СУЛЬФИДНЫЕ И САМОРОДНЫЕ ФОРМЫ ЗОЛОТА И СЕРЕБРА В СИСТЕМЕ Fe—Au—Ag—S

Г.А. Пальянова¹, К.А. Кох¹, Ю.В. Серёткин^{1,2}

¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптога, 3, Россия

² Новосибирский государственный университет, 630090, Новосибирск, ул. Пирогова, 2, Россия

Проведены эксперименты по кристаллизации расплавов в Fe-содержащих системах с исходными составами FeS₂Ag_{0.1-0.1x} Au_{0.1x} (x = 0.05, 0.2, 0.4 и 0.8) и массовыми отношениями Ag/Au от 10 до 0.1. Смеси элементарных веществ, взятых в соответствующих пропорциях, нагревали в вакуумированных кварцевых ампулах до 1050 °C, термостатировали в течение 12 ч, далее снижали температуру до 150 °C и отжигали 30 дней с последующим охлаждением до комнатной температуры. Твердофазные продукты экспериментов изучены методами оптической и электронной микроскопии, а также рентгенографически. В продуктах кристаллизации преобладают сульфиды железа. Они представлены моноклинным пирротином (Fe_{0.47}S_{0.53} или Fe₇S₈) и пиритом (Fe_{0.99}S_{2.01}). Сульфиды золота и серебра (низкотемпературные модификации) присутствуют во всех синтезированных образцах. В зависимости от исходных отношений серебра и золота образуются акантит (Ag/Au = 10), твердые растворы $Ag_{2,v}Au_vS$ (Ag/Au = 10, 2), ютенбогаардтит (Ag/Au = 2, 0.75) и петровскаит (Ag/Au = 0.75, 0.12). Для них характерны примеси железа до 3.3 мас. %. Ксеноморфные микро- (< 1—5 мкм) и макрозерна (5—50 мкм) Аи-Ад сульфидов расположены в пирите или между зернами пирита и пирротина. Высокопробное золото установлено в экспериментах с исходными составами при $Ag/Au \le 2$. Оно концентрируется в виде отдельных мелких и крупных округлых микровключений или в срастании с Аu-Аg сульфидами в пирите, реже сосредоточено на границе зерен между пиритом и пирротином. В его состав входит до 5.7 мас. % Fe. На основе изучения структуры синтезированных образцов и взаимоотношений фаз установлена последовательность их кристаллизации. Предполагается, что при ~ 1050 °C существует железо-сульфидный расплав L_1 (Fe,S >> Ag,Au), золото-серебро-сульфидный расплав L_2 (Au,Ag,S >> Fe) и L_8 (жидкая сера). При охлаждении из расплава L_1 происходит образование пирротина, при дальнейшем снижении температуры кристаллизуются высокопробное золото (микрозерна из L_1 , макрозерна из L_2) и Au-Ag сульфиды (микрозерна из L_1 , макрозерна из L_2). Пирит образуется после кристаллизации сульфидов золота и серебра по перитектической реакции (FeS + L₈ = FeS₂) при ~ 743 °C. Завершается процесс кристаллизацией элементарной серы. Сульфиды золота и серебра являются устойчивой формой и доминируют над самородной, особенно в пиритсодержащих рудах с высокими Ag/Au отношениями.

Система Fe—Au—Ag—S, железо-сульфидный расплав, пирит, пирротин, золото-серебросульфидный расплав, твердые растворы Ag_{2-x}Au_xS, ютенбогаардтит, петровскаит, высокопробное золото.

FORMATION OF GOLD-SILVER SULFIDES AND NATIVE GOLD IN THE SYSTEM Fe-Au-Ag-S

G.A. Pal'yanova, K.A. Kokh, and Yu.V. Seryotkin

We carried out experiments on crystallization of Fe-containing melts $FeS_2Ag_{0.1-0.1x}Au_{0.1x}$ (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050°C and kept at this temperature for 12 h; then they were cooled to 150°C, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly iron sulfides: monoclinic pyrrhotite (Fe_{0.47}S_{0.53} or Fe₇S₈) and pyrite (Fe_{0.99}S_{2.01}). Gold and silver sulfides (lowtemperature modifications) are present in all synthesized samples. Depending on initial Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions $Ag_{2,v}Au_vS$ (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- ($<1-5 \mu m$) and macrograins ($5-50 \mu m$) of Au-Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au \leq 2. It is present as fine and large rounded microinclusions or as intergrowths with Au-Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050°C, there are probably iron sulfide melt L_1 (Fe,S >> Ag,Au), gold-silver sulfide melt L_2 (Au,Ag,S >> Fe), and liquid sulfur L_s . On cooling, melt L_1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L_1 and micrograins from L_2) and Au-Ag sulfides (micrograins from L_1 and macrograins from L_2). Pyrite crystallizes after gold and silver sulfides by the peritectic reaction FeS + $L_{\rm S}$ = FeS₂ at ~743°C. Elemental sulfur is the last to crystallize. Gold and silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.

