УДК 536.46

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ВОСПЛАМЕНЕНИЯ И ГОРЕНИЯ ОДИНОЧНЫХ ЧАСТИЦ МАГНИЯ В ВОЗДУХЕ

Y.-Ch. Feng, Zh.-X. Xia, L.-Y. Huang, L.-K. Ma, D.-L. Yang

Национальный университет оборонных технологий, Чанша 410073, Китай, huangliya05@nudt.edu.cn

Исследовано горение частиц магния миллиметровых размеров, зажигаемых CO₂-лазером. Получены данные о структуре пламени, температуре, области тепловыделения, а также о спектральном составе излучения пламени горящей частицы. Экспериментальные результаты показали, что эволюция температуры частицы во времени проходит пять стадий: постепенный рост, выход на стационар, быстрый рост, высокотемпературная стадия, спад температуры. В серии экспериментов определена температура зажигания частиц размером ≈3 мм, которая составила 900 ÷ 940 K. В процессе стационарного горения максимальный диаметр пламени и максимальный диаметр области тепловыделения больше, чем диаметр частицы, примерно в 1.9 и в 3 ÷ 3.5 раза соответственно. Экспериментально установлено, что горение магния в воздухе контролируется диффузией его паров с поверхности частицы.

Ключевые слова: частица магния, горение частицы магния, температура зажигания, пламя, область тепловыделения, воздух.

DOI 10.15372/FGV20190210

ВВЕДЕНИЕ

Плотности энергии традиционных тверлых топлив недостаточно для соответствия требованиям, предъявляемым к современным летательным аппаратам, оснащенным прямоточными воздушно-реактивными двигателями. Поэтому широко применяются металлические добавки к твердым топливам, такие как алюминий, магний и бор. По сравнению с другими добавками [1, 2] магний нашел широкое применение, благодаря таким его преимуществам, как более низкая температура воспламенения, более короткое время горения и более высокая полнота сгорания [2, 3]. Добавка магния к твердым топливам позволяет улучшить характеристики работы прямоточного воздушно-реактивного двигателя за счет увеличения удельного импульса и повышения стабильности горения. Кроме того, порошок магния рассматривается как новый возможный носитель энергии [4].

Добавка частиц магния к твердым топливам эффективна в том случае, если типичный

их размер составляет от нескольких до десятков микрометров. Однако в высокометаллизированных топливах частицы магния плавятся и образуют крупные агломераты на поверхности топлива. До момента воспламенения их размер может достигать нескольких сотен микрометров и даже больше. Реакция частиц магния с воздухом, поступающим из воздухозаборника во второй камере сгорания, обеспечивает первичное энерговыделение. Поэтому изучение процессов воспламенения частиц магния и их горения в воздухе позволит разработать научные основы применения магния в качестве добавки к твердым топливам. Кроме того, благодаря высокому отношению прочности к массе и другим уникальным свойствам, магний и его сплавы рассматриваются как кандидаты для создания современных авиационных конструкций, поскольку способны обеспечить значительное снижение массы конструкции. Однако применение магния и магниевых сплавов в аэрокосмической промышленности сдерживается их легковоспламеняемостью. Таким образом, для оценки потенциальных рисков необходимо глубоко понимать процессы воспламенения и горения магния [5].

Исследованию процессов воспламенения и последующего горения частиц магния в различных средах посвящено множество экспери-

[©] Yunchao Feng¹, Zhixun Xia¹, Liya Huang², Likun Ma¹, Dali Yang¹, 2019.

