2012. Том 53, № 5

Сентябрь – октябрь

C. 855 – 864

УДК 543.42:547.82

ВЛИЯНИЕ ВОДОРОДНОЙ СВЯЗИ НА СТРУКТУРУ И КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ КОМПЛЕМЕНТАРНЫХ ПАР ОСНОВАНИЙ НУКЛЕИНОВЫХ КИСЛОТ. III. ГУАНИН—ЦИТОЗИН

Г.Н. Тен¹, А.А. Яковлева¹, В.В. Нечаев¹, В.И. Баранов²

¹Саратовский государственный университет им. Н.Г. Чернышевского, e-mail: TenGN@info.sgu.ru ²Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва

Статья поступила 29 октября 2010 г.

С доработки — 26 января 2012 г.

Выполнен расчет колебательных спектров изолированной комплементарной пары гуанин—цитозин в приближении B3LYP/6-311++G(d,p). Проанализировано влияние водородных связей на структуру, положения частот и значения интенсивностей полос поглощения и линий спектров КР нормальных колебаний пары по сравнению со спектрами изолированных молекул гуанина и цитозина. Выявлены характерные спектральные признаки образования комплементарной пары гуанин—цитозин.

Ключевые слова: гуанин, цитозин, комплементарная пара, колебательные спектры, водородная связь.

введение

Как известно, комплементарные пары аденин—урацил (Ade—Ura), аденин—тимин (Ade— Thy) и гуанин—цитозин (Gua—Cyt) образованы каноническими формами оснований нуклеиновых кислот (OHK). В то же время Ade, Gua и Cyt, в отличие от Ura и Thy, в изолированном состоянии могут существовать в виде нескольких таутомеров [1—6]. Например, как следует из анализа низкотемпературных колебательных спектров, таутомерный состав Cyt определяется присутствием не менее двух (амино-оксо и амино-гидрокси) таутомерных форм [7, 8]. Другими спектральными методами, а также квантово-химическими расчетами позднее было показано, что в газовой фазе имеется смесь четырех таутомеров Cyt (*цис-, транс-*амино-гидрокси, *цис-*имино-оксо и канонической (амино-оксо) форм); при этом более стабильным является амино-гидрокси таутомер [9, 10].

При экспериментальном изучении Gua в газовой фазе, в отличие от других ОНК, возникают сложности, связанные с изменением его молекулярной структуры при термической обработке [11]. Поэтому в литературе представлены экспериментальные колебательные спектры метилзамещенных Gua в газовой фазе и Gua в конденсированных состояниях [12—15]. Отметим, что интерпретация колебательных спектров Gua в жидком и твердом состояниях неоднозначна, что связано как с присутствием нескольких таутомерных форм, так и влиянием водородных связей [16, 17]. Применение других спектральных методов, например лазерной инфракрасной спектроскопии, позволило определить присутствие четырех таутомеров Gua, изолированных в гелиевой нанокапле — кетонных (Gua—N₉H, Gua—N₇H) и енольных (*mpanc-, цис-Gua*—N₉H) форм [18]. В данной работе определение таутомерного состава проводили по анализу валентных колебаний NH связей.

Известно, что одной из причин спонтанного возникновения мутаций является образование комплементарных пар неканоническими формами ОНК (таутомерами). Сложность анализа

[©] Тен Г.Н., Яковлева А.А., Нечаев В.В., Баранов В.И., 2012

и идентификации канонических и неканонических пар спектральными методами связана с отсутствием экспериментальных спектров канонических пар в изолированном состоянии вследствие их нестабильности. Одним из наиболее эффективных способов решения этой проблемы является квантово-химический расчет параметров потенциальных поверхностей методом DFT в приближении B3LYP/6-311++G(d,p), показавшим свою высокую эффективность при расчете колебательных спектров с учетом водородных связей [19, 20]. В ранее выполненном расчете колебательного спектра изолированной пары Gua—Cyt анализ влияния водородных связей на и значения частот и интенсивностей не проводили [21].