Fe–Au–Ag–S system, iron sulfide melt, pyrite, pyrrhotite, gold-silver sulfide melt, solid solutions $Ag_{2-x}Au_xS$, uytenbogaardtite, petrovskaite, high-fineness gold

введение

Сульфиды золота и серебра — ютенбогаардтит (Ag₃AuS₂) и петровскаит (AgAuS) — установлены в сульфидных рудах многих месторождений и рудопроявлений [Barton et al., 1978; Нестеренко и др., 1984; Castor, Sjoberg, 1993; Савва, Пальянова, 2007]. Размеры Аи-Ад сульфидов варьируют от субмикронных (< 0.1 мкм) до первых сантиметров, а обычно составляют доли миллиметра. Разработано несколько физико-химических моделей возможного генезиса золото-серебряных сульфидов, названных условно как гипогенная (гидротермальная и палеосольфатарная) [Пальянова, Савва, 2009; Савва и др., 2010а; Пальянова и др., 2011в] и гипергенная [Савва, Пальянова, 2007; Pal'yanova, Savva, 2007; Савва и др., 2010б]. Однако возможно их образование и из сульфидных расплавов $Ag_{2-x}Au_xS$ (0 < x < 1.7) [Barton, 1980; Пальянова и др., 2011а, б]. Аи-Ад сульфиды состава (Au, Ag, Fe), S обнаружены вместе с сульфидами железа, меди и никеля в углеродсодержащих хондритах [Geiger, Bischoff, 1995]. Ютенбогаардтит, обрастаемый электрумом, установлен в ийолитах и нефелиновых сиенитах Горячегорского массива [Сазонов и др., 2008]. В рудах месторождения Ориджинал Баллфорд в Канаде [Castor, Sjoberg, 1993] обнаружены структуры распада, представляющие мирмекитоподобные срастания самородного золота и ютенбогаардтита. Не только аргентит (акантит), но и ютенбогаардтит диагностированы в рудах месторождений Норильского района [Служеникин, Мохов, 2002, 2010; Спиридонов, 2010а, 6]. Высокая экстракционная способность Fe-содержащих сульфидных расплавов в отношении Au и Ag отмечена в работах [Wager, Brown, 1968; Czamanske et al., 1992; Рябчиков и др., 1999; Mungall et al., 2005; Barnes et al., 2006; Nadeau et al., 2010]. Цель статьи — изучить особенности поведения золота и серебра при кристаллизации высокотемпературных Fe-Ag-Au-S расплавов и выявить условия образования сульфидных и самородных форм благородных металлов. Исследование поведения Аи и Ад в системах с Fe и S представляет интерес с точки зрения выявления первичных форм их нахождения в сульфидах железа. Авторы надеются, что выполненная работа будет способствовать выявлению сульфидных форм золота и серебра (ютенбогаардтита, петровскаита) в сульфидсодержащих рудах. Система Fe—Ag—Au—S имеет упрощенный состав по сравнению с природными, но является промежуточным звеном при переходе к более сложным магматическим системам, содержащим Cu, Ni и другие элементы.

УСЛОВИЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

Авторами изучено поведение золота и серебра при кристаллизации расплавов в системе Fe—Au— Ag—S, в которой атомные отношения S/Fe были постоянными и равными 2, а суммарные количества благородных металлов (Au + Ag) не превышали 10 мас. % от общей суммы основных элементов (Fe + S). При этом концентрации золота и серебра превосходили максимальные пределы их вхождения в сульфиды железа [Миронов и др., 1987; Cook, Chryssoulis, 1990; Таусон и др., 1996, 2005; Чареев, 2006], что позволило получить их самостоятельные минеральные фазы в исследуемой системе. Количества благородных металлов были заданы в экспериментах в разных пропорциях с целью выявления влияния отношений Ag/Au на состав Au-Ag минерализации. Изученные составы системы Fe—Au—Ag—S формально могут быть описаны как 1 моль FeS₂ + 0.1 моль Ag_{1-x}Au_x или FeS₂Ag_{0.1-0.1x}Au_{0.1x}, где значения *x* (мольная доля золота в Au-Ag сплаве) были заданы равными 0.05, 0.2, 0.4 и 0.8, что соответствовало атомным отношениям от 19 до 0.25 и интервалам массовых отношений Ag/Au — 10, 2, 0.8 и 0.1.

В экспериментах в качестве исходных веществ были взяты золото и серебро (99.99 %), а также железо и сера (ОСЧ) (таблица). Суммарные навески составляли ~ 500 мг. Точность взвешивания компонентов ± 0.05 мг. Исходные вещества помещали в кварцевые ампулы, которые оснащали кварцевым стержнем для минимизации свободного объема. Отпайка ампул проводилась при остаточном давлении ~ 10^{-2} мм рт. ст. Образцы нагревали в течение 3 сут до 1050 °C, выдерживали в течение 12 ч, а затем охлаждали до 150 °C со скоростью 0.2° /мин и отжигали при данной температуре 30 сут с последующим выключением и остыванием печи до комнатной температуры (около 7 ч).

Диаграмма Fe—S (рис. 1, a) отражает поля устойчивости фаз в широком интервале температур [Waldner, Pelton, 2005]. Черная точка (см. рис. 1, a) соответствует атомному отношению S/Fe (33.33 at. %