¹Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073. ²Department of Applied Mechanics, National University of Defense Technology, Changsha 410073

ментальных работ. В [6] при поджиге отдельных частиц в свободном падении в воздухе обнаружено, что кислород может диффундировать через газофазное пламя к поверхности частицы. Гетерогенная реакция растворения кислорода начинается одновременно с газофазным горением, а затем становится первичной в механизме горения. В работе [7] исследовались спектры излучения при горении частиц магния в воздухе и диоксида углерода при атмосферном давлении. Экспериментальные результаты показали, что время люминесценции паров металла и оксида всегда меньше полного времени люминесценции частиц. В исследовании [8] горения сферических частиц магния миллиметрового размера в потоке нагретого окислителя сделан вывод, что процесс горения включает в себя четыре стадии: образование пены, окисление в газовой фазе, переходная стадия и горение с разбрызгиванием. В экспериментах [9, 10] изучалось окисление и горение отдельных частиц магния в среде оксида углерода в диапазоне температуры среды 898÷1323 К. Процесс горения частицы магния в СО₂ включает в себя медленное окисление, медленное гетерогенное горение и горение в газовой фазе. Отмечалось, что время горения в СО значительно меньше, чем в СО₂. В работе [11] частицы магния поджигались горячей проволокой в среде СО₂ в условиях микрогравитации [11]. Обнаружено, что механизм горения магния в СО2 один и тот же для частиц в диапазоне размеров $0.05 \div 5.0$ мм. В [12] исследована динамика горения мелкодисперсных магниевых порошков путем введения их в ацетиленовоздушное пламя. На поверхности потушенных частиц наблюдались области MgO, которые блокировали испарение магния и уменьшали скорость горения, хотя также нагревались выше температуры кипения магния. В работах [13, 14] изучались характеристики и механизм окисления магния в паровой фазе.

При горении частиц магния критическими параметрами являются размер пламени и температура частиц, они определяют количество энергии, приходящее на единицу поверхности частицы из пламени, скорость испарения паров магния и время горения. Авторы работы [15] использовали CO₂-лазер для зажигания частиц магния размером 50 ÷ 100 мкм в среде CO₂. В самом начале горения отношение диаметра пламени к диаметру частиц составляло от 3 до 4, такое же отношение наблюдалось и

в среде паров воды [16]. Авторы [17] поджигали частицы магния диаметром $0.5 \div 2.0$ мм, используя пламя импульсной водородовоздушной микрогорелки. При этом регистрировались непрерывный спектр вблизи длины волны $\lambda =$ 507 нм и относительное распределение интенсивности излучения конденсированных продуктов горения. В работе [18] измерялось время горения, задержка воспламенения, температура пламени и температура воспламенения отдельных частиц магния (30÷100 мкм). Наличие на поверхности частиц магния оксида магния способствует тому, что воспламенение и горение частиц отличаются от тех же процессов в случае капель жидкости, когда частица магния подвергается воздействию кислородсодержащей среды [5, 19], имеющаяся на ее поверхности исходная оксидная пленка не может обеспечить достаточную защиту магния от термического окисления. Исследование [20] морфологии оксида магния на поверхности магниевого сплава показало, что во время зажигания магниевого сплава развитие пленки оксида магния может быть описано следующей последовательностью: исходный компактный однородный слой, переход к оксидным гребням, рост оксидных образований и разрушение чешуйчатых структур.

В настоящей работе поставлена задача четко проконтролировать процесс воспламенения и горения отдельных частиц магния и точно измерить температуру частиц. Для этого разработана новая экспериментальная система регистрации наблюдаемых явлений, включающая в себя высокоскоростную камеру и аппаратуру для высокоскоростную камеру и аппаратуру для высокоскоростной теневой фотосъемки. Проведено несколько экспериментов по исследованию температуры воспламенения частиц. Кроме того, собраны и проанализированы остаточные продукты горения.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

1.1. Описание установки

На рис. 1 представлена схема экспериментальной установки, основными элементами которой являются камера сгорания, СО₂-лазер, высокоскоростная камера, оптический спектрометр и термопара. Все измерительные устройства управлялись с помощью компьютера.