Методы исследования влияния водородных связей на колебательные спектры, а также критерии наличия H-связи давно и успешно используются в спектроскопии. Приведем лишь несколько обзорных монографий и статей, например [22—28], в которых обобщены результаты работы авторов, заложивших основы и внесших значительный вклад в учение о водородной связи. В настоящее время появилось много новых оригинальных работ по исследованию проявления водородной связи, позволяющих, например, количественно оценить электрооптические параметры водородного мостика молекулярных комплексов, связать частоту колебаний вступившего в водородную связь осциллятора с напряженностью электрического поля на протоне с геометрией водородного мостика и т.д. [29—31].

Цель работы — определить особенности влияния водородных связей на структуру и колебательный спектр изолированной комплементарной пары Gua—Cyt, образованной каноническими формами Cyt и Gua, путем сравнения их геометрических параметров, частот и интенсивностей.

Результаты данной работы могут быть полезными при исследовании механизма таутомерных превращений, а также условий образования комплементарных пар каноническими и неканоническими формами ОНК. В частности, определение характеристических полос поглощения, отвечающих образованию каждой из трех водородных связей, может быть использовано для исследования динамики образования и разрыва водородных связей в зависимости от температуры или pH растворителя, что важно знать при анализе таутомерного состава ОНК.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Молекулярная диаграмма пары Gua—Cyt приведена на рис. 1, а вычисленные значения геометрических параметров изолированных молекул Cyt и Gua представлены в табл. 1.

Основное отличие структуры изолированного Gua от структур других ОНК (Ade, Ura, Thy и Cyt) заключается в том, что она является неплоской — атомы H_{12} и O_{11} расположены над плоскостью пиримидинового кольца, а минимум адиабатического потенциала аминной группы достигается при значениях двугранных углов $N_1C_2N_{10}H_{14}$ и $N_3C_2N_{10}H_{13}$, равных 170,1 и 151,2° (см. табл. 1).

Образование водородных связей между Gua и Cyt приводит к тому, что структура комплементарной пары Gua—Cyt, как и пар Ade—Ura, Ade—Thy, становится плоской. При этом происходят небольшие изменения геометрических параметров (не более 1-2% для длин связей и 3-4% для углов) молекулярных фрагментов, которые принимают непосредственное участие в образовании водородных связей. В имидазольном кольце Gua длины связей при образовании пары Gua—Cyt остаются теми же, а изменения углов не превышают $0,1^\circ$.

Длины водородных связей N'₁₀ H'₁₁...O₁₁ и O'₈...H₁₃N₁₀, образованные аминными группами и связями C=O, отличаются на 0,15 Å, а длина водородной связи N'₁₀ H'₁₁...O₁₁ в Gua—Cyt

меньше соответствующих длин водородных связей в Ade— Ura и Ade—Thy на 0,20 Å, что указывает на бо́льшую силу взаимодействия между Gua и Cyt. Этот факт подтверждается расчетом энергии образования водородных связей $\Delta E =$