	Исходный состав системы, твердые фазы	Содержания элементов в исходной системе и твердых фазах					
№ опыта		Ag	Au	Fe	S	Σ	Исходные массовые отношения Ag/Au, формульные единицы
1	<i>x</i> = 0.05	31.94	3.2	111.4	128.2	274.74	Ag/Au = 10
	Пирродии	0	0	59.98	38.85	98.83	$Fe_{0.47}S_{0.53}$
	пирротин	0	0	46.99	53.01	100.00	
	Пирит	0	0	46.89	54.73	101.62	$Fe_{0.99}S_{2.01}$
		0	0	32.97	67.03	100.00	
	(Ag,Au,Fe) ₂ S	79.00	15.10	1.9	14.05	99.65	$Ag_{1.6}Au_{0.2}Fe_{0.1}S_{1.1}$
		53.17	6.47	2.87	36.99	100.00	
	Акантит	90.2	0	0	11.15	101.35	Ag ₂ S
		70.64	0	0	29.36	100.00	
2	x = 0.2	24.5	11.2	111.4	128.4	275.5	Ag/Au = 2
	Пирротин	0	0	60.74	39.22	99.96	$Fe_{0.47}S_{0.53}$
		0	0	47.06	52.94	100.00	
	Пирит	0	0	47.45	54.09	101.54	$Fe_{1.00}S_{2.00}$
		0	0	33.49	66.51	100.00	
		55.41	29.2	1.09	11.69	97.39	
	Ютенбогаардтит	49.11	14.17	1.87	34.86	100.00	$Ag_{2.9}Au_{0.9}Fe_{0.1}S_{2.1}$
	(Ag,Au,Fe) ₂ S	51.59	34.64	0.94	14.68	101.84	$Ag_{1,3}Au_{0,5}Fe_{0,1}S_{1,2}$
		42.37	15.58	1.49	40.56	100.00	
	Au-Ag-Fe сплав	14.62	75.07	5.72	0	95.41	$Au_{0.62}Ag_{0.22}Fe_{0.16} (N_{Au} = 750 \%)$
		21.89	61.56	16.54	0	100.00	
3	x = 0.4	16.3	20.0	111.0	128.4	275.7	Ag/Au = 0.8
	Пирротин	0	0	59.65	38.96	98.61	Fe _{0.47} S _{0.53}
		0	0	46.78	53.22	100.00	
	Пирит	0	0	46.34	53.68	100.02	FeS ₂
		0	0	33.14	66.86	100.00	
	Петровскаит	31.69	57.1	0.91	12.58	102.28	AgAuS
		29.6	29.21	1.64	39.54	100.00	
	Ютенбогаардтит	55.07	31.72	2.15	12.83	101.77	$Ag_{2.8}Au_{0.9}Fe_{0.1}S_{2.1}$
		45.98	14.5	3.47	36.04	100.00	
	Au-Ag-Fe сплав	5.58	96.77	1.39	0	103.74	$Au_{0.87}Ag_{0.09}Fe_{0.04}$ ($N_{Au} = 930 \%$)
		9.11	86.51	4.38	0	100.00	
4	x = 0.8	4.4	32.7	111.2	128.3	276.6	Ag/Au = 0.1
	Пирротин	0	0	61.98	40.11	102.09	$Fe_{0.47}S_{0.53}$
		0	0	47.01	52.99	100.00	
	Пирит	0	0	46.18	52.36	98.54	FeS ₂
		0	0	33.61	66.39	100.00	
	Петровскаит	27.94	56.61	3.32	13.49	101.37	AgAuS
		28.52	29.87	3.84	37.77	100.00	
	Au-Ag-Fe сплав	5.36	92.07	2.51	0	99.94	$Au_{0.83}Ag_{0.09}Fe_{0.08}$ ($N_{Au} = 920 \%$)
		8.84	83.16	8	0	100.00	

Результаты рентгеноспектрального микроанализа твердых фаз экспериментов с исходным составом $FeS_2Ag_{0.1-0.1x}Au_{0.1x}$ (x = 0.05—0.8)

Примечание. Полужирный шрифт — в мг, курсив — мас. %, обычный — ат. %. Составы в процентах, а также в мольно-дольной шкале написаны с запасом, превышая на одну цифру значимые результаты.

Рис. 1. Диаграммы устойчивости фаз системы Fe—S [Waldner, Pelton, 2005] в интервале 0—1200 °C (*a*) и составы фаз в системе Au—Ag—S, устойчивые при комнатной температуре [Вол, Коган, 1976; Barton, 1980; Osadchii, Rappo, 2004] (*δ*).

L — расплав, *L*_S — жидкая сера, Ро — пирротин, Ру — пирит. Черная точка соответствует исходным атомным отношениям Fe, S в экспериментах и максимальной температуре нагрева ампул (*a*), ромбы — исходным атомным отношениям Au и Ag (*б*).

Fe, 66.66 at. % S) в экспериментах и максимальной температуре нагрева ампул (~ 1050 °C). Атомное отношение общей суммы металлов к сере (Fe + Ag + Au)/S составляло 1.8, что меньше, чем Fe/S в пирите, но больше, чем в пирротине. Фазы системы Ag—Au—S, устойчивые при комнатной температуре, показаны на рис. 1, δ [Вол, Коган, 1976; Barton, 1980; Osadchii, Rappo, 2004]. Точки соответствуют исходным соотношениям Ag и Au в исследуемой системе без учета S и Fe. Paзрез Ag₂S—Au₂S, отражающий фазовые взаимоотношения в широком интервале температур, основанные на данных [Barton, 1980], здесь не приводится. Он идентичен рис. 1 из недавно опубликованной работы по системе Ag—Au—S [Пальянова и др., 20116].

Температура отжига была 150 °C, что ниже температур фазовых превращений сульфидов серебра и золота (α↔β переход при 307 °C для петровскаита, 187 °C — для ютенбогаардтита и 177 °C — для акантита). Такая температура была выбрана с целью упорядочения структуры микрокристаллов низкотемпературных полиморфов петровскаита и ютенбогаардтита. Кроме того, проведение экспериментов в системе Fe—Ag—Au—S в идентичном температурном режиме, что и экспериментов для системы Ag— Au—S [Пальянова и др., 2011а,б], позволяло сравнить результаты и выявить роль сульфидов железа и серы в процессах образования сульфидных и самородных форм золота и серебра.