Эксперименты проводились в камере сгорания во избежание внешних возмущений окружающего воздуха. Камера была оснащена

Рис. 1. Экспериментальная установка:

 $1 - \text{CO}_2$ -лазер, 2 - ZnSe-линза, 3 -источник питания CO_2 -лазера, 4 -генератор сигнала, 5 -камера сгорания, 6 -частица магния, 7 -оптический фильтр (500 нм), 8 -высокоскоростная камера, 9 -термопара, 10 -оптический спектрометр, 11 -зонд, 12 -компьютер

двумя оптическими стеклянными окнами для наблюдения. Высокоэнергетический лазерный луч направлялся в камеру через верхнюю ее часть, в которой была закреплена ZnSe-линза, обеспечивающая прохождение луча с низкими потерями энергии. Номинальная максимальная выходная мощность CO₂-лазера (CWQ2000) составляла 150 Вт. Высокоскоростная камера (PCO.dimax S4) имела дополнительный полупроводниковый металлооксидный датчик изображения, что позволяло проводить съемку с максимальной частотой 1102 кадр/с при разрешении 2016 × 2016 пиксель. Использовались макрообъектив (AF Zoom-Nikkor 24-85 mm f/2.8D IF lens) и оптический фильтр (длина волны $\lambda = 500$ нм) для детализированной записи пламени частиц. Измерялось также спектральное распределение пламени с помощью оптического спектрометра (Ocean Optical HR2000 + ES) и зонда, соединенных кварцевым волокном. Исследовались частицы магния чистотой 99.93 % производства «Beijing Zhongnuo Material Technology, Inc». Частица, в которой было сделано глухое отверстие диаметром 0.8 мм, закреплялась на вольфрам-рениевой термопаре (рис. 2), позволяющей напрямую измерять ее температуру. Рабочий диапазон термопары составлял 273 ÷ 2573 К, погрешность измерения — 1 %. Диаметр проволоки и спая термопары — 0.2 и 0.6 мм. Чтобы уменьшить

Рис. 2. Схема фиксации частиц магния и измерения температуры:

- 1 фокус лазерного луча, 2 спай термопары,
- 3 частица магния, 4 корундовая пластина,
- 5 термопара, 6 компенсационный провод

потери тепла, провода термопары были обернуты тканью из стекловолокна. Под частицей магния была расположена пластина из корунда для отсечения лазерного луча и защиты термопары. Все эксперименты проводились в помещении с относительной влажностью воздуха $40 \div 50~\%$ при комнатной температуре $296 \div 300$ K.

1.2. Система высокоскоростной теневой съемки

Для исследования характеристик потока вокруг частицы применялась стандартная высокоскоростная система теневой съемки Z-типа (рис. 3). Источником света служил непрерывный аргоновый лазер ($\lambda = 532$ нм). Для коллимации луча через исследуемую область использовались два вогнутых зеркала (f/10, 200 см), затем изображение через объектив AF Zoom-Nikkor 80-200 mm f/2.8D ED регистрировалось высокоскоростной камерой. На объективе был установлен оптический узкополосный фильтр, чтобы устранить засветку от пламени. Центральная длина волны фильтра совпадала с длиной волны аргонового лазера и составляла 532 нм.

1.3. Порядок проведения эксперимента

Перед началом проведения экспериментов частицу магния помещали на термопару на 15 мм ниже точки фокусировки лазера, так что

Рис. 3. Система высокоскоростной теневой съемки:

1 — высокоскоростная камера, 2 — оптический фильтр (532 нм), 3 — вогнутое зеркало, 4 — плоское зеркало, 5 — частица магния, 6 — аргоновый лазер (532 нм)

верхняя ее часть равномерно нагревалась излучением (см. рис. 2). Затем проводилась фокусировка высокоскоростной камеры на поверхность частицы. Управление измерительной аппаратурой (высокоскоростная камера, термопара и оптический спектрометр) осуществлялось с помощью компьютера. Начало регистрации было синхронизировано с включением СО₂-лазера. В нескольких экспериментах с помощью высокоскоростной теневой съемки исследовалась зона тепловыделения.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Процесс воспламенения и горения

На рис. 4 показаны отдельные кадры высокоскоростной видеозаписи процесса зажигания и горения частицы магния размером 3.5 мм. Видеозапись проводилась с частотой 200 кадр/с и выдержкой 1.0 мс.