Puc. 1. Молекулярная диаграмма комплементарной пары Gua-Cyt

Таблица 1

Связь, угол Gua		Связь, угол	Gua	Связь, угол	Gua	
N_1C_2, C_4N_9	1,37	$C_2N_3C_4$	112,8	$N_1C_6O_{11}$	119,2	
C_2N_3	1,31	$N_3C_4C_5$	129,1	$C_6N_1H_{12}$	113,5	
N_3C_4	1,36	$C_4C_5C_6$	118,7	$C_2N_{10}H_{13}$	118,2	
C_4C_5, C_8N_9	1,39	$N_1C_6C_5$	109,5	$C_2 N_{10} H_{14}$	113,7	
C_5C_6, N_1C_6	1,44	$C_4C_5N_7$	110,8	$C_4C_5C_6O_{11}$	179,3	
C_5N_7, C_2N_{10}	1,38	$C_5N_7C_8$	104,7	$C_5C_6N_1H_{12}$	175,9	
N_7C_8	1,30	$N_7C_8N_9$	112,6	$C_6N_1C_2N_{10}$	177,4	
C_6O_{11}	1,21	$C_8N_9C_4$	106,7	$H_{12}N_1C_2N_3$	175,9	
NH	1,01	$N_1 C_2 N_{10}$	116,9	$N_1C_2N_{10}H_{14}$	170,1	
C_8H_{16}	1,08	$N_7 C_8 H_{16} \\$	125,7	$N_{3}C_{2}N_{10}H_{13}$	151,2	
$N_1C_2N_3$	123,4	$C_8N_9H_{15}$	127,7	$N_{10}C_2N_3C_4$	176,7	
Связь, угол	Cyt	Связь, угол	Cyt	Связь, угол	Cyt	
$N_1^\prime C_2^\prime$	1,43	$N_1^\prime C_2^\prime N_3^\prime$	116,1	$C'_4 N'_{10} H'_9$	122,1	
$C'_2 N'_3$	1,37	$C'_2 N'_3 C'_4$	120,5	$C'_4 N'_{10} H'_{11}$	118,2	
$N'_3 C'_4$	1,32	$N'_{3}C'_{4}C'_{5}$	123,3	$N_{10}' H_{11}' O_{11}$	1,77	
$C'_4 C'_5$	1,44	$C'_4 C'_5 C'_6$	116,4	$N_3^\prime H_{12} N_1$	1,92	
$C_5'C_6',\ C_4'N_{10}'$	1,36	$N_1^\prime C_6^\prime C_5^\prime$	120,0	$O_8^\prime \ldots H_{13} N_{10}$	1,92	
$N_1'C_6'$	1,35	$N_1^\prime C_2^\prime O_8^\prime$	118,3	$C_6O_{11}H'_{11}$	128,3	
$C_2'O_8'$	1,22	$C_2^\primeN_1^\primeH_7^\prime$	115,3	$C_2' O_8' H_{13}$	121,0	
NH	1,01	$N_1' C_6' H_{13}'$	116,9	$C_2^\primeN_3^\prime H_{12}$	114,9	
СН	1,08	$C_6'C_5'H_{12}'$	121,5	$C_4^\primeN_3^\prime H_{12}$	123,8	
		$C'_5 C'_4 N'_{10}$	119,0			

Вычисленные геометрические параметры (длины, Å; углы, град.) Gua, Cyt и водородных связей

= $E_{\text{Gua}-\text{Cyt}} - (E_{\text{Cyt}} + E_{\text{Gua}})$, равной 25,4 ккал/моль, что, например, на 12,6 ккал/моль (т.е. в 2 раза) превышает аналогичное значение для пары Ade—Ura.

Гармонический расчет колебательных состояний Суt, Gua и комплекса Gua—Суt выполняли с помощью программы Gaussian-09 [32]. Использовали адиабатическое приближение с представлением потенциальной энергии молекулы через нормальные координаты *q* посредством квадратичной формы вида

$$U = \frac{1}{2} \sum_{i} f_{ij} q_i q_j,$$

где коэффициенты f_{ij} являются силовыми постоянными, пропорциональными квадратам гармонических частот.

В спектрах комбинационного рассеяния в качестве величины, характеризующей интенсивность *i*-й полосы, используют нормализованное абсолютное дифференциальное сечение рассеяния (в единицах 10^{-48} см⁶/стер):

$$\frac{\partial \sigma_i}{\partial \Omega} (\omega_0 - \omega_i)^{-4} = \frac{(2\pi)^4}{45} \frac{hc}{8\pi^2 c^2 \omega_i} S(q_i) \left[1 - \exp\left(-\frac{hc\omega_i}{kT}\right) \right]^{-1},$$

где $S(q_i)$ — коэффициент активности КР, непосредственно рассчитываемый в программе Gaussian методом конечного поля [33]:

$$S(q_i) = 45\overline{\alpha}_i^2 + 7\gamma_i^2,$$

а $\overline{\alpha}_i^2$ и γ_i^2 — квадраты производной средней поляризуемости и анизотропии по нормальной координате q_i [34].

Интегральные интенсивности полос поглощения для одноквантовых колебательных переходов v_i рассчитывали по формуле

$$I_{v_i} = S_{v_i}^0 = A(v_i) = \frac{8\pi^3 N_A}{3hc(4\pi\varepsilon_0)} v_i g_i \sum_{\alpha}^{x,y,z} |R_i^{\alpha}|^2 (N_0 - N_{v_i}) = 2,506644(2) v_i g_i \sum_{\alpha}^{x,y,z} |R_i^{\alpha}|^2 \quad (\text{км/моль}),$$

где N_A — постоянная Авогадро; v_i — частота фундаментальных колебаний; g_i — степень вырождения; R_i^{α} — α -декартова компонента электрического дипольного момента для молекул, находящихся в состоянии v_i [35].

