2007. Том 48, № 5

Сентябрь – октябрь

C. 890 – 898

УДК 538.113;548.3

ПАРАМАГНИТНЫЕ ЦЕНТРЫ, СВЯЗАННЫЕ С ПРИМЕСЯМИ Al, Sc, In, Nb, В КРИСТАЛЛАХ КТІОАsO₄

© 2007 Р.И. Машковцев*

Институт геологии и минералогии СО РАН, Новосибирск, Россия

Статья поступила 6 декабря 2006 г.

Методом электронного парамагнитного резонанса (ЭПР) исследованы кристаллы КТіOAsO₄ (КТА) с примесями Al, Sc, In и Nb. После воздействия ионизирующей радиации на кристаллы КТА наблюдаются парамагнитные центры O⁻, связанные с захватом дырки ионами кислорода. Такие центры, как правило, нестабильны при комнатной температуре и медленно отжигаются в течение двух недель. В КТА ионы кислорода являются мостиковыми между двумя катионами. Вблизи примеси две *p*орбитали атомов кислорода участвуют в образовании ковалентных связей с катионами, а третья *p*-орбиталь остается несвязанной и под воздействием радиации захватывает дырку, образуя парамагнитный центр Mⁿ⁺ — O⁻ — M⁽ⁿ⁻¹⁾⁺ (здесь Mⁿ⁺ — катион решетки, а M⁽ⁿ⁻¹⁾⁺ — ион примеси Al, In, Sc или Nb). В исследованных центрах специфическое главное направление *g*-фактора *g* ~ 2 перпендикулярно плоскости Mⁿ⁺ — O⁻ — M⁽ⁿ⁻¹⁾⁺, а главное значение *g*_{макс} лежит в этой плоскости. Выделенное направление сверхтонкого взаимодействия с ионом примеси является близким направлению связи O⁻ — M⁽ⁿ⁻¹⁾⁺. Обсуждаются найденные параметры спектров ЭПР и модели шести дырочных центров.

Ключевые слова: ЭПР, дырочные центры, КТіОАsO₄ (КТА).

Титанил фосфата калия KTiOPO4 (KTP) и его аналоги представляют интерес как оптические кристаллы с выраженными нелинейными свойствами. Кристаллы KTiOAsO₄ (KTA), так же как и КТР, имеют орторомбическую симметрию mm2 (пространственная группа $Pna2_1$) с параметрами решетки: a = 13, 13, b = 6,58 и c = 10,78 Å [1,2]. Ионы титана, обозначенные как Ti1 и Ti2, располагаются в двух кристаллографически неэквивалентных позициях структуры КТА. Каждый ион титана находится в искаженной октаэдрической координации из атомов кислорода. Четыре октаэдрических атома кислорода являются общими с тетраэдрами AsO₄, в то время как два других, обозначенные как ОТ1 и ОТ2, включены в бесконечную цепь из ионов титана и кислорода (рис. 1). Отличие между Ti1 и Ti2 состоит в том, что два цепочечных атома кислорода, связанные с Ti1, образуют угол OT1—Ti1—OT2, близкий к 90°, тогда как два атома кислорода, связанные с Ti2, образуют угол ОТ1-Ti2-OT2, близкий к 180°. Каждый ион титана Ti2 имеет короткую связь (~1,74 Å) с одним атомом кислорода в цепи Ti—O, тогда как *транс*-связь Ті—О является длинной (~2.1 Å). Также имеются две различные позиции для ионов щелочи и две для ионов As. Ионы кислорода занимают 10 кристаллографически неэквивалентных позиций. Вместе эти ионы занимают 16 различных позиций в кристалле КТА, единичная ячейка которого содержит 64 иона.

Методы выращивания кристаллов, их свойства и применение изоморфных соединений КТР описаны в обзоре [3].

Парамагнитные центры в семействе кристаллов КТР. Известно, что ЭПР является эффективным методом изучения примесей и дефектов в кристаллах. Кроме наших работ

^{*} E-mail: rim@uiggm.nsc.ru

Puc. 1.	Проекция	кристаллической	структуры
	KTiOA	sO ₄ на плоскость <i>ас</i>	

[4-7], насколько нам известно, с помощью метода ЭПР в кристаллах КТА исследовали только примесь Fe³⁺ [8]. Методом ЭПР нами исследованы дырочные центры, связанные с примесями Al и In [4, 6], а также примесь Rh²⁺ [7]. Так как структуры КТР и КТА практически олинаковы. то все изученные в КТР парамагнитные центры (см. [9-21] и ссылки в этих работах) в принципе можно наблюдать и в кристаллах КТА. Хотя мы не имели своей целью доказательство такой возможности, все же полезно будет перечислить основные парамагнитные центры (ПЦ), которые наблюдали в КТР. Поскольку ЭПР является удобным методом для исследования дефектов, с ним связываются надежды на выяснение природы так называемых