При включении CO₂-лазера блестящая поверхность частицы сразу становилась шероховатой и тусклой. Нагреваемая лазером поверхность частицы магния окислялась и покрывалась темной пленкой оксида [8]. Согласно работе [21] этот темный оксид представляет собой раствор Mg—O. Через несколько секунд на верхней части частицы появлялось световое

пятно. При дальнейшем нагревании возникало пламя паровой фазы, которое быстро окружало частицу (рис. $4, \delta$). На начальных стадиях горения пламя стабильно (рис. 4, *e*–*e*) и зона реакций расположена на некотором расстоянии от поверхности частицы. В результате конвекции, вызванной гравитационной силой, поверхность пламени не имеет сферической формы и в верхней его части существует разрыв. На этапе стационарного горения максимальный диаметр пламени превосходил диаметр частицы в 1.9 раза (рис. 5). После этого пламя паровой фазы становилось асимметричным и нестабильным. Оксиды, образующиеся в результате гетерогенных реакций на поверхности частицы, блокируют диффузию магния, испаряющегося с поверхности частицы, что также способствует несимметричности и нестабильности пламени. В самом конце горения сконденсированные продукты полностью покрывают поверхность частицы, и пламя быстро затухает.

Теневые фотографии процесса горения получены с помощью высокоскоростной камеры с разрешением 1104×1816 пиксель, частота 200 кадр/с, выдержка 14.5 мкс. Для обеспечения стабильного горения мощность CO₂-лазера устанавливалась равной 45 Вт. На рис. 6 показана типичная структура потока вокруг частицы магния в процессе ее воспламенения и горения. Полученные изображения позволяют увидеть наличие конденсированных продуктов в газовой фазе и изменение плотности газовой фазы в различных точках. Конденсированные продукты блокируют лазерное излучение сверху, поэтому их влияние проявляется прежде всего в верхней части. Из полученных теневых изображений можно определить изменение в пространстве второй производной плотности газовой фазы. Газ вокруг частицы можно считать идеальным:

$$\rho = pM/RT,\tag{1}$$

где ρ — плотность, T — температура, p — локальное давление, M — молекулярная масса газа. Тогда

$$\frac{d^2\rho}{dy^2} \sim \frac{d^2(1/T)}{dy^2}.$$
(2)

Здесь предполагается, что p, M и R примерно постоянны. Таким образом, вторая производная плотности пропорциональна второй производной обратной температуры газа 1/T

Рис. 4. Фотографии процесса зажигания и горения в воздухе частицы магния размером 3.5 мм, полученные с помощью высокоскоростной видеокамеры

Рис. 5. Измерение размера частицы (d_p) и размера видимой зоны пламен (d_f)

(см. (2)). Поэтому изображения на рис. 6, 6-3иллюстрируют распределение второй производной обратной температуры. Яркая линия на рис. 6 показывает область резкого изменения температуры, которая соответствует области тепловыделения (HRR) [22]. На рис. 7 представлена зависимость диаметра области тепловыделения от времени, полученная путем обработки теневых изображений, а также зависимость диаметра видимого пламени от времени. В процессе горения отношение диаметра области тепловыделения к диаметру частицы составляло $d_{\rm HRR}/d_p = 3 \div 3.5$, что больше отношения диаметра видимого пламени к диаметру частицы d_f/d_p .

2.2. Температура воспламенения частицы

Из представленного на рис. 8 профиля температуры частицы магния видно, что процесс зажигания и горения протекает в пять стадий. Вначале (стадия A) частица нагревается излучением CO₂-лазера и ее температура постепенно увеличивается до температуры плавления. Далее (стадия B) температура не меняется и равна примерно температуре плавления за счет фазового перехода. После того как весь металл частицы переходит в жидкое состояние, температура начинает расти, пока не достигнет точки кипения (стадия C). С ростом температуры происходит ускорение химических реакций на поверхности частицы. Соответствен-

Рис. 6. Теневые фотографии процесса воспламенения и горения в воздухе частицы магния, полученные с помощью системы высокоскоростной теневой съемки

Рис. 7. Зависимость диаметра области тепловыделения (1) и диаметра видимого пламени (2) в процессе горения от времени