Вычисленные значения частот и интенсивностей полос поглощения (ПП) и линий спектров КР (СКР) изолированных молекул Gua, Cyt и комплементарной пары Gua—Cyt приведены в табл. 2. Номера колебаний комплементарной пары соответствуют номерам колебаний Gua и Cyt, так как формы соответствующих колебаний имеют аналогичный характер смещения атомов.

Ранее влияние водородной связи на колебательные спектры Ura, Thy и Ade путем сравнения колебательных спектров в изолированном и конденсированных состояниях было рассмотрено в работах [36—40].

В низкочастотной области колебательного спектра пары Gua—Cyt имеются 6 колебаний, характеризующих смещения Gua и Cyt относительно друг друга как целых молекулярных образований. Три колебания с частотами 17, 30 и 60 см⁻¹ являются неплоскими и характеризуют выход Gua и Cyt из плоскости пары. Как и для пар Ade—Ura и Ade—Thy, эти колебания являются ножничными, крутильными и веерными. Три других колебания (94, 126 и 131 см⁻¹) отвечают смещениям Gua и Cyt в плоскости пары. При колебании с частотой 94 см⁻¹ происходит смещение Gua и Cyt без изменения длин водородных связей. Колебанию с частотой 126 см⁻¹ отвечает противофазное изменение длин водородных связей N'₁₀ H'₁₁...O₁₁ и O'₈...H₁₃N₁₀ (увеличение длины одной водородной связи сопровождается одновременным уменьшением другой) без изменения длины средней водородной связи N'₃...H₁₂N₁. Для колебания с частотой 131 см⁻¹ характерно синфазное увеличение или уменьшение длин всех трех водородных связей.

При интерпретации колебательного спектра необходимо учитывать тот факт, что гармоническое приближение малых колебаний не позволяет воспроизвести частоты и интенсивности ПП и линий СКР, отвечающих колебаниям аминной группы, поскольку для нее характерна малая величина потенциального барьера инверсии. Наличие пологого двухъямного потенциала приводит к появлению в вычисленном спектре Суt мнимой частоты 152 см⁻¹. В связи с этим для описания инверсионного движения аминной группы необходимо привлекать модели колебаний с большой амплитудой [41, 42]. Другой причиной, приводящей к значительному отличию частот и интенсивностей ПП и линий СКР, отвечающих колебаниям аминной группы необходимо привлекать модели колебаний с большой амплитудой [41, 42]. Другой причиной, приводящей к значительному отличию частот и интенсивностей ПП и линий СКР, отвечающих колебаниям аминной группы Gua от соответствующих колебаний в паре Gua—Суt, являются те структурные изменения, которые происходят в Gua при образовании комплементарной пары (см. выше). И, наконец, значительное влияние на смещение частот и изменение интенсивности ПП и линий СКР, отвечающих колебаниям группы NH₂ оказывают водородные связи, которые образуются между аминными группами и связями C=O Gua и Cyt. Например, частота колебания 11*g* при образовании пары смещается на 108 см⁻¹ (от 543 до 651 см⁻¹), а интенсивность полосы поглощения уменьшается в 13,9 раза (от 259,0 до 18,6 км/моль).

Колебательный спектр пары содержит 23 неплоских колебания, из которых 3 являются смешанными. Смешиваются колебания 6*c* и 14*c* с 12*g*, формы которых отвечают выходу связей NH, участвующих в образовании всех трех водородных связей $(N'_{10} H'_{11}...O_{11}, N'_3...H_{12}N_1$ и $O'_8...H_{13}N_{10})$, из плоскости пиримидиновых колец Cyt и Gua. Изменение частот данных колебаний (относительно изолированных молекул) при образовании пары лежит в пределах 174—388 см⁻¹, а интенсивность меняется в 2—25 раз.