Для определения оптимальной длительности отжига на примере системы Au—Ag—S при исходном составе $Ag_{1.6}Au_{0.4}S$ была проведена серия кинетических экспериментов длительностью 7, 14, 32 и 130 сут, а также опыт без отжига. Количество, состав и структура синтезированных фаз не меняются при длительности отжига 14 сут и более. Образцы, полученные без отжига и при отжиге длительностью 7 сут, характеризуются неоднородностью состава по данным микрозондового анализа и содержат дополнительные фазы, близкие к исходному составу системы $Ag_{1.6}Au_{0.4}S$ [Пальянова и др., 2011б].

Полированные аншлифы готовили из 1/3 каждого образца. Твердофазные продукты экспериментов изучены методами оптической и электронной микроскопии. Химический состав фаз определяли на электронном сканирующем микроскопе JSM-6510LV (JEOL Ltd) с энергодисперсионным спектрометром INCA Energy 350 Oxford Instruments Analytical (ИГМ СО РАН). Условия анализа: ускоряющее напряжение 20 кВ, ток зонда ~ 1 нА, живое время набора спектров в режиме анализа — 15 с, в режиме картирования рентгеновского излучения — до 3000 с. В качестве образцов сравнения использованы: на Au и Ag сплав Au-Ag 750 ‰, на S и Fe — CuFeS₂. Рассматривались относительно крупные зерна размером больше 10 мкм, чтобы избежать фоновых количеств элементов, присутствующих в окружающих фазах. Точность микрорентгеноспектрального анализа для Au оценивается в 1.5 отн. %, Fe, Ag — 1 отн. %, S — 0.5 отн. %. Предел обнаружения Au и Ag, присутствующих в виде примесей в сульфидах железа, составляет 0.6 мас. %.

Рентгенографический фазовый анализ синтезированных фаз выполнен с использованием рентгеновского порошкового дифрактометра ARL X'TRA фирмы Thermo Scientific с твердотельным кремнийлитиевым детектором с Пельтье-охлаждением. Накопление дифракционных данных проводилось в геометрии θ - θ в интервале углов 5—60° 2 θ с шагом 0.02° и временем накопления в точке 10 с. Результаты обработаны в программе WinXRD 2.0-6 (Thermo Scientific). При фазовом анализе использована база данных PDF-4 Minerals [The Powder Diffraction..., 2006].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ТВЕРДЫХ ФАЗ ЭКСПЕРИМЕНТОВ

Составы твердых фаз, полученных в экспериментах, приведены в таблице. Следует отметить, что основными фазами во всех опытах являются сульфиды железа (рис. 2—5), представленные пирротином (формульный состав — Fe_{0.47}S_{0.53} или Fe₇S₈) и пиритом (состав соответствует стехиометрическому — FeS₂). Неравномерно-зернистая структура синтезированных образцов хорошо видна на рис. 2, a—c; 3, δ —e и 5, a, δ . Пирротин образует крупные идиоморфные зерна, между которыми расположены мелкозернистые агрегаты пирита и Au-Ag сульфидов (см. рис. 2, a; 3, δ), а также Au-Ag сплавов (см. рис. 2, δ —c; 3, s—e). Граница пирротина с пиритом резорбирована и характеризуется явными признаками разъедания (см. рис. 2, a—c; 3, δ —e). Максимальные размеры зерен пирротина достигают 300 мкм, пирита — 100 мкм, сульфидов золота и серебра — 50 мкм. Зерна пирита идиоморфны. Мелкие включения пирротина неправильной формы иногда встречаются в пирите (см. рис. 3, a). Пирит также заполняет тонкие трещины в пирротине (см. рис. 3, d, e). Агрегаты микрокристаллов сульфидов железа установлены на поверхности образцов (см. рис. 4, a—e). Для пирита характерны кубооктаэдры (см. рис. 4, δ), а для пирротина — псевдогексагональные пирамиды или призмы (см. рис. 4, e, c). Важно отметить, что пирротин не содержит микропримесей золота и серебра, либо их содержание ниже предела чувствительности рентгеноспектрального микроанализа.

Рис. 2. Крупные и мелкие зерна Au-Ag сульфидов и самородного золота, расположенные в пирите и межзерновом пространстве сульфидов железа в экспериментах с разными исходными отношениями серебра и золота (Ag/Au):

а — 10, *б* — 2, *в* — 0.8, *г* — 0.1. Фото в отраженных электронах.

Рис. 3. Ксеноморфные зерна сульфидов золота и серебра по отношению к пириту, а также эмульсионная вкрапленность самородного золота и Au-Ag сульфидов в центре и краевых частях пирита параллельно границе зерен пирит/пирротин в экспериментах:

 $a, \delta - Ag/Au = 10, s, z - 2, \delta - 0.8, e - 0.1$. Фото в отраженном свете (оптический микроскоп Olympus BX51).