но, энергия, выделяющаяся в зоне реакций, способствует увеличению температуры частицы,

Рис. 8. Профиль температуры частицы магния размером 3.0 мм, измеренный с помощью термопары

т. е. эти два процесса взаимно влияют друг на друга. Когда температура частицы достигает точки кипения, дальнейший ее рост замедляется (стадия D). Затем в паровой фазе на некотором расстоянии от поверхности частицы возникает пламя, которое горит несколько секунд. Показания термопары резко увеличиваются за счет того, что она оказывается в пламени. Время горения, рассчитанное по формуле $\tau_c = d_p^2/9.58 \cdot 10^{-7}$ [8], для частицы диаметром 3 мм составило 9.4 с. Однако, как видно на рис. 8, время стабильного горения, измеренное в этой работе, составляет 11.5 с, что больше, чем дает вышеприведенная оценка согласно [8]. Различие, скорее всего, обусловлено разными условиями проведения эксперимента: в одном случае это конвективный поток окислителя, в другом — статическая среда.

За счет тепловой инерционности существует разница температур в центре и на поверхности частицы, оценить которую можно исходя из времени тепловой релаксации $t_{relax} = L^2/\alpha$, где L — характерный размер, α — температуропроводность. Величину L можно принять равной диаметру частицы, т. е. 3 мм. Перед воспламенением величина α принимает значения от $5.54 \cdot 10^{-5}$ до $8.84 \cdot 10^{-5}$ м²/г. Таким образом, t_{relax} в этом температурном интервале изменяется от 0.102 до 0.162 с. Из анализа полученных профилей температуры следует, что характерная скорость нагрева перед зажиганием примерно 120 К/с. Таким образом, характерная разница температур на этой стадии составляет ≈ 19 K, т. е. ≈ 2 % от значения измеренной температуры. В настоящей работе температура поверхности частицы была определена сложением измеренной температуры внутри частицы и по-

Рис. 9. Температура частицы и время работы CO₂-лазера:

1, 2 — данные экспериментов, 3, 4 — порог температуры

лученной поправки.

Во время работы CO₂-лазера непрерывно проводилось сравнение температуры частиц с предварительно заданным пороговым значением. Излучение лазера выключалось, когда температура частицы достигала этого значения. На рис. 9 показаны результаты двух типичных экспериментов.

В экспериментах диаметр частиц магния варьировался в интервале $3.0 \div 3.1$ мм. Рабочая мощность лазера — 45 Вт, температурный порог устанавливался в диапазоне $534 \div 1\,370$ К. Вычисленная описанным выше методом поправка температуры состав-

Таблица 1

Экспери- мент	$T_{threshold}, \mathrm{K}$	T_{lag}, \mathbf{K}	$T_{surface}, \mathrm{K}$	Зажигание	Экспери- мент	$T_{threshold}, \mathrm{K}$	T_{lag}, \mathbf{K}	$T_{surface}, \mathrm{K}$	Зажигание
1	534.4	13.5	547.9	Нет	43	804.0	18.0	822.0	Нет
2	548.2	13.5	561.7	Нет	44	813.6	18.1	831.7	Нет
3	562.0	13.5	575.5	Нет	45	814.2	18.1	832.3	Да
4	562.2	13.5	575.7	Нет	46	819.1	18.1	837.2	Нет
5	586.7	13.9	600.6	Нет	47	839.9	18.1	858.0	Да
6	588.9	14.0	602.9	Нет	48	841.0	18.1	859.1	Нет
7	594.9	14.2	609.1	Нет	49	844.0	18.1	862.1	Нет
8	598.3	14.3	612.6	Нет	50	848.0	18.2	866.2	Да
9	599.0	14.3	613.3	Нет	51	851.8	18.2	870.0	Нет

Результаты измерения температуры частиц и предварительно заданное пороговое значение температуры выключения лазера в различных экспериментах