серых треков (областей с темной окраской), которые получаются в результате воздействия мощных лазеров на кристаллы КТР. Поэтому часть работ была посвящена исследованию природы серых треков с помощью ЭПР и спектров оптического поглощения. Образование темных областей в объеме кристаллов происходит и при электротермической обработке кристаллов.

Четыре ПЦ, связанные с ионом Ti³⁺ и, возможно, ответственные за потемнение кристаллов, были получены как при электротермической обработке, так и при отжиге кристаллов в атмосфере водорода при 800 °С [9]. Скрипсик [10] наблюдал три радиационных центра, стабильных только при низких температурах — ионы Ti³⁺, Pt³⁺ и центр дырочного типа. Андреев и Ефимов [11] обнаружили дырочный алюминиевый центр (этот центр подробно исследован в [12]) и ионы Ti³⁺, ранее наблюдавшиеся в [9]. Эдвардс и др. [13] исследовали основной радиационный дырочный центр, присущий кристаллам, выращенным гидротермальным и флюсовым методами. Они предложили модель этого центра как дырку, захваченную мостиковым ионом кислорода ОТ2 между двумя ионами титана. Стабилизация дырочного центра подтверждала наличие вакансий ионов K⁺ в решетке. В этой же работе [13] было предположено, что такой центр О может играть существенную роль в механизме образования серых треков в кристаллах КТР. Аналогичный дырочный центр был получен в результате рентгеновского облучения кристалла КТР при 77 К [14]. При нагревании до 160 К этот центр исчезал, но появлялись два новых дырочных центра, что связывали с началом диффузии вакансии иона калия.

Методом ЭПР исследованы также изоморфные примеси в кристаллах КТР. Три парамагнитных центра связаны с вхождением платины в позиции ионов Ti⁴⁺ и K⁺ [15]. Центр Pt (A) (ион Pt³⁺) образуется в процессе рентгеновского облучения при захвате электрона ионом Pt⁴⁺, замещающим титан. Предполагается, что центры Pt (B) и Pt (C) являются ионами Pt⁺, замещающими ионы K⁺ в двух кристаллографически неэквивалентных позициях. Они образуются, когда атом Pt⁰ захватывает дырку. Платина встраивается в решетку KTP как неконтролируемая примесь во время роста кристаллов в платиновых тиглях. Также в структуру KTP входят и примеси родия при росте кристаллов в платино-родиевых тиглях [16]. Исследовано два парамагнитных центра Rh²⁺, которые получаются из ионов Rh³⁺, замещающих ионы титана в двух неэквивалентных позициях, в результате восстановительного отжига кристаллов KTP в вакууме. С помощью ЭПР в KTP исследованы также ионы Fe³⁺, Cr³⁺ [17], V⁴⁺ [18], Mo⁵⁺ [19] и W⁵⁺ [20] в позициях замещения ионов титана.

В предлагаемой работе мы приводим результаты исследований методом ЭПР набора дырочных центров в кристаллах КТА. Часть работы связана с исправлением ошибок в интерпретации результатов, связанных с неправильным определением кристаллографических осей в кристаллах с примесями Al и In. Поэтому приводятся уточненные данные для центров с примесями Al и In вместе с новыми результатами по исследованию дырочных центров в кристаллах КТА с примесями Sc и Nb.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нами исследован достаточно большой набор образцов. Кристаллы КТА выращивали в платиновых тиглях флюсовым методом на кристаллические затравки, ориентированные вдоль осей [010], [001] или [100]. Температуру роста кристаллов варьировали от 800 до 1000 °С. В специальных опытах кристаллы выращивали с добавлением во флюс окислов металлов, которые предполагалось внедрить в кристаллическую структуру [5]. В некоторых кристаллах обнаруживали неконтролируемые примеси. Как правило, для получения ПЦ требовалось облучать кристаллы ионизирующей радиацией (у-излучение от источника ⁶⁰Со и жесткое рентгеновское излучение) дозой 2 Мрад. Спектры ЭПР регистрировали на радиоспектрометре Радиопан SE/X 2543, работающем в X-диапазоне. Для определения главных значений тензоров спинового гамильтониана снимали угловую зависимость спектров в основных кристаллографических плоскостях с помощью гониометра. Метод расчета параметров спектров ЭПР описан ранее [4, 7].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как показывает опыт исследований кристаллов семейства КТР, наблюдение спектров ЭПР в них связано либо с парамагнитными ионами с незаполненной *d*-оболочкой, либо с ПЦ, которые образуются вблизи примесей в результате воздействия ионизирующей радиации при комнатной температуре и при 77 К. В последнем случае парамагнитные центры термически неустойчивы.