Таблица 2

Cyt			Gua					Gua—Cyt					
N₂	ν	$I_{\rm MK}$	$I_{\rm KP}$	Отнесение	N⁰	ν	$I_{\rm MK}$	$I_{\rm KP}$	Отнесение	N⁰	ν	$I_{\rm MK}$	$I_{\rm KP}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Неплоские колебания													
					1g	137	3	_	γ	1g	128	3	
2c	129	2		γ	0				λ.	2c	149		
				~	2g	156	1		γ	2g	172	1	
3 <i>c</i>	198	16		χ	0				~	3 <i>c</i>	189	1	—
				<i>,</i> ,	3g	196	11		χ	3g	211	5	
					7g	356	2	1	$\chi, \chi(NH_2)$	7g	330	55	1
					5g	328	57		$\chi, \chi(\rm NH_2)$	5g	368	87	—
5 <i>c</i>	394	21	1	χ						5 <i>c</i>	384	19	—
1 <i>c</i>	i152	191		$\chi, \chi(N'H'_2)$						1 <i>c</i>	435	119	1
					10g	532	81	1	$\rho(N_9H_{15})$	10g	519	117	—
10 <i>c</i>	618	64		$\rho(N'_1H'_7)$					• • • • •	10 <i>c</i>	602	43	—
					11g	543	259	1	$\rho(\rm NH_2)$	11g	651	19	
					14g	660	3		X	14g	658	3	
					16g	696	39		x	16g	708	2	
11 <i>c</i>	723	31		χ						11 <i>c</i>	717	61	—
					17g	734	5		$\rho(C_2N_{10})$	17g	741	1	—
12 <i>c</i>	763	8,6		$\rho(C'_{5(6)}H'_{12(13)})$						12 <i>c</i>	775	40	—
14 <i>c</i>	773	46		$\rho(C'_2O'_8)$	12g	595	80	1	$\rho(N_1H_{12})$	14 <i>c</i> +12 <i>g</i>	769	24	1
					18g	778	22	1	$\rho(C_6O_{11})$	18g	784	21	1
					19g	818	12	1	$\rho(C_8H_{16})$	19g	812	7	1
6 <i>c</i>	529	4		$\rho(N'H'_2)$						6 <i>c</i> +12 <i>g</i>	851	6	—
										6 <i>c</i> +12 <i>g</i>	911	108	—
16 <i>c</i>	956	1	1	$\rho(C'_{5(6)}H'_{12(13)})$						16 <i>c</i>	957	—	1
					п	поскі	ле ко	леба	ния		·		•
					4g	318	14	1	γ	4g	344	16	1
					6g	335	13	3	$\beta(C_{6}O_{11}), \beta(C_{2}N_{10})$	6g	374	6	4
4 <i>c</i>	359	4	1	$\beta(C'_{2}O'_{8}), \beta(C'_{4}N'_{10})$	0				P(=0=11), P(=2=10)	4 <i>c</i>	408	13	6
					8g	488	8	5	γ	8g	499	8	5
					9g	526	22	4	γ	9g	538	2	6
8 <i>c</i>	544	4	3	ν1	0				1	8 <i>c</i>	548	26	3
7 <i>c</i>	532	3	2	ν 						7 <i>c</i>	561	14	
9c	579	2	7	v v						9 <i>c</i>	592	4	6
				4	13g	625	8	28	Q	13g	641	9	31
					15g	669	21		$\gamma, \beta(C_2N_{10})$	15g	689	44	2
13 <i>c</i>	765	5	28	Q						13 <i>c</i>	782	1	41
					20g	835	9	2	γ	20g	836	20	2
					21g	948	8	6	γ	21g	947	12	7
15 <i>c</i>	918	5	2	<i>Q</i> , γ						15 <i>c</i>	957	—	1

Вычисленные значения частот (v, см⁻¹) и интенсивностей спектров ИК ($I_{\rm ИК}$, км/моль) и КР ($I_{\rm KP}$, Å⁴/a.е.м.) Суt, Gua и комплементарной пары Gua—Cyt