Экспери- мент	$T_{threshold}, \mathrm{K}$	T_{lag}, \mathbf{K}	$T_{surface}, \mathrm{K}$	Зажигание	Экспери- мент	$T_{threshold}, \mathrm{K}$	T_{lag}, \mathbf{K}	$T_{surface}, \mathrm{K}$	Зажигание
10	605.2	14.4	619.6	Нет	52	854.0	18.2	872.2	Нет
11	617.6	14.8	632.4	Нет	53	856.8	18.2	875.0	Нет
12	630.4	15.1	645.5	Нет	54	860.6	18.2	878.8	Да
13	633.1	15.2	648.3	Да	55	863.0	18.2	881.2	Да
14	651.7	15.7	667.4	Нет	56	863.2	18.2	881.4	Да
15	672.6	16.2	688.8	Нет	57	864.3	18.2	882.5	Нет
16	673.0	16.3	689.3	Нет	58	866.0	18.2	884.2	Нет
17	673.5	16.3	689.8	Нет	59	871.1	18.2	889.3	Да
18	684.5	16.6	701.1	Нет	60	873.2	18.3	891.5	Да
19	688.2	16.7	704.9	Нет	61	874.3	18.3	892.6	Да
20	691.6	16.8	708.4	Нет	62	877.9	18.3	896.2	Нет
21	694.8	16.8	711.6	Нет	63	881.2	18.4	899.6	Да
22	696.6	16.9	713.5	Нет	64	908.0	18.9	926.9	Нет
23	698.0	16.9	714.9	Нет	65	908.2	18.9	927.1	Да
24	698.5	16.9	715.4	Нет	66	929.8	19.4	949.2	Да
25	709.5	17.2	726.7	Нет	67	965.0	33.9	998.9	Да
26	716.9	17.4	734.3	Нет	68	992.2	45.7	1037.9	Да
27	722.1	17.6	739.7	Нет	69	1040.0	54.3	1094.3	Да
28	723.4	17.6	741.0	Нет	70	1086.1	52.0	1 1 38.1	Да
29	726.9	17.7	744.6	Нет	71	1095.8	51.6	1 1 47.4	Да
30	728.9	17.7	746.6	Нет	72	1 1 4 3.8	49.4	1193.2	Да
31	729.3	17.8	747.1	Нет	73	1168.2	48.3	1216.5	Да
32	730.8	17.8	748.6	Нет	74	1199.2	47.0	1246.2	Да
33	731.0	17.8	748.8	Нет	75	1203.2	46.9	1250.1	Да
34	731.2	17.8	749.0	Нет	76	1235.2	45.6	1280.8	Да
35	761.1	18.6	779.7	Нет	77	1257.0	44.8	1301.8	Да
36	764.4	18.7	783.1	Нет	78	1259.2	44.7	1303.9	Да
37	770.4	18.9	789.3	Да	79	1266.4	44.5	1310.9	Да
38	786.9	18.5	805.4	Нет	80	1273.9	44.2	1318.1	Да
39	791.8	18.3	810.1	Да	81	1311.6	42.8	1354.4	Да
40	795.2	18.2	813.4	Нет	82	1 336.0	35.0	1 371.0	Да
41	797.5	18.1	815.6	Да	83	1370.2	27.3	1397.5	Да
42	802.9	18.0	820.9	Нет					

Продолжение таблицы 1

 Π римечание.
 $T_{threshold}$ — пороговая температура, T_{lag} — поправка,
 $T_{surface}$ — температура поверхности частицы. ляла $13.5 \div 54.3$ K, а температура поверхности частицы — $547 \div 1398$ K. Экспериментальные результаты приведены в табл. 1. Измеренная температура воспламенения частиц в воздухе равнялась $900 \div 940$ K, что примерно соответствует температуре плавления магния. Полученный результат находится в согласии с результатами измерений в электрической печи [23] (923 K) и при зажигании ксеноновой лампой [24] (901 K).