В оксидных соединениях, как правило, наблюдается захват дырок на атомы кислорода вблизи замещающих катионов, имеющих меньшую валентность, чем структурообразующий металл. Центры с захватом дырок на атомы кислорода наблюдались в КТР как результат воздействия лазерных, рентгеновских и у-лучей [9—14]. После облучения у-лучами при 77 К, а также при комнатной температуре мы наблюдали дырочные центры практически во всех изученных образцах КТА. Далее мы рассмотрим подобные центры в кристаллах, в которые специально вводили примеси In и Sc, так как известно, что добавка небольшого количества окислов In_2O_3 , Sc_2O_3 и Fe_2O_3 во флюс в процессе роста стабилизирует однодоменную структуру кристаллов КТА [21]. Мы также наблюдали дырочный центр, связанный с примесью Аl, которая неконтролируемым образом вошла в структуру кристалла, выращенного из флюса с WO₃, возможно, для компенсации избыточного положительного заряда вольфрама, который мог войти в структуру кристалла КТА. Все наблюдаемые нами центры оказались неустойчивыми и отжигались при комнатной температуре в течение двух недель, причем примерно 50%-е уменьшение количества центров наблюдали в первый же день после облучения у-лучами. Спектры ЭПР, наблюдаемые при температуре 77 К в облученных кристаллах, показаны на рис. 2 и 3. Для анализа спектров ЭПР подходит спиновый гамильтониан вида

$\mathcal{H} = \beta SgH + SAI,$

где первый член описывает энергию Зеемана электрона, а второй является энергией сверхтонкого взаимодействия (СТВ) электронного и ядерного спина.

В окисных соединениях атомы кислорода часто являются мостиковыми между катионом решетки и примесью. В этом случае две p-орбитали атомов кислорода участвуют в образовании ковалентных связей с двумя ионами, а третья p-орбиталь остается несвязанной и может захватить дырку. Согласно теории дырочного центра О⁻ [23], направление этой p-орбитали,

и In (б), в кристаллах КТА

Рис. 2. Спектры ЭПР радиационных дыроч- Рис. 3. Спектры ЭПР радиационных дырочных центров, ных центров, связанных с примесями Al (a) связанных с примесями Sc (a) и Nb (δ), в кристаллах КTA

перпендикулярное плоскости Mⁿ⁺ — О⁻ — М⁽ⁿ⁻¹⁾⁺ (здесь Мⁿ⁺¹ — катион решетки, а М⁽ⁿ⁻¹⁾⁺ ион примеси), указывает на специфическое главное направление g-фактора (g ~ 2). Другое главное значение $g_{\text{макс}}$ лежит в плоскости $M^{n+} - O^- - M^{(n-1)+}$ и имеет выделенное направление вдоль линии M^{*n*+} — М^{(*n*-1)+}. Выделенное направление сверхтонкого взаимодействия (СТВ) с ионом примеси должно быть близким направлению связи О⁻ — М⁽ⁿ⁻¹⁾⁺. Именно такие характерные черты имеет хорошо известный "алюминиевый" центр в кварце [24].

Дырочный центр О, связанный с примесью Al, достаточно хорошо изучен во многих соединениях. Спектр ЭПР этого центра характеризуется СТС, обязанной взаимодействию электронного спина с магнитным моментом ядра ²⁷A1 (ядерный спин I = 5/2, распространенность 100 %). При этом величина СТВ для всех соединений изменяется в небольших пределах 5—7 Гс. "Алюминиевый" дырочный центр изучен и в кристаллах КТР, специально активированных примесью алюминия [12]. Дырочные центры О, связанные с примесями Sc и In, более редки; нам известна только одна работа [25], посвященная исследованию тетрагональных кристаллов GeO₂ с примесями Sc, Y и In. Для спектров ЭПР дырочных центров О⁻, связанных с примесями Sc и In, характерна многокомпонентная СТС (изотоп ⁴⁵Sc имеет ядерный спин I = 7/2 со 100%-й распространенностью, а изотопы ¹¹⁵In и ¹¹³In имеют I = 9/2 с распространенностью 95,5 и 4,5 % соответственно). Наблюдаемая сверхтонкая структура в спектрах ЭПР кристаллов КТА для центров O⁻ — In³⁺ и O⁻ — Sc³⁺ показана на рис. 2 и 3.