Зерна Au-Ag сульфидов ксеноморфны и расположены между зернами пирита или пирита и пирротина (см. рис. 2, *a*—*e*; 3, *a*—*e*; 4, *a*—*e*; 5, *a*, *б*). Кроме того, Au-Ag сульфиды в виде отдельных округлых зерен или в срастании с Au-Ag сплавами образуют эмульсионную вкрапленность в пирите (см. рис. 2, *a*—*e*; 3, *a*—*e*; 4, *a*—*e*). Au-Ag сплавы установлены только в опытах 2—4 (Ag/Au \leq 2) (см. таблицу). Количество и размеры зерен Au-Ag сплавов увеличиваются по мере уменьшения Ag/Au отношений в исходной системе (см. рис. 2, *б*—*e*; 3, *d*, *e*). Мелкие зерна Au-Ag сплавов (размер \leq мкм) сосредоточены в пирите преимущественно вдоль границы с пирротином (см. рис. 2, *б*—*e*; 3, *z*—*e*). В центральной части пирита локализованы как мелкие, так и крупные (до 30 мкм) округлые зерна Au-Ag сплавов, нередко в срастании с сульфидами золота и серебра (см. рис. 2, *d*, *e*; 3, *d*, *e*). Содержание железа в крупных зернах Au-Ag сплавов не превышает 5.7 мас. %. Пробность высокопробного золота с учетом присутствия железа ($N_{Au} = = Au/(Au + Ag + Fe) \cdot 1000$ %) возрастает от 750 в опыте 2 до 920—930 — в экспериментах 3 и 4.

Рис. 4. Агрегаты кристаллов сульфидов железа, золота и серебра на поверхности образцов, полученных в экспериментах.

а—*е* — см. на рис. 3. Фото в отраженных электронах.

Состав Аu-Ag сульфидов, прежде всего, зависит от исходных Ag/Au отношений в экспериментах (см. таблицу). Сульфид серебра, близкий к стехиометрическому составу акантита, установлен в опыте 1 (Ag/Au = 10). Твердые растворы Au-Ag сульфидов определены в опытах 1 и 2: Ag_{1.6}Au_{0.2}Fe_{0.1}S_{1.1} и Ag_{1.3}Au_{0.5}Fe_{0.1}S_{1.2} соответственно. В опытах 2 и 3 получены сульфиды золота и серебра, составы которых близки к ютенбогаардтиту. Au-Ag сульфиды, совпадающие в пределах ошибки со стехиометрическим составом петровскаита, установлены в опытах 3 и 4. В сульфидах золота и серебра присутствуют примеси железа, концентрация которых не превышают 3.3 мас. %. На рис. 4, *a*—*e*; 5, *б* показаны микрокристаллы сульфидов золота и серебра, обнаруженные на поверхности твердофазовых продуктов опыта. Чаще всего они характеризуются округлой формой (см. рис. 4, *б*—*e*) и расположены между кристаллами пирита, реже пирротина. Хорошо ограненные кристаллы Au-Ag сульфидов (см. рис. 4, *a*, *b*) типичны для

Рис. 5. Неравномерно-зернистая структура синтезированного образца из опыта 4 с крупными идиоморфными зернами пирротина, между которыми расположены мелкозернистые агрегаты пирита, петровскаита и высокопробного золота.

a — фото в отраженном свете, николи ×; б — фото в отраженных электронах.

экспериментов с наиболее высокими содержаниями серебра (Ag/Au \geq 2) и представляют собой, по-видимому, параморфозы низкотемпературных модификаций по высокотемпературным. Во всех экспериментах на поверхности твердых фаз или на стенках ампул присутствует незначительное количество элементарной серы.

РЕНТГЕНОДИФРАКЦИОННЫЕ ДАННЫЕ

Во всех исследованных образцах обнаружены пирит FeS_2 ([The Powder Diffraction..., 2006], карта 04-004-6511) и моноклинный пирротин Fe_7S_8 (карта 00-029-0723). Образец из опыта 1 содержит также акантит (карта 004-008-8450). На дифракци-

онном профиле образца из опыта 2 присутствуют малоинтенсивные диффузные пики, соответствующие рефлексам ютенбогаардтита (00-020-0461). В образцах опытов 3 и 4 наблюдаются петровскаит (карта 00-019-1146) и металлическая фаза, пики которой хорошо соотносятся с рефлексами серебра (карта 04-007-7997), золота (карта 04-007-8000) или их сплавов. Металлическая фаза присутствует в небольшом количестве в опыте 3 и в существенно большем — в опыте 4; петровскаит же, напротив, содержится в существенно большей концентрации в опыте 3. Пики малой интенсивности на дифрактограммах образцов из всех четырех опытов могут быть приписаны сере.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При интерпретации результатов экспериментов исследуемой четверной системы Fe—Ag—Au—S мы опирались на известные данные по бинарным и тройным подсистемам, а также температурам плавления возможных твердых фаз [Taylor, 1970a,6; Вол, Коган, 1976; Barton, 1980; Воган, Крейг, 1981; Barnes, 1997; Waldner, Pelton, 2005]. Например, температура плавления гексагонального пирротина составляет 1195 °C. Однако в системе Fe—S для составов, обогащенных серой (> 50 ат. % S), куда попадает и заданный исходный состав в экспериментах — 33.33 ат. % Fe и 66.66 ат. % S (если не учитывать Ag и Au), его температура плавления снижается до ~ 1100 °C [Waldner, Pelton, 2005]. В тройной системе Ag—Au—S, согласно данным [Barton, 1980], при температурах выше 700—840 °C в зависимости от количественных соотношений элементов образуется Au—Ag—S расплав. Для составов, богатых серебром, при охлаждении Au-Ag-S расплавов формируются твердые растворы сульфидов золота и серебра — Ag_{2-x}S ($x \rightarrow 0$)—Au_{0.1}Ag_{1.9}S и Au_{0.1}Ag_{1.9}S—Au_{0.4}Ag_{1.6}S с гране- и объемно-центрированной кубическими ячейками соответственно. В системах, богатых золотом, кристаллизуется высокопробное золото и твердый раствор сульфидов золота и серебра с примитивной кубической ячейкой.