	Окончание табл. 2												
1	2	3	4	5	6	7	8	9	10	11	12	13	14
17 <i>c</i>	985	1	3	<i>Q</i> , γ						17 <i>c</i>	999		3
					22g	1044	9	4	<i>Q</i> , γ	22g	1057	2	10
					23g	1064	38	3	$Q, \beta(C_8H_{16}), \beta(N_9H_{15})$	23g	1064	21	9
					24g	1069	19	4	$Q, \beta(C_8H_{16}), \beta(N_9H_{15})$	24g	1108	4	2
19 <i>c</i>	1126	4	8	$Q, \beta(C'_5 H'_{12})$						19 <i>c</i>	1120	25	4
18 <i>c</i>	1079	44	3	$Q, \beta(N'H'_2)$						18 <i>c</i>	1139	51	2
					25g	1136	34	3	$Q, \beta(\mathrm{NH}_2)$	25g	1165	17	13
					26g	1169	26	2	$Q, \beta(C_8H_{16})$	26g	1181	46	2
20 <i>c</i>	1215	50	10	<i>Q</i> , β						20 <i>c</i>	1224	50	7
21 <i>c</i>	1255	34	13	$Q, \beta(C'_6 H'_{13})$						21 <i>c</i>	1297	68	23
					27g	1304	2	21	$Q, \beta(C_8H_{16})$	27g	1312	3	40
					29g	1355	16	8	$Q(C_5C_6)$	29g	1354	43	18
					30g	1383	14	90	$Q, \beta(N_9H_{15})$	30g	1379	15	124
22 <i>c</i>	1355	56	6	$Q, \beta(N'_1H'_7)$						22 <i>c</i>	1382	11	8
					31g	1434	24	16	Q	31g	1409	86	1
23 <i>c</i>	1441	86	7	$Q, \beta(N'_1H'_7)$	28g	1332	72	8	$Q, \beta(N_1H_{12})$	23c+28g	1439	93	29
										23 <i>c</i> +28 <i>g</i>	1446	73	8
					32g	1507	3	133	$Q, \beta(C_8H_{16})$	24 <i>c</i> +32 <i>g</i>	1518	17	206
24 <i>c</i>	1500	157	6	$Q(C'_4 N'_{10})$						24 <i>c</i> +32 <i>g</i>	1525	195	23
25 <i>c</i>	1563	168	22	$Q(C'_4C'_5)$						25 <i>c</i>	1549	140	9
					33g	1554	80	29	Q	33g	1559	7	17
					34g	1603	183	83	$Q(C_4C_5)$	34g	1612	115	66
					35g	1613	241	42	$Q, \beta(\mathrm{NH}_2)$	35g	1646	331	21
27 <i>c</i>	1683	517	14	$Q(C'_5 C'_6)$	36g	1661	420	38	$\beta(NH_2)$	27 <i>c</i> +36 <i>g</i>	1666	178	6
										27 <i>c</i> +36 <i>g</i>	1682	187	19
26 <i>c</i>	1631	158	9	$\beta(N'H_2)$						26 <i>c</i>	1702	853	7
28 <i>c</i>	1768	777	36	$Q(C_2'O_8')$	37g	1792	758	53	$Q(C_6O_{11})$	28 <i>c</i> +37 <i>g</i>	1719	34	65
										28 <i>c</i> +37 <i>g</i>	1750	1368	10
20	2102	2	0.2	$r(C' \cup U')$						31c+40g	3155	559	614
29c	3192	3	83	$q(C_{5(6)}H_{12(13)})$						29c	3199		85
										31 <i>c</i> +40 <i>g</i>	3218	1726	36
30 <i>c</i>	3218	2	128	$q(C_{5(6)}H_{12(13)})$						30c + 40g	3221	264	234
					38g	3242	—	127	$q(C_8H_{16})$	38g	3238	—	145
					•			100		39g	3399	1220	317
					39g	3578	53	180	$q_{\rm NH_2}$ (N ₁₀ H ₁₃₍₁₄₎) сим				
					10	2500	50	122	$q(N_1H_{12})$				
					40g	3389	55	132	$q(\mathbf{N}_1\mathbf{H}_{12}),$				
21.	2607	107	124	$d_{\rm WW}$ (N' H') only					$q_{\rm NH_2} (1 n_{10} \Pi_{13(14)}) {\rm CMM}$				
510	3007	107	150	$q_{\rm NH_2}$ ($N_{10} n_{9(11)}$) CMM									
32 <i>c</i>	3619	63	148	$q(\mathbf{N}_1^{\prime}\mathbf{H}_7^{\prime})$						32c	3623	93	130
					41g	3645	79	142	$Q(N_9H_{15})$	41g	3649	73	170
					12	2606	A 1	66		33 <i>с</i> асим	3679	96	100
22	2714	= (E C	a (N' H') correct	42g	2080	41	00	$q_{\rm NH_2}$ ($n_{10}n_{13(14)}$) асим	+∠g асим	309/	123	93
33C	J/44	30	36	$q_{\rm NH_2}$ ($m_{10} \pi_{9(11)}$) асим									

