mathrm{CH}_{2}\mathrm{O} + \mathrm{HO}_{2}$
218.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{HO}_2 = \mathrm{CH}_2\mathrm{OH} + \mathrm{H}_2\mathrm{O}_2$
219.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{CH}_3 = \mathrm{CH}_2\mathrm{OH} + \mathrm{CH}_4$
220.	$\mathrm{CH}_3\mathrm{OH} + \mathrm{CH}_3\mathrm{O}_2 = \mathrm{CH}_2\mathrm{OH} + \mathrm{CH}_3\mathrm{O}_2\mathrm{H}$
221.	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{M} = \mathrm{CH}_{3} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) + \mathrm{M}$
222.	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{M} = \mathrm{CH}_{3} + \mathrm{O}_{2}(a^{1}\Delta_{g}) + \mathrm{M}$
223.	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{M} = \mathrm{CH}_{3} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+}) + \mathrm{M}$
224.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{H} = \mathrm{CH}_3\mathrm{O} + \mathrm{OH}$
225.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{O} = \mathrm{CH}_3\mathrm{O} + \mathrm{O}_2(X^3\Sigma_g^-)$
226.	$CH_3O_2 + O = CH_3O + O_2(a^1\Delta_g)$
227.	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{O} = \mathrm{CH}_{3}\mathrm{O} + \mathrm{O}_{2}(b^{1}\Sigma_{g}^{+})$
228.	$CH_3O_2 + OH = CH_3OH + O_2(X^3\Sigma_g^-)$
229.	$CH_3O_2 + OH = CH_3OH + O_2(a^1\Delta_g)$
230.	$CH_3O_2 + OH = CH_3OH + O_2(b^1\Sigma_g^+)$
231.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{H}_2 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{H}$
232.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{HO}_2 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{O}_2(X^3\Sigma_g^-)$
233.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{HO}_2 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{O}_2(a^1\Delta_g)$
234.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{HO}_2 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{O}_2(b^1\Sigma_g^+)$
235.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{H}_2\mathrm{O}_2 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{HO}_2$
236.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{CH}_3 = 2\mathrm{CH}_3\mathrm{O}$
237.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{CH}_4 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{CH}_3$
238.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{C}_2\mathrm{H}_4 = \mathrm{C}_2\mathrm{H}_3 + \mathrm{CH}_3\mathrm{O}_2\mathrm{H}$
239.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{C}_2\mathrm{H}_6 = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{C}_2\mathrm{H}_5$
240.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{HCO} = \mathrm{CH}_3\mathrm{O} + \mathrm{H} + \mathrm{CO}_2$
241.	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{CH}_2\mathrm{O} = \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{HCO}$
242.	$2\mathrm{CH}_3\mathrm{O}_2 = 2\mathrm{CH}_3\mathrm{O} + \mathrm{O}_2(X^3\Sigma_g^-)$
243.	$2\mathrm{CH}_3\mathrm{O}_2 = 2\mathrm{CH}_3\mathrm{O} + \mathrm{O}_2(a^1\Delta_g)$
244.	$2\mathrm{CH}_3\mathrm{O}_2 = 2\mathrm{CH}_3\mathrm{O} + \mathrm{O}_2(b^1\Sigma_g^+)$
245.	$2\mathrm{CH}_3\mathrm{O}_2 = \mathrm{CH}_3\mathrm{OH} + \mathrm{CH}_2\mathrm{O} + \mathrm{O}_2(X^3\Sigma_g^-)$
246.	$2\mathrm{CH}_{3}\mathrm{O}_{2} = \mathrm{CH}_{3}\mathrm{OH} + \mathrm{CH}_{2}\mathrm{O} + \mathrm{O}_{2}(a^{1}\Delta_{g})$

247. $2CH_3O_2 = CH_3OH + CH_2O + O_2(b^1\Sigma_g^+)$