Угловую зависимость спектров ЭПР для всех центров исследовали в трех кристаллографических плоскостях. Правильность знаков для рассчитанных из этих значений недиагональных членов дополнительно проверяли с помощью измерений спектров ЭПР в косых ориентациях. Полученные результаты сведены в табл. 1 и 2. Хотя наблюдали два различных центра О⁻, связанных с примесью Al, в табл. 1 и 2 приведены результаты только для одного центра, который нам удалось исследовать (линии СТС для этого центра схематически

Таблица 1

		I I I I I I I I I I I I I I I I I I I	8	· · · · · · · · · · · · · · · · · · ·			
	g^2 в кристал.	лической систем	ие координат	Главные значения	Н	аправляющи	e cos
	а	b	С	$g\pm 0,0005$	l	т	п
				O ⁻ — Al ³⁺			
a	4,0590			<i>g</i> ₁ 2,0736	0,343	0,559	0,755
b	0,04	4,1270		<i>g</i> ₂ 2,0129	-0,513	0,784	-0,348
с	0,08	0,11	4,1821	<i>g</i> ₃ 2,0039	0,786	0,269	-0,557
				O^{-} — In^{3+}			
a	4,0556			<i>g</i> ₁ 2,0588	0,272	0,605	0,748
b	0,02	4,1186		<i>g</i> ₂ 2,0145	-0,670	0,676	-0,306
с	0,05	0,09	4,1477	<i>g</i> ₃ 2,0062	0,688	0,422	-0,590
				$O^{-} - Sc^{3+}$			
a	4,0868			<i>g</i> ₁ 2,0626	0,450	0,404	0,796
b	0,07	4,1046		g ₂ 2,0226	-0,552	0,827	-0,107
с	0,009	0,09	4,1669	<i>g</i> ₃ 2,0039	0,703	0,389	-0,595

Значения тензора g для центров $O^- - AI^{3+}$, $O^- - In^{3+} u O^- - Sc^{3+}$ в КТА

Таблица 2

Тензоры СТВ A для центров $O^- - Al^{3+}, O^- - In^{3+} u O^- - Sc^{3+}$ в КТА

	$g^2 A^2$ в кристаллической системе		Главные значени	ıя A	Направляющие cos		cos		
	а	b	С	± 0,3 МГц		l	т	п	
	$O^ Al^{3+}$								
а	2443			$ A_1 $ 20,	5	0,411	0,569	0,712	
b	-300	2189		$ A_2 $ 24,	2	0,480	0,799	0,362	
С	-250	-100	2193	$ A_3 $ 25,	7	0,775	0,193	0,602	
	a = -23,4, b = 1,47, e = 0,7								
				$O^{-} - In^{3+}$					
а	50272			$ A_1 $ 128	,2	0,066	0,728	0,682	
b	320	59739		$ A_2 $ 112	,7	0,415	0,642	0,645	
с	1776	8234	59731	<i>A</i> ₃ 110	,1	0,908	0,239	0,344	
a = 117, b = 5,6, e = 1,3									
				$O^{-} - Sc^{3+}$					
	$a \approx -20.7$								

показаны на рис. 2, *a*). Наложенные друг на друга спектры усложнялись дополнительными линиями из-за квадрупольного взаимодействия во втором центре, что не позволило проследить его угловую зависимость. Кроме того, вследствие относительно большой ширины линии (изменяющейся в пределах 3,5—6 Гс) и малой анизотропии СТС нам не удалось измерить анизотропную величину *b* для центра $O^- - Sc^{3+}$, поэтому в табл. 2 указано только среднее значение изотропной константы СТВ с ядром ⁴⁵Sc.