Частоты колебаний Gua и Cyt, отвечающие выходу связей N₁'H, C₅'H, C₆'H, N₉H, C₈H из плоскости (колебания 10*c*, 12*c*, 16*c*, 10*g*, 14*g*) на 5—10 см⁻¹, отличаются от соответствующих колебаний пары Gua—Cyt. Аналогичное частотное смещение наблюдается и для неплоских колебаний 14*c*, 16*g* связей C₂'O₈' и C₆O₁₁.

Важной характеристикой, наглядно иллюстрирующей влияние водородных связей на колебания молекул, является величина их вклада в распределение потенциальной энергии колебаний. Согласно выполненному расчету значимые величины вклада водородных связей в распределение потенциальной энергии (РПЭ) комплементарной пары Gua—Cyt имеют место для 45 плоских колебаний из 52 — для 25 и 20 колебаний Gua и Cyt соответственно. Одновременное влияние трех водородных связей испытывает 19 колебаний; под влияние двух водородных связей в РПЭ пары наблюдается для деформационных колебаний внутренних углов пиримидиновых колец Gua, Cyt и валентных колебаний связей NH. Так, максимальный вклад в РПЭ связи $N'_{10}H'_{11}...O_{11}$ наблюдается для колебаний 4g, 7c, 31c; связи $N'_{3}...H_{12}N_{1}$ — для колебаний 9g, 9c, 33c+39g, 31c+39g, 30c+40g; связи $O'_{8}...H_{13}N_{10}$ — для колебаний 4g, 4c, 7c, 13g, 33c+39g. Величина вклада в РПЭ для приведенных колебаний составляет 10—30 %.

Для плоских колебаний среднее изменение частот составляет 15—30 см⁻¹, что в 2 раза больше, чем в парах Ade—Ura и Ade—Thy [43, 44].

Влияние водородных связей заключается не только в "примешивании" их колебаний в колебания Gua и Cyt, но и в смешении колебаний Gua и Cyt как фрагментов пары, что приводит к значительным спектральным изменениям. Так, при образовании пары происходит смешение 13 плоских колебаний — 7 колебаний Cyt и 6 колебаний Gua. В отличие от колебаний Ade— Ura и Ade—Thy, для пары Gua—Cyt одно и то же колебание Gua может смешиваться с двумя разными колебаниями Cyt, например колебание 39g с колебаниями 31c и 33c (такой же характер смешения имел место и для неплоских колебаний). Кроме того, смешиваются не только колебания связей, принимающих непосредственное участие в образовании водородных связей, но и колебания тех молекулярных фрагментов, которые не участвуют в образовании димеров, например колебания 32g и 27c.

О влиянии водородных связей на интенсивности колебательных спектров Gua и Cyt при образовании комплементарной пары можно судить, сравнивая ИК и КР спектры пары с соответствующими спектрами, являющимися суперпозицией спектров Gua и Cyt (рис. 2). Очевидно, что наиболее существенные отличия спектров ИК и КР, которые позволяют судить о влиянии водородных связей на колебательные спектры Gua—Cyt, наблюдаются в области 1600—1800 см⁻¹. Например, происходит не только смешение колебаний 24*c* и 32*g*, а также колебаний 28*c* и 37*g* (см. табл. 2), но и значительное перераспределение интенсивностей в спектре КР между соответствующими полосами (см. рис. 2: 2a, 2b). В ИК спектре аналогичное перераспределение интенсивности в собенно колебаний 28*c* и 37*g* (см. рис. 2: 1a, 1b). Величины изменений интенсивностей достигают 60 % в КР спектре и 90 % в ИК. Кроме того, об образовании пары в смеси изолированных молекул Gua и Cyt можно судить по "исчезновению" сильной полосы поглощения 11*g*.