2.3. Спектр излучения пламени

Запись спектральной информации о пламени на различных стадиях горения частицы проводилась с помощью оптического спектрометра. Спектральный состав излучения пламени от начала горения до его окончания представлен на рис. 10. Можно выделить пять пиков (373.2, 383.8, 500.7, 518.4 и 589.6 нм), предположив, что основными компонентами в газовой фазе являются MgO (373.2 и 500.7 нм), Мд (383.8 и 518.4 нм) и Na (589.6 нм). Пик, соответствующий натрию, присутствует в спектре, поскольку невозможно устранить примесь натрия. Наличие компонентов в газовой фазе, соответствующих реагентам и продуктам горения, свидетельствует о протекании процесса горения в паровой фазе.

2.4. Остаточные продукты горения

На рис. 11 показаны изображения остаточных продуктов горения. Они представляют

Рис. 10. Спектральный состав излучения пламени, полученный с помощью оптического спектрометра

Рис. 11. Фотографии остаточных продуктов горения частицы магния:

а — общий вид снаружи, б — вид внутри

Рис. 12. Фотографии остаточных продуктов горения магния, полученные с помощью сканирующего электронного микроскопа

Таблица 2
Результаты энергодисперсионного анализа
остаточных продуктов горения магния

Элемент	Массовое содержание, %	Элементное содержание, %			
0	42.10	52.49			
Mg	57.90	47.51			

собой сферы белого цвета с многочисленными вздутиями и полым центром. Микроструктура полученных образцов была охарактеризована с помощью сканирующей электронной микроскопии (рис. 12). Образцы имели пористую структуру и состояли из многогранников размером ≈1 мкм. Пористый остаток, покрывающий поверхность частицы, препятствовал испарению магния и способствовал продлению времени горения. В табл. 2 приведен элементный состав остаточных продуктов горения, полученный с применением энергодисперсионного спектрометра. Исходя из того, что соотношение содержания атомов О и Mg в образцах составляло примерно 1:1, можно сделать вывод, что основным продуктом горения является MgO.

выводы

1. Зажигание и горение одиночной частицы магния представляет собой совокупность ряда процессов: потемнение поверхности частицы, плавление металла, протекание химических реакций на поверхности, парофазное горение и образование оксида. Эволюция температуры частицы во времени проходит следуюцие стадии: постепенный рост, выход на стационар, быстрый рост, высокотемпературная стадия, спад температуры.

2. Температура зажигания частицы магния в воздухе лежит в пределах 900 ÷ 940 К.

3. Анализ спектрального состава излучения пламени частиц показал наличие MgO и Mg в газовой фазе, что свидетельствует о протекании процесса горения главным образом в паровой фазе.

4. В процессе стационарного горения максимальный диаметр пламени примерно в 1.9 раза превышал диаметр частицы, тогда как диаметр области тепловыделения был больше диаметра частицы в 3 ÷ 3.5 раза.

5. Твердый остаточный продукт, полученный по окончании процесса горения, имел форму сферы и состоял из пористого MgO белого цвета.

Работа выполнена при финансовой поддержке Национального фонда естественных наук провинции Хунань (грант N 2018JJ3606) и Национального фонда естественных наук Китая (грант N 51706241).