Чтобы определить предполагаемую структуру дефектов, нужно сравнить выделенные главные направления тензоров g и A со структурными направлениями кристалла КТА. В отличие от простых окислов структура КТА более сложна, имеется 10 структурно различных атомов кислорода. При этом позиции и анионов, и катионов имеют только тривиальную симметрию. Исходя из сравнения размеров ионных радиусов, можно предполагать, что исследуемые катионы могут занимать позиции ионов Ti. В конечном итоге из имеющегося

Таблица 3

		-		
	Направляющие cos			VEGE OTKEOUOUUG EDGE
Структурное направление	l	т	п	этол отклонения, град.
⊥ к Ti1—OT2—Ti2	0,6753	0,3669	-0,6401	
g_3	0,786	$O = Al^{3^{+}}$ 0,269 $O^{-} = In^{3^{+}}$	-0,557	9,6
g_3	0,688	0 - m 0,422 $0^{-} - 8c^{3+}$	-0,590	4,4
$rac{g_3}{Ti1}$ —Ti2	0,703 0,4789	0,389	-0,595 0,7587	3,3
g_1	0,343	$O^{-} - Al^{3+}$ 0,559	0,755	10,3
g_1	0,272	$O^{-} - In^{3+}$ 0,605	0,748	15,2
g_1	0,450	$\begin{array}{c} O = Sc^{3} \\ 0,404 \end{array}$	0,796	3,8
Ti2—OT2	0,2547	0,6981	0,6691	
A_1	0,411	$0^{-} - \ln^{3+}$	0,712	11,9
A_1	0,066	0,728	0,682	11,1

Сравнение структурных направлений в КТА с главными направлениями тензоров g и A для центров $O^- - M^{3+}$

большого набора в табл. 3 приведены структурные направления, которые удовлетворительно подходят для дырочных центров (угол отклонения между структурными направлениями и ориентацией главных значений тензоров *g* и *A* приведен в последней колонке).

Из табл. 3 можно заключить, что дырка захватывается на атом кислорода ОТ2, являющийся мостиковым между двумя структурно различными ионами Тi, при этом ион примеси располагается в позиции Ti2 (см. рис. 1). К подобному заключению пришли авторы [12], где анализировали только главное направление СТВ с ионом Al³⁺. Следует отметить, что в отличие от КТР мы в кристаллах КТА наблюдали два дырочных центра с Al³⁺; при этом можно предполагать, что второй центр связан с замещением иона титана в позиции Ti1.

С помощью соотношений [26] $A_1 = a + 2b$, $A_2 = a - b + e$, $A_3 = a - b - e$ главные значения СТВ обычно разделяют на контактное изотропное взаимодействие Ферми *a*, диполь-дипольное взаимодействие *b* и орторомбическое дипольное взаимодействие *e*. Поскольку ион $M^{(n-1)+}$ находится в узле *p*-орбитали неспаренного электрона, то прямого перекрывания между орбиталями металла и атома кислорода не происходит и, следовательно, электронной плотности на *s*-оболочке металла не должно быть. Однако экспериментально Фермивзаимодействие наблюдается, и его возникновение объясняется обменной поляризацией замкнутых *s*-оболочек, которая приводит к различию между плотностями волновых функций электронов со спинами, направленными вверх (+) и вниз (-) [27, 28]. Параметр поляризации χ определяется как

$$\chi \equiv \frac{4\pi}{2S} \sum_{i} \left[\left| \varphi^{+}(0) \right|^{2} - \left| \varphi^{-}(0) \right|^{2} \right]$$

где S = 1/2 и суммирование производится по всем внутренним *s*-орбиталям иона примеси. Тогда контактное Ферми-взаимодействие определяется по формуле

$$a=\frac{2}{3}g_e\mu_Bg_N\mu_N\chi.$$

Для легких ионов Al, Sc наблюдается отрицательное значение контактного CTB a, а для тяжелых Ga, Y — положительное [25, 27]. Для легких ионов обменное взаимодействие 2p O⁻ спинов притягивает (+) спины внешних *s*-орбиталей примесного иона, оставляя ближе к ядру отрицательную (–) спиновую плотность, в тяжелых ионах начинают играть большую роль внутренние оболочки, в которых происходит противоположная релаксация спинов, что приводит в результате к положительному значению χ [26, 28].

Отрицательный знак для изотропного контактного взаимодействия с AI^{3+} получается экспериментально из соотношения $|A_1| < |A_2|, |A_3|$ при положительном знаке дипольдипольного взаимодействия. Положительный знак для изотропного параметра СТВ с In^{3+} получается из спектров ЭПР: наблюдаемое расщепление между сверхтонкими линиями в высокополевой части спектра больше, чем расщепление в низкополевой его части. Эта неэквидистантность в СТС объясняется с учетом членов второго порядка при определении энергии спинового гамильтониана методом теории возмущения [29] и согласуется с наблюдаемым спектром, если изотропный член СТВ *а* положителен. Изотропное СТВ для Sc³⁺ должно быть отрицательным согласно теории, подтвержденной экспериментальным результатом [25]. Определенная в этой же работе [25] очень слабая анизотропия *b* ≈ 0,15 Гс для Sc³⁺ подтверждается нашими наблюдениями. К сожалению, полученные нами константы СТВ для In^{3+} сравнить не с чем, так как наблюдавшаяся в работе [25] СТС для дырочного центра с In^{3+} была так усложнена вследствие квадрупольного взаимодействия, что тензор СТВ определить не удалось.

