УДК 628.23

РАСЧЕТ ПРОЧНОСТИ ЛОПАТКИ КАК ОРТОТРОПНОЙ ПЛАСТИНКИ ЛИНЕЙНО-ПЕРЕМЕННОЙ ТОЛЩИНЫ

В. И. Соловьев

Новосибирский военный институт, 630117 Новосибирск

Предложена методика расчета прочности лопатки вентиляционного агрегата, изготовленной из ортотропного материала. Проведено сравнение результатов, полученных по предложенной методике, с результатами, полученными по инженерной методике, и экспериментальными данными. Показано, что напряжения, вычисленные по предложенной расчетной модели, хорошо согласуются с полученными в эксперименте.

Одним из прогнозируемых расчетных критериев качества и надежности основных функциональных элементов конструкции машин является коэффициент запаса статической прочности [1]. Повышение достоверности его определения обеспечивается выбором адекватной модели и корректностью метода расчета на прочность.

В вентиляционных агрегатах для проветривания туннелей метрополитенов [2] одним из основных функциональных элементов является лопатка из композитного материала (пресс-материала ДСВ-4-Р-2М марки "П"). Этот материал обладает высокой прочностью, вибростойкостью, стойкостью к агрессивным средам, он технологичен и сравнительно недорог.

Конструкция рабочей лопатки в трех проекциях представлена на рис. 1. С целью повышения жесткости и прочности армирующий элемент 1 (наполнитель) выполнен в виде пучка элементарных нитей ($d \leq 11$ мкм) из стекловолокна с разнонаправленной укладкой. В качестве связующего 2 (матрицы) использована фенольно-формальдегидная смола.

Преимуществом данных лопаток по сравнению с листовыми металлическими являются меньшая трудоемкость изготовления, меньшая масса, большая коррозионная стойкость, высокие аэродинамические характеристики.

На рис. 2 изображены внешний контур лопатки 1 вентиляционных агрегатов и ее поперечное сечение $2 (\omega$ — угловая скорость вращения лопатки; φ — угол наклона срединной плоскости лопатки к плоскости вращения; r_y — радиус установки лопатки; $2b_0$ — ширина основания лопатки; h — высота пера лопатки; F_x , F_y — компоненты вектора центробежной силы).

В работе [3] изложен метод расчета деталей турбомашин, в том числе турбинных и компрессорных лопаток; геометрия, закрепление и условия нагружения этих лопаток и лопаток вентиляционных агрегатов различны.

У турбинных лопаток постоянного сечения максимальное напряжение σ_{\max} от центробежных сил испытывает корневое сечение лопатки [4]:

$$\sigma_{\max} = \frac{\rho \omega^2}{2\pi} S,\tag{1}$$

где ρ — плотность материала лопатки; $S = \pi (R^2 - r_y^2)$ — площадь проточной части рабочего колеса; R — наружный радиус лопаточного венца рабочего колеса.

Для турбинных лопаток с искривленной поверхностью и переменной площадью поперечного сечения величина растягивающих напряжений и область действия их максималь-

ной величины зависят от закона изменения площади поперечного сечения. При резком увеличении площади поперечного сечения в месте установки лопатки наибольшие растягивающие напряжения возникают не в корневом сечении, а ближе к срединному сечению лопатки [4].

Стеклопластиковая лопатка вентиляционного агрегата BOBP-21 имеет поперечное сечение, площадь которого меняется по линейному закону, и аэродинамическую поверхность геликоидальной формы с незначительным искривлением. Поэтому при расчете напряженного состояния, возникающего при действии центробежных сил, лопатка считается ортотропной пластинкой линейно-переменной толщины с локально защемленным контуром. При этом центробежная сила принимается распределенной по объему лопатки. Искривлением аэродинамической (внешней) поверхности пренебрегается.

Компоненты центробежных сил F_x , F_y (рис. 2) на оси x и y представляются в виде $F_x = \rho \omega^2 x$, $F_y = \rho \omega^2 y \cos \varphi$.

Для расчета напряженного состояния лопаток BOBP-21 при действии на них центробежных сил используются:

— соотношения обобщенного закона Гука ($\sigma_z = 0$) для ортотропной пластины

$$\varepsilon_x = \frac{\sigma_x}{E_x} - \frac{\nu_y}{E_y} \sigma_y, \qquad \varepsilon_y = \frac{\sigma_y}{E_y} - \frac{\nu_x}{E_x} \sigma_x, \qquad \gamma_{xy} = \frac{1}{G} \tau_{xy}; \tag{2}$$

— уравнение неразрывности деформаций

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \, \partial y};\tag{3}$$

— уравнения равновесия

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + F_x = 0, \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + F_y = 0. \tag{4}$$

В (2)–(4) E_x , E_y — модули Юнга ортотропного материала лопатки в продольном и поперечном направлениях; G — модуль сдвига; ν_x , ν_y — коэффициенты Пуассона в продольном и поперечном направлениях.