Мы предполагаем, по аналогии с системами Pb—Ag—FeS и Pb—Au—FeS [Рыбкин и др., 2006; Raghavan, 2009], присутствие несмешивающихся жидкостей — железо-сульфидного расплава с примесями благородных металлов — L_1 (Fe,S >> Ag > Au) и золото-серебро-сульфидного расплава, содержащего примеси железа, — L_2 (Ag,Au,S >> Fe). В соответствии с диаграммой Fe—S (см. рис. 1, *a*) выбранный состав попадает в область расслоения с участием жидкой серы, поэтому в системе, по-видимому, присутствует третья фаза L_S . При охлаждении из расплава L_1 происходит образование гексагонального пирротина (см. рис. 1, *a*). Растворенные в L_1 благородные металлы кристаллизуются на заключительной стадии, образуя в пирротине ксеноморфные мелкие зерна самородного золота и сульфидов золота и серебра, которые хорошо видны на рис. 2, *a*—*d*. При дальнейшем понижении температуры идет образование пирита по перитектической реакции (FeS + L_S = FeS₂) (см. рис. 1, *a*). Это подтверждают резорбированная поверхность пирротина во всех экспериментах и идиоморфные зерна пирита, нарастающие на более крупные зерна пирротина (см. рис. 2, *a*—*c*; 3, *б*—*e*). В результате перитектической реакции микровключения самородного золота и сульфидов золота и серебра в краевых частях пирротина оказываются внутри зерен пирита, располагаясь параллельно границе зерен пирит/пирротин. Крупные и мелкие округлые зерна Fe-содержащего золота (см. рис. 2, δ —*e*) и сульфидов золота и серебра (см. рис. 2, *a*—*d*; 3, *a*—*e*), образующие эмульсионную вкрапленность в центральной части зерен пирита, являются продуктами распада твердых растворов, кристаллизующихся из золото-серебро-сульфидного расплава L_2 (Au,Ag,S > Fe). При температурах 317 и 113 °C имеют место переходы гексагонального пирротина в моноклинный и жидкой серы в твердую соответственно (см. рис. 1, *a*). Сера в виде капель на стенках ампул и на поверхности образцов является последней твердой фазой. Переход высокотемпературных полиморфов сульфидов золота и серебра в низкотемпературные (α → β) происходит в интервале 178— 307 °C [Barton, 1980]. В результате отжига (150 °C) происходит упорядочение структуры низкотемпературных полиморфных модификаций Au-Ag сульфидов и образование микрокристаллов на поверхности образцов (см. рис. 4, *a*—*e*).

Таким образом, результаты экспериментов свидетельствуют о возможности кристаллизации из расплавов в системе с исходным составом FeAg_{0.1-0.1x}Aug_{0.1x}S₂ сульфидов Au и Ag. В системах, богатых серебром (Ag/Au > 2), самородное золото отсутствует. По мере увеличения золота в системе Fe—Ag— Au—S кристаллизуется только высокопробное золото (>750 ‰). Основная часть Au-Ag фаз образуется из золото-серебро-сульфидного расплава L_2 (Au,Ag,S > Fe), существующего автономно от железо-сульфидного расплава L_1 (Fe,S >> Ag > Au). Их кристаллизация происходит на промежуточных стадиях эволюции сульфидных расплавов после пирротина, но до пирита. Результаты экспериментов объясняют низкие содержания Au и Ag в пирротинах сульфидных руд месторождений Норильского района [Служеникин, Мохов, 2002; Barnes et al., 2006] и позволяют предположить повышенные концентрации золота и серебра в пиритсодержащих рудах. Полученные данные также подтверждают модель фракционной кристаллизации сульфидных расплавов, в которой благородные металлы образуют собственные минеральные фазы [Ebel, Naldrett, 1996, 1997; Синякова и др., 2006]. В природных рудообразующих процессах при кристаллизации сульфидных расплавов возможно образование Au-Ag сульфидов и высокопробного золота. Исходя из кларковых соотношений Ag/Au > 10, сульфиды золота и серебра будут доминирующей формой. По мнению авторов, Au-Ag сульфиды могут иметь более широкое распространение и присутствовать практически во всех пиритсодержащих рудах месторождений разного генезиса.

ОСНОВНЫЕ ВЫВОДЫ

1. В системе Fe—Au—Ag—S в зависимости от Ag/Au образуются сульфиды золота и серебра разного состава, содержащие примеси железа до 3.3 мас. %.

2. В системах, богатых золотом, вместе с сульфидами золота и серебра формируется высокопробное золото. Минимальная пробность самородного золота, образующегося при кристаллизации золотосеребро-сульфидного расплава, составляет 750 ‰ (с учетом присутствия примеси железа до 5.7 мас. %).

3. При 1050 °С наряду с железо-сульфидным расплавом с примесями благородных металлов (Fe,S,Ag >> Au) автономно существует и золото-серебро-сульфидный расплав, содержащий золото, серебро, серу и небольшие количества железа (Au,Ag,S >> Fe). При охлаждении этих расплавов последовательно кристаллизуются пирротин, при дальнейшем снижении температуры — высокопробное золото (при Ag/Au ≥ 2), Au-Ag сульфиды (микро- и макрозерна), пирит и сера.