Хотелось бы отметить, что в кристаллах КТА:Іп и КТА:Sc мы наблюдали вхождение примесей In³⁺ и Sc³⁺ только в одну позицию Ti2 структуры в отличие от кристаллов с примесью Al. Возможно, такая асимметрия вхождения примесей и определяет стабилизацию однодоменной структуры кристаллов КТА, выращенных с примесями In³⁺ и Sc³⁺ [22].

Еще один тип центров, которые наблюдаются в различных кристаллах КТА, — это дырочные центры со сложной СТС, которая проявляет свойства СТВ с протоном, когда величина сверхтонкого расщепления сравнима с ядерной зеемановской частотой $v_{\rm H} \approx 0,5$ мТ. В этом случае наблюдаются четыре линии СТС [30] вместо двух, ожидаемых в спектрах ЭПР для дефектов, имеющих в своем окружении ядерный спин I = 1/2. Для центров с большой анизотропией тензора g и СТВ линии СТС меняют свою интенсивность вплоть до исчезновения или накладываются друг на друга при вращении кристалла, что не позволяет определить тензор СТВ с протоном при исследовании угловой зависимости спектра ЭПР. Такие случаи ранее описаны для дырочных центров в апатите [31], и мы часто с ними встречались, исследуя кристаллы КТА. Поэтому мы для центров О⁻/H⁺ определили только тензор g, главные величины и направления которого приводятся в табл. 4.

Для определения строения центров мы сравнили главные направления тензора *g* с направлениями связей и перпендикуляров к плоскостям, образуемым атомами в структуре КТА.

Параметры центров О ⁻ /Н ⁺								
Главн	ые значения g	Нап	равляющие с	cos				
		l	т	п				
	O ⁻ /H ⁺ (I)							
g_1	2,0376	0,373	0,502	-0,779				
g_2	2,0207	0,898	0,403	-0,175				
g_3	2,0028	0,232	0,764	0,602				
O ⁻ /H ⁺ (II)								
g_1	2,0459	0,332	0,512	-0,791				
g_2	2,0192	0,938	0,261	-0,225				
g_3	2,0041	0,099	0,830	0,549				

Гаолиц

Таблица 4 Ка

Как показывают данные табл. 5, удовлетворительные результаты получаются, если предположить, что дырка захватывается мостиковым атомом кислорода ОТ1. На этапе можно ланном только слелать предположение, почему центры, связанные с захватом дырки в одной и той же позиции ОТ1 атома кислорода, имеют различные параметры спектров ЭПР. Либо это связано с различной позицией протона, либо во второй окружения центров O^{-}/H^{+} сфере присутствуют дополнительные примеси или вакансии атомов. Мы заметили, что величина СТС с протоном для центра O⁻/H⁺(I) изменяется при хранении кристаллов при

Таблица 5

Структурное	Напј	равляющие со	<u>os</u>	Угол отклонения грал
направление	1	т	п	утол отклонения, трад.
⊥ к Ti1—OT1—Ti2	0,4102	0,6941	0,5915	
		O ⁻ /H ⁺ (I)		
g_3	0,232	0,764	0,602	11
		$O^{-}/H^{+}(II)$		
g_3	0,099	0,830	0,549	19,7
Ti2—Ti1	0,4789	0,4416	-0,7587	
		$O^{-}/H^{+}(I)$		
g_1	0,373	0,502	-0,779	7,5
		$O^{-}/H^{+}(II)$		
g_1	0,332	0,512	-0,791	9,9

Сравнение структурных направлений в КТА с главными направлениями тензоров g для центров O⁻/H⁺

Таблица б

Параметры спинового гамильтониана для центра $OT_2^- - Nb^{5+}$, наблюдаемые при 77 К в КТА, и сравнение главных направлений тензора g со структурными направлениями

Главные значения тензора g	Главные на	гравления			
1 8	l	т	п		
$g_1 2,0320 \pm 0,0005$	0,281	0,566	0,775		
g_2 2,0229 ± 0,0005	-0,982	0,036	0,183		
g_3 2,0051 ± 0,0005	0,033	-0,813	0,582		
Сравнение структурных направлений в КТА с главными осями тензора g					