Уравнение совместности деформаций (3) с учетом (2) и дифференцирования по x и y можно записать относительно напряжений в виде

$$\frac{2}{E_x}\frac{\partial^2\sigma_x}{\partial y^2} + \left(\frac{1}{G} - \frac{2\nu_y}{E_y}\right)\frac{\partial^2\sigma_y}{\partial y^2} + \frac{2}{E_y}\frac{\partial^2\sigma_y}{\partial x^2} + \left(\frac{1}{G} - \frac{2\nu_x}{E_x}\right)\frac{\partial^2\sigma_x}{\partial x^2} + \frac{1}{G}\left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y}\right) = 0.$$
(5)

Для стеклопластиковой лопатки BOBP-21 как для пластинки переменной толщины уравнение (4) для единичных усилий имеет вид

$$\frac{\partial s_x}{\partial x} + \frac{\partial t_{xy}}{\partial y} + tF_x = 0, \qquad \frac{\partial t_{xy}}{\partial x} + \frac{\partial s_y}{\partial y} + tF_y = 0, \tag{6}$$

где $s_x = t\sigma_x$; $s_y = t\sigma_y$; $t_{xy} = t\tau_{xy}$; t — толщина пластинки. Для удовлетворения уравнениям (6) единичные усилия s_x , s_y , t_{xy} следует выразить через функцию усилий $\Phi(x, y)$:

$$s_x = \frac{\partial^2 \Phi}{\partial y^2} - t\rho\omega^2 \frac{x^2}{2}, \qquad s_y = \frac{\partial^2 \Phi}{\partial x^2} - t\rho\omega^2 \frac{y^2}{2}\cos\varphi, \qquad t_{xy} = -\frac{\partial^2 \Phi}{\partial x \partial y}.$$
 (7)

После соответствующих выкладок и упрощений уравнение (5) можно привести к виду

$$\frac{1}{E_y}\frac{\partial^4\Phi}{\partial x^4} + \left(\frac{1}{G} - \frac{\nu_y}{E_y} - \frac{\nu_x}{E_x}\right)\frac{\partial^4\Phi}{\partial x^2\partial y^2} + \frac{1}{E_x}\frac{\partial^4\Phi}{\partial y^4} = \left[\left(\frac{\nu_y}{E_y} - \frac{1}{2G}\right)(-\cos\varphi) - \left(\frac{\nu_x}{E_x} - \frac{1}{2G}\right) - \frac{1}{2G}(1+\cos\varphi)\right]t\rho\omega^2.$$
 (8)

Для компонент напряжений σ_x , σ_y , τ_{xy} из уравнений (6) с учетом (7) получим

$$\sigma_x = \frac{s_x}{t} = \frac{1}{t} \frac{\partial^2 \Phi}{\partial y^2} - \rho \omega^2 \frac{x^2}{2}, \qquad \sigma_y = \frac{s_y}{t} = \frac{1}{t} \frac{\partial^2 \Phi}{\partial x^2} - \rho \omega^2 \frac{y^2}{2} \cos \varphi,$$

$$\tau_{xy} = \frac{t_{xy}}{t} = -\frac{1}{t} \frac{\partial^2 \Phi}{\partial x \partial y}.$$
(9)

Задача определения напряжений в лопатке при действии центробежных сил сводится к решению уравнения (8) при следующих граничных условиях (см. рис. 2):

— в зоне хвостовика лопатки ($x = r_v, y = 0$)

$$\sigma_x = p = \frac{1}{t} \frac{\partial^2 \Phi}{\partial y^2} - \rho \omega^2 \frac{x^2}{2};$$

— вдоль хвостовой $(x = r_y)$ и периферийной $(x = r_y + h)$, за исключением точки $(r_y, 0)$, кромок лопатки

$$\sigma_x = 0, \qquad \frac{1}{t} \frac{\partial^2 \Phi}{\partial y^2} - \rho \omega^2 \frac{x^2}{2} = 0;$$

— вдоль оси лопатки ($y = b_0$)

$$\sigma_y = 0, \qquad \frac{1}{t} \frac{\partial^2 \Phi}{\partial x^2} - \rho \omega^2 \frac{y^2}{2} \cos \varphi = 0;$$

— вдоль хвостовой $(x = r_y)$ и периферийной $(x = r_y + h)$ кромок лопатки, а также вдоль ее оси $(y = b_0)$

$$\tau_{xy} = 0, \qquad -\frac{1}{t} \frac{\partial^2 \Phi}{\partial x \, \partial y} = 0$$