4. Сульфиды золота и серебра являются устойчивой формой и доминируют над самородной, особенно в пиритсодержащих рудах с высокими Ag/Au отношениями.

Авторы статьи признательны зав. лабораторией рентгеноспектральных методов анализа (ИГиМ СО РАН) Н.С. Карманову за помощь в работе.

Работа выполнена при поддержке РФФИ (грант № 11-05-00504а).

ЛИТЕРАТУРА

Воган Д., Крейг Дж. Химия сульфидных минералов. М., Наука, 1981, 575 с.

Вол А.Е., Коган И.К. Строение и свойства двойных металлических систем. Т. 3. М., Наука, 1976, 814 с.

Миронов А.Г., Таусон В.Л., Гелетий В.Ф. Металличность связи как фактор, обусловливающий вхождение золота в структуры сульфидных минералов // Докл. АН СССР, 1987, т. 293, № 2, с. 447—449.

Нестеренко Г.В., Кузнецова А.П., Пальчик Н.А., Лаврентьев Ю.Г. Петровскаит AuAg(S,Se), новый селеносодержащий сульфид золота и серебра // Зап. ВМО, 1984, № 5, с. 602—607.

Пальянова Г.А., Савва Н.Е. Особенности генезиса сульфидов золота и серебра месторождения Юное (Магаданская область, Россия) // Геология и геофизика, 2009, т. 50 (7), с. 759—777.

Пальянова Г.А., Кох К.А., Серёткин Ю.В. Образование сульфидов золота и серебра в системе Au—Ag—S // Геология и геофизика, 2011а, т. 52 (4), с. 568—576.

Пальянова Г.А., Кох К.А., Серёткин Ю.В. Образование сульфидов золота и серебра из расплавов в системе Ag—Au—S (экспериментальные данные) // Докл. РАН, 2011б, т. 436, № 1, с. 89—93.

Пальянова Г.А., Савва Н.Е., Округин В.М. Генезис золото-серебряных сульфидов и селенидов месторождений Северо-Востока России // Тезисы докладов горно-геологической конференции «Золото северного обрамления Пацифики», (Магадан, 3—5 сентября 2011 г.), Магадан, СВКНИИ ДВО РАН, 2011в, с. 33—35.

Рыбкин С.Г., Николаев Ю.Л., Баранкевич В.Г. Изотермические сечения диаграмм Pb—Au—FeS и Pb—Ag—FeS при 1473 К // Журнал неорганической химии, 2006, т. 51, № 3, с. 470—473.

Рябчиков И.Д., Орлова Г.П., Бабанский А.Д., Магазина Л.О., Цепин А.И. Халькофильные металлы в процессах мантийного магмообразования и формирования ядра Земли // Российский журнал наук о Земле, 1999, т. 1, № 6, http://elpub.wdcb.ru/journals/rjes/rus/v01/rje99023/htm#chap00.

Савва Н.Е., Пальянова Г.А. Генезис сульфидов золота и серебра на месторождении Улахан (северо-восток России) // Геология и геофизика, 2007, т. 48 (10), с. 1028—1042.

Савва Н.Е., Пальянова Г.А., Бянкин М.А. О возможном механизме образования ютенбогаардтита и фишессерита на месторождении Купол // Материалы Всероссийской конференции «Самородное золото: типоморфизм минеральных ассоциаций, условия образования месторождений, задачи прикладных исследований». М., ИГЕМ РАН, 2010а, т. II, с. 173—175.

Савва Н.Е., Пальянова Г.А., Колова Е.Е. Минералы золота и серебра в зоне вторичного сульфидного обогащения (рудопроявление Крутое, северо-восток России) // Вестн. СВНЦ ДВО РАН, 2010б, № 1, с. 33—45.

Сазонов А.М., Звягина Е.А., Леонтьев С.И., Вульф М.В., Полева Т.В., Чекушин В.С., Олейникова Н.В. Ассоциации микро- и наноразмерных обособлений благороднометалльного комплекса в рудах // Журнал Сиб. федерального ун-та. Серия «Техника и технологии», 2008, № 1, с. 17—32.

Синякова Е.Ф., Косяков В.И., Павлюченко В.С. Поведение рудных компонентов при направленной кристаллизации расплава с составом, близким к природной Fe-Cu-Ni-S магматической жидкости, с микропримесями Pt, Pd, Rh, Ru, Ir, Au, Ag и Co // Вестн. отделения наук о Земле РАН, 2006, № 1 (24), http://www.scgis.ru/russian/cp1251/h dgggms/1-2006/informbul-1_2006/term-46.pdf.

Служеникин С.Ф., Мохов А.В. Золото и серебро в месторождениях Норильского района // Материалы Всероссийского симпозиума «Геология, генезис и вопросы освоения комплексных месторождений благородных металлов», 2002, М., ИГЕМ РАН, с. 326—330.

Служеникин С.Ф., Мохов А.В. Золото и серебро в Pt-Cu-Ni и Pt рудах Норильского района, распределение и формы нахождения // Материалы Всероссийской конференции «Самородное золото: типоморфизм минеральных ассоциаций, условия образования месторождений, задачи прикладных исследований». 2010, М., ИГЕМ РАН, т. II, с. 212—214.