Структурное направление				Главные g-оси θ, град. φ, град.		
	θ, град.	ф, град.		θ, град.	ф, град.	
OT2—Ti2	48	69,9	g_1	39,2	63,6	
⊥ к плоскости K2—OT2—Ti2	42	252,4	g_3	54,4	272,3	

П р и м е ч а н и е. Тензор *g* выражен в координатах (*a*, *b*, *c*). В диагональной форме ориентация главных осей выражена с помощью направляющих косинусов *l*, *m*, *n* и полярных углов (θ , φ) по отношению к системе (*a*, *b*, *c*) осей.

комнатной температуре, что свидетельствует о перестройке этого центра.

Еще один центр дырочного типа наблюдали в кристаллах, выращенных с добавлением во флюс окислов ниобия и магния. Исследовали два кристалла: первый образец КТА:Nb1 имел состав $K_{0.95}(Ti_{0.96}Mg_{0.01}Nb_{0.05}O)AsO_4$, второй образец КТА:Nb2 — $K_{0.96}(Ti0_{.91}Mg_{0.03}Nb_{0.09}O)AsO_4$. После γ -облучения при 77 K образца KTA:Nb1 наблюдали центр O⁻/H⁺(II), после γ -облучения при комнатной температуре парамагнитных центров не наблюдали. В образце KTA:Nb2 после γ -облучения при комнатной температуре наблюдали нестабильный при комнатной температуре спектр, состоящий из десяти линий сверхтонкой структуры (см. рис. 3, δ). По-видимому, причиной наблюдения десяти линий является СTB с изотопом ⁹³Nb (I = 9/2, содержание 100 %). Вдоль оси *а* значение *g*-фактора было $g_a = 2,0233$ и соответствующее сверхтонкое расщепление $A_a = 1,7$ мT. Для двух других кристаллографических осей $g_c = 2,0141$ и $g_b = 2,0227$, а СTB $A_c = 2,07$ мT и $A_b = 2,03$ мT. Ион Nb⁴⁺ не может быть причиной наблюдаемого ЭПР спектра, так как значение *g*-фактора для иона Nb⁴⁺ (4 d^1) должно быть меньше двух, а СTB должно быть больше наблюдаемого на порядок [32]. Небольшой положительный сдвиг *g*-фактора и малое СTB для этого центра предполагают, что неспаренный спин захвачен на атом кислорода в непосредственном окружении замещающего иона Nb. Центры с аналогичными величинами g и А наблюдали в кристаллах MoO₃ [33] и CdWO₄ [34] и были приписаны центрам О⁻ вблизи замещающего иона Nb^{5+} .

Из угловой зависимости спектров были определены главные значения и направления тензора g (табл. 6). Малая анизотропия и довольно широкие линии (0,6—1,4 мT) не позволили определить точные значения тензора A, но мы определили, что $A_{\text{max}} = 2,23\pm0,05$ мT направлено приблизительно вдоль g_{max}. Хотя главные значения g-фактора имеют направления, которые удовлетворительно согласуются с некоторыми направлениями в кристалле КТА (см. табл. 6), все же трудно сказать что-либо определенное о структуре дефекта, кроме того, что дырка захватывается атомом кислорода в позиции ОТ2. Образование дырочного центра трудно объяснить в предположении одиночного иона Nb⁵⁺, замещающего ион Ti⁴⁺. В этом случае логично было бы предположить изменение валентности иона ниобия с образованием иона d^1 Nb⁴⁺. Вероятно, какую-то роль играет ион Mg, так как в образце KTA:Nb1 с малым содержанием Mg парамагнитный центр $OT_2^- - Nb^{5+}$ не образуется. Исследования кристаллов K[Nb,Mg]OAsO4 [35] предполагают, что замещение Ti⁴⁺ в смежных позициях происходит парами ионов Nb⁵⁺ — Mg²⁺, в таком случае имеется локальный дефицит положительного заряда и при облучении возможно образование дырочного центра. В ближайшем окружении центра также находится группа ОН, так как в спектре ЭПР хорошо видно расщепление на две компоненты ($A_{\rm H} \sim 3 \, \Gamma c$) самых узких линий СТС (см. центральную часть рис. 3, δ).

Автор благодарит Л.И. Исаенко за предоставленные образцы.