ЛИТЕРАТУРА

- Gany A. Thermodynamic limitation on boron energy realization in ramjet propulsion // Acta Astronaut. 2014. V. 98. P. 128–132.
- Sandall E., Kalman J., Quigley J. N., Munro S., Hedman T. D. A study of solid ramjet fuel containing boron-magnesium mixtures // Propul. Power Res. — 2017. — V. 6, N 4. — P. 243–252.
- Huang L., Xia Z., Hu J., Zhu Q. Performance study of a water ramjet engine // Sci. China. Technolog. Sci. — 2011. — V. 54, N 5. — P. 6.
- Garra P., Leyssens G., Allgaier O., Schönnenbeck C., Tschamber V., Brilhac J.-F., Tahtouh T., Guézet O., Allano S. Magnesium/air combustion at pilot scale and subsequent PM and NO_x emissions // Appl. Energy. — 2017. — V. 189. — P. 578–587.
- 5. Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications // Corrosion Sci. 2014. V. 86. P. 1–16.
- Dreizin E. L., Berman C. H., Vicenzi E. P. Condensed-phase modifications in magnesium particle combustion in air // Combust. Flame. — 2000. — V. 122, N 1–2. — P. 30–42.
- 7. Валов А. Е., Кустов Ю. А., Шевцов В. И. Спектографическое исследование горения частиц Мд в воздухе и углекислом газе // Физика горения и взрыва. — 1994. — Т. 30, № 4. — С. 29–35.
- Деревяга М. Е., Стесик Л. Н., Федорин
 Э. А. Режимы горения магния // Физика горения и взрыва. 1978. Т. 14, № 5. С. 3–10.
- 9. Гольдшлегер У. И., Шафирович Е. Ю. Режимы горения магния в оксидах углерода.
 1. Горение в CO₂ // Физика горения и взрыва. — 1999. — Т. 35, № 6. — С. 42–49.
- Гольдшлегер У. И., Шафирович Е. Ю. Режимы горения магния в оксидах углерода.
 2. Горение в СО // Физика горения и взрыва. — 2000. — Т. 36, № 2. — С. 67–73.
- Legrand B., Chauveau C., Shafirovich E., Goldshleger U., Carrea E., Mounaim-Rousselle C., Rouan J. P., Gökalp I. Combustion of magnesium particles in carbon dioxide under microgravity conditions // J. de Phys. IV. — 2001. — V. 11, N 6. — P. 311–314.
- 12. Wang S., Corcoran A. L., Dreizin E. L. Combustion of magnesium powders in products

of an air/acetylene flame // Combust. Flame. — 2015. — V. 162, N 4. — P. 1316–1325.

- Liya H., Zhixun X., Weihua Z., Xu H., Jianxin H. Combustion of a single magnesium particle in water vapor // Chin. Phys. B. — 2015. — N 9. — P. 328–335.
- Corcoran A., Mercati S., Nie H., Milani M., Montorsi L., Dreizin E. L. Combustion of fine aluminum and magnesium powders in water // Combust. Flame. — 2013. — V. 160, N 10. — P. 2242–2250.
- Legrand B., Marion M., Chauveau C., Gokalp I., Shafirovich E. Ignition and combustion of levitated magnesium and aluminum particles in carbon dioxide // Combust. Sci. Technol. — 2001. — V. 165, N 1. — P. 151–174.
- Huang X., Xia Z., Huang L., Hu J. Experimental study on the ignition and combustion characteristics of a magnesium particle in water vapor // Sci. China. Technolog. Sci. 2012. V. 55, N 9. P. 2601–2608.
- Флорко А. В., Золотко А. Н., Каминская Н. В., Шевчук В. Γ. Спектральные исследования горения частиц магния // Физика горения и взрыва. — 1982. — Т. 18, № 1. — С. 17– 22.
- Lim J., Yang H., Yoon W., Lee D. H. Burning and ignition characteristics of single aluminum and magnesium particle // Proc. of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. — 2010. — P. 25–28.

- Czerwinski F. The reactive element effect on high-temperature oxidation of magnesium // Int. Mater. Rev. — 2015. — V. 60, N 5. — P. 264–296.
- Czerwinski F. The early stage oxidation and evaporation of Mg—9 % Al—1 % Zn alloy // Corrosion Sci. — 2004. — V. 46, N 2. — P. 377–386.
- Dreizin E. L., Hoffmann V. K. Experiments on magnesium aerosol combustion in microgravity // Combust. Flame. — 2000. — V. 122, N 1. — P. 20–29.
- Clark A., Moulder J., Runyan C. Combustion of bulk titanium in oxygen // Fifteenth Symp. (Int.) on Combustion. — Pittsburgh, PA: The Combustion Inst., 1975. — P. 489–499.
- Деревяга М. Е., Стесик Л. Н., Федорин
 Э. А. Экспериментальное исследование критических условий воспламенения магния // Физика горения и взрыва. 1978. Т. 14, № 6. С. 44–49.
- Yuasa S., Isoda H. Carbon dioxide breathing propulsion for a Mars airplane // Proc. of the 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. — 1989. — P. 1–6.

Поступила в редакцию 28.03.2018. После доработки 27.04.2018. Принята к публикации 11.07.2018.