Решение уравнения (8) с указанными граничными условиями находилось конечноразностным методом. Шаблон конечно-разностной сетки с шагом λ показан на рис. 3. Заменяя в уравнении (8) частные производные конечно-разностными соотношениями, получим конечно-разностный аналог дифференциального уравнения в точке (x, y) вида

$$\frac{1}{E_y}\Phi_s - \left(\frac{4}{E_y} + 2b\right)\Phi_k + \left[6\left(\frac{1}{E_y} + \frac{1}{E_x}\right) + 4b\right]\Phi_i - \left(\frac{4}{E_y} + 2b\right)\Phi_l + \frac{1}{E_x}\Phi_v - \left(2b + \frac{4}{E_x}\right)\Phi_m - \left(2b + \frac{4}{E_x}\right)\Phi_n + \frac{1}{E_x}\Phi_u + b\Phi_o + b\Phi_r + \frac{1}{E_y}\Phi_t + b\Phi_q + b\Phi_p = a(x_i, y_i).$$
(10)

Граничные условия в конечно-разностной форме записываются в виде

$$\frac{1}{t\lambda^2} \left(\Phi_n - 2\Phi_i + \Phi_m \right) - \rho \omega^2 \frac{r^2}{2} = p, \qquad \frac{1}{t\lambda^2} \left(\Phi_n - 2\Phi_i + \Phi_m \right) - \rho \omega^2 \frac{x^2}{2} = 0,$$

$$\frac{1}{t\lambda^2} \left(\Phi_l - 2\Phi_i + \Phi_k \right) - \rho \omega^2 \frac{y^2}{2} \cos \varphi = 0, \qquad -\frac{1}{4t\lambda^2} \left(\Phi_p - \Phi_r + \Phi_o - \Phi_q \right) = 0.$$
(11)

Записывая уравнения (10), (11) для всех внутренних и граничных точек, с учетом симметрии лопатки (пластинки) получим систему линейных алгебраических уравнений относительно значений функций $\Phi(x_i, y_i)$. По найденным из решения этой системы уравнений значениям $\Phi(x_i, y_i)$ по формулам (9) можно вычислить напряжения σ_x , σ_y , τ_{xy} в узлах разностной сетки.

Расчет напряженного состояния был выполнен для лопатки из пресс-материала ДСВ-4-Р-2М марки "П" с объемной долей наполнителя, равной 0,65. Механические характеристики материала следующие: плотность $\rho = 1,7$ г/см³; предел прочности на растяжение $\sigma_{\rm p} = 75$ MH/м²; предел прочности на сжатие $\sigma_{\rm c} = 13\,000$ MH/м²; модули Юнга в продольном и поперечном направлениях $E_x = 52,1$ ГН/м², $E_y = 14$ ГН/м²; модуль сдвига G = 6,3 ГН/м²; коэффициенты Пуассона в продольном и поперечном направлениях $x_x = 0,056, \nu_y = 0,21.$

На рис. 4 показано распределение напряжений по длине лопатки. Кривые 1 и 2 построены по результатам численного расчета (кривая 1 соответствует расчету по предложенной методике, кривая 2 — по инженерной [1]). Напряжения отнесены к максимальному напряжению в корневом сечении лопатки $\sigma^* = r_c M \omega^2 / A$, где M — масса лопатки; A — площадь поперечного сечения лопатки в зоне хвостовика; r_c — расстояние от оси вращения рабочего колеса до центра тяжести лопатки. Точками обозначены экспериментальные данные, полученные В. В. Васильевым в Институте горной механики и технической кибернетики им. М. М. Федорова (г. Донецк).

Из приведенных на рис. 4 результатов следует, что отклонение напряжений, вычисленных по предложенной методике, от экспериментальных не превышает в среднем 11%. Определение напряжений с такой погрешностью допустимо при инженерных расчетах лопаток вентиляционных агрегатов. Максимальная погрешность при вычислении напряжений составляет 19% и достигается в срединных сечениях лопатки $(r - r_y)/h = 0.4 \div 0.5$. Использование инженерной методики расчета турбинных лопаток [1] для определения напряжений в стеклопластиковых лопатках вентиляционных агрегатов приводит к средней погрешности порядка 26%. Для уточнения расчетных значений напряжений в поперечных сечениях стеклопластиковых лопаток следует учесть нелинейный закон изменения площади поперечного сечения лопатки, а также структуру композитного материала.

Предложенная расчетная модель позволяет выбирать рациональные варианты конструкции лопаток рабочего колеса BOBP-21 и аналогичных лопаточных машин.

ЛИТЕРАТУРА

- 1. Конструирование машин / Под общ. ред. К. В. Фролова. М.: Машиностроение, 1994. Т. 2.
- 2. Соловьев В. И., Кузнецов Ю. Г., Попов Н. А. Решение задач вентиляции тоннелей на примере Новосибирского метрополитена // Трансп. стр-во. 1990. № 9. С. 28–30.
- Расчет на прочность деталей машин: Справ. / И. А. Биргер, Б. Ф. Шорр, Г. Б. Иосилевич. М.: Машиностроение, 1993.
- 4. Варваак П. М. Развитие и приложение метода сеток к расчету пластинок. М.: Наука, 1985.

Поступила в редакцию 17/V 2000 г.