Спиридонов Э.М. Минералы ряда золото-серебро магматогенных норильских сульфидных руд // Материалы Всероссийской конференции «Самородное золото: типоморфизм минеральных ассоциаций, условия образования месторождений, задачи прикладных исследований». М., ИГЕМ РАН, 2010а, т. II, с. 229—232.

Спиридонов Э.М. Обзор минералогии золота в ведущих типах Au минерализации // Золото Кольского полуострова и сопредельных регионов. Труды Всероссийской (с международным участием) научной конференции, посвященной 80-летию Кольского НЦ РАН. Апатиты, 26—29 сентября 2010 г. / Ред. Ю.Л. Войтеховский. Апатиты, Изд-во К & M, 2010б, с. 143—171.

Спиридонов Э.М., Гриценко Ю.Д. Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле. М., Научный мир, 2009, 217 с.

Таусон В.Л., Миронов А.Г., Смагунов Н.В., Бугаева Н.Г., Акимов В.В. Золото в сульфидах: состояние проблемы форм нахождения и перспективы экспериментальных исследований // Геология и геофизика, 1996, т. 37 (3), с. 3—14.

Таусон В.Л., Пастушкова Т.М., Бессарабова О.И. О пределе и форме вхождения золота в гидротермальный пирит // Геология и геофизика, 1998, т. 39 (7), с. 924—933.

Таусон В.Л., Смагунов Н.В., Пастушкова Т.М. О вхождении золота в пирротин и влиянии неавтономных фаз на его распределение // Геохимия, 2005, № 1, с. 96—100.

Чареев Д.А. Термодинамика пирит-пирротинового равновесия при температуре 500—730 К и давлении 1—5000 бар в системе Ag—Fe—S и *T-P* параметры образования металлического серебра: Автореф. дис. ... к.х.н. Черноголовка, ИЭМ РАН, 2006, 16 с.

Barnes H.L. Geochemistry of hydrothermal ore deposits. Third edition. New York, John Wiley & Sons, 1997, 992 p.

Barnes S.-J., Cox R.A., Zientek M.L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezhy Creek Mine, Noril'sk, Russia // Contr. Miner. Petrol., 2006, v. 152, p. 187–200.

Barton M.D. The Ag-Au-S system // Econ. Geol., 1980, v. 75, p. 303—316.

Barton M.D., Kieft C., Burke E.A.J., Oen I.S. Uytenbogaardtite, a new silver-gold sulfide // Canad. Miner., 1978, v. 16, p. 651–657.

Castor S.B., Sjoberg J.J. Uytenbogaardtite, Ag₃AuS₂, in the Bullford mining district, Nevada // Canad. Miner., 1993, v. 31, p. 89–98.

Cook N.J., Chryssoulis Sl. Concentrations of 'invisible gold' in the common sulfides // Canad. Miner., 1990, v. 28, p. 1–16.

Czamanske G.K., Kunilov V.E., Zientek M.L., Cabri L.J., Likhachev A.P., Calk L.C., Oscarson R.L. A proton-microprobe study of magmatic sulfide ores from the Noril'sk-Talnakh district, Siberia // Can. Miner., 1992, v. 30, p. 249–287.

Ebel D.S., Naldrett A.J. Fractional crystallization of sulfide ore liquids at high temperature // Econ. Geol., 1996, v. 91, p. 607—621.

Ebel D.S., Naldrett A.J. Crystallization of sulfide liquids and the interpretation of ore composition // Canad. J. Earth Sci., 1997, v. 34, p. 352—365.

Geiger T., Bischoff A. Formation of opaque minerals in CK chondrites // Planet. Space Sci., 1995, v. 43, № 3—4, p. 485—498.

Mungall J.E., Andrews D.R.A., Cabri L.J., Sylvester P.J., Tubrett M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities // Geochim. Cosmochim. Acta, 2005, v. 69, p. 4349—4360.

Nadeau O., Williams-Jones A., Stix J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids // Nature Geoscience, 2010, v. 3, p. 501—505.

Osadchii E.G., Rappo O.A. Determination of standard thermodynamic properties of sulfides in the Ag-Au-S system by means of a solid-state galvanic cell // Amer. Miner., 2004, v. 89, p. 1405—1410.

Pal'yanova G.A., Savva N.E. Genesis of Au-Ag sulfides at the Ulakhan deposit (Russia) // Proceedings of the 12th International symposium on water-rock interaction / Eds. T. Bullen, Y. Wang. China, Kunming, 2007, v. 1, p. 377—380.

Raghavan V. Au-Fe-Pb-S (gold-iron-lead-sulphur) // J. Phase Equilibria and Diffusion, 2009, v. 30, № 1, p. 111.

Taylor L.A. The system Ag-Fe-S: phase equilibria and mineral assemblages // Miner. Depos., 1970a, v. 5, p. 41—58.

Taylor L.A. The system Ag-Fe-S: phase relations between 1200 and 700 $^{\circ}$ C // Metall. Trans., 1970b, v. 1, p. 2523—2529.

The Powder Diffraction File PDF-4+, International Centre for Diffraction Data (ICDD), Release 2006. **Wager L.R., Brown G.M.** Layered igneous complexes. Edinburgh, Oliver and Boyd, 1968, 588 p.

Waldner P., Pelton A.D. Thermodynamic modeling of the Fe-S system // J. Phase Equilibria and Diffusion, 2005, v. 26, № 1, p. 23—38.

Рекомендована к печати 15 июля 2011 г. А.С. Борисенко Поступила в редакцию 5 июля 2010 г., после доработки — 6 мая 2011 г.