СПИСОК ЛИТЕРАТУРЫ

- 1. El Brahimi M., Durand J. // Rev. Chim. Min. 1986. 23. P. 146 153.
- 2. Mayo S.C., Thomas P.A., Teat S.J. et al. // Acta Crystallogr. B. 1994. 50. P. 655 662.
- Satyanarayan M.N., Deepthy A., Bhat H.L. // Crit. Rev. Solid St. Mater. Sci. 1999. 24. P. 103 191.
 Mashkovtsev R.I., Isaenko L.I. // Solid State Commun. 1995. 95. P. 739 743.
- Mashkovisev R.I., Isaenko L.I. // Solid State Collimati. 1995. 95. 1. 759 745.
 Isaenko L., Merkulov A., Mashkovisev R. et al. // J. Cryst. Growth. 1996. 166. P. 502 506.
 Mashkovisev R.I., Isaenko L.I. // Phys. Stat. Sol. (b). 1996. 198. P. 577 585.
 Mashkovisev R.I., Isaenko L.I. // Ferroelectrics. 2006. 330. P. 85 92.
 Dusausoy Y., Lorrain V., Ribert F. et al. // Appl. Magn. Res. 1993. 5. P. 331 337.

- Busausoy F., Lorrain V., Ribert F. et al. // Appl. Magn. Res. 1993. 5. P. 351 357.
 Roelofs M.G. // J. Appl. Phys. 1989. 65. P. 4976 4980.
 Scripsick M.P., Edwards G.J., Halliburton L.E., Belt R.F. // J. Appl. Phys. 1991. 70. P. 2991 2994.
 Andreev B.V., Efimov V.N. // Mod. Phys. Lett. B. 1992. 6. P. 177 180.
 Yu J.-T., Lee C.-H., Liu K.-T. et al. // J. Phys. Chem. Solids. 1995. 56. P. 233 240.
 Edwards G.J., Scripsick M.P., Halliburton L.E., Belt R.F. // Phys. Rev. B. 1993. 48. P. 6884 6891.

- Laruhin M.A., Efimov V.N., Nazarova V.A. // Appl. Magn. Res. 1997. 12. P. 517 527.
 Garces N.Y., Stevens K.T., Halliburton L.E. // J. Appl. Phys. 2000. 87. P. 8682 8687.
- 16. Bravo D., Martin M.J., Gavalda J. et al. // Phys. Rev. B. 1994. 50. P. 16224 16231.
- 17. Gaite J.M., Stenger J.F., Dusausoy Y. et al. // J. Phys.: Condens. Matter. 1991. 3. P. 7877 7886.
- 18. Han J., Wang J., Xu Y. et al. // Ibid. 1992. 4. P. 6009 6014.
- Geifman I.N., Usov A.N., Nagornyi P.G. // Phys. Stat. Solid. (b). 1992. 172. P. K73 K76.
 Bravo D., Ruiz X., Diaz F., Lopez F.J. // Phys. Rev. B. 1995. 52. P. 3159 3169.
 Stevens K.T., Halliburton L.E., Roth M. et al. // J. Appl. Phys. 2000. 88. P. 6239 6244.

- 22. Cheng L.T., Cheng L.K., Bierlein J.D. et al. // Appl. Phys. Lett. 1993. 62. P. 346 348.
- 23. Hughes A.E., Henderson B. Point Defects in Solids / Eds. J.H. Crawford, L.M. Slifkin. Vol. 1, Chap. 7. - N. Y.: Plenum, 1972.
- 24. Nutall R.H.D., Weil J.A. // Canad. J. Phys. 1981. 59. P. 1696 1708.
- 25. Bossoli R.B., Welsh T.J., Gilliam O.R., Stapelbroek M. // Phys. Rev. B. 1979. 19. P. 4376 4381.

- 26. Schirmer O.F., Blazey K.W., Berlinger W., Diehl R. // Ibid. 1975. 11. P. 4201 4211.
 27. Stapelbroek M., Gilliam O.R., Bartram R.H. // Ibid. 1977. 16. P. 37 43.
 28. Watson R.E., Freeman A.J. Hyperfine interactions / Eds. A.J. Freeman, R.B. Frankel. N. Y.: Academic, 1967.
- 29. Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. М.: Мир, 1972.

- Murphy H.J., Stevens K.T., Garces N.Y. et al. // Radiation Eff. Def. Solids. 1999. 149. P. 273 278.
 Chani V.I., Shimamura K., Endo S., Fukuda T. // J. Cryst. Growth. 1997. 173. P. 117 122.