Несомненно, наиболее ярким проявлением образования водородной связи в спектре Gua— Суt является сильный низкочастотный сдвиг и многократный рост интенсивности полос поглощения валентных колебаний $N'_{10} H'_{11}$ и $H_{13}N_{10}$, образованных аминными группами NH_2 Суt и Gua, а также колебаний N_1H_{12} Gua, а именно: в спектре комплементарной пары наблюдается смешение форм симметричных колебаний Суt (колебание 31*c*) и валентных колебаний связи N_1H_{12} Gua (колебание 40*g*), сопровождающееся низкочастотным понижением частот на ~450 см⁻¹ и увеличением интенсивности соответствующих полос поглощения в ~5÷30 раз (рис. 3). Кроме этого происходит уменьшение частоты на 179 см⁻¹ и увеличение интенсивности в ~20 раз ПП, отвечающих симметричному колебанию 39*g* аминной группы Gua. Отметим, что для антисимметричных валентных колебаний аминных групп Суt и Gua смещение частот не только значительно меньше, но оно может как понижаться (колебание 33*c*), так и возрастать

Рис. 2. Колебательные спектры комплементарной пары Gua—Cyt (ИК — 16, КР — 26) и суммарные спектры Gua и Cyt (ИК — 1*a*, КР — 2*a*) в области 100—1800 см⁻¹

(колебание 42g). Поскольку формы колебаний 29c, 32c и 38g, 41g отвечают изменениям длин связей СН и NH, не принимающих участие в образовании водородных связей пары Gua—Суt, то частоты и интенсивности соответствующих ПП этих колебаний испытывают небольшие изменения при образовании комплементарной пары.

Таким образом, образование водородной связи $O'_8 \dots H_{13}N_{10}$ между молекулами Gua и Cyt приводит к появлению в ИК спектре смеси интенсивной полосы поглощения с частотой 3399 см⁻¹, а образование водородных связей $N'_{10}H'_{11}\dots O_{11}$ и $N_1H_{12}\dots N'_3$ — к появлению двух интенсивных ПП, соответствующих колебаниям с частотами 3218 и 3399 см⁻¹.

выводы

В результате проведенных расчетов и анализа влияния водородных связей на структуру, положения частот и значения интенсивностей нормальных колебаний пары по сравнению со спектрами изолированных молекул Gua и Cyt показано, что имеются и ярко выражены характерные спектральные признаки образования комплементарной пары Gua—Cyt.

Рис. 3. ИК спектр комплементарной пары Gua—Cyt (б) и суммарный ИК спектр Gua и Cyt (а) в области валентных колебаний CH и CN

Спектральные проявления образования пары Gua—Cyt существенно отличаются от случая пар Ade—Thy и Ade—Ura.

При образовании водородных связей между Gua и Cyt структура изолированной молекулы Gua, для которой имеет место нарушение компланарности атомов пиримидинового основания, становится плоской.

Образование водородных связей в паре Gua—Cyt, в отличие от комплементарных пар Ade—Thy и Ade—Ura, приводит к значительному изменению как ИК, так и КР спектра по сравнению со спектрами изолированных Gua и Cyt, причем во всем рассматриваемом спектральном диапазоне.

В области 400—1800 см⁻¹ наиболее существенное смещение частот и интенсивностей наблюдается для неплоских, деформационных и валентных колебаний аминных групп Gua, Cyt, а также связи NH пиримидинового кольца Gua. Частоты этих колебаний могут меняться на 100—580 см⁻¹, а интенсивности соответствующих ПП — в 5—14 раз. Характерной особенностью смешения колебаний Gua и Cyt как фрагментов пары Gua—Cyt является перераспределение интенсивности между соответствующими полосами в области 1600—1800 см⁻¹. Эти изменения интенсивностей достигают 60 и 90 % в КР и ИК спектрах соответственно. В отличие от пар Ade—Thy и Ade—Ura, смешиваются не только колебания, принимающие непосредственное участие в образовании водородных связей, но и колебания имидазольного кольца.

В области валентных колебаний связей СН и NH образование водородных связей приводит к значительному низкочастотному смещению и многократному увеличению интенсивности ПП и линий СКР, отвечающих трем колебаниям, одно из которых с частотой 3399 см⁻¹ связано с образованием водородной связи $O'_8 \dots H_{13}N_{10}$, а два других колебания с частотами 3218 и 3399 см⁻¹ — с образованием водородных связей $N'_{10}H'_{11}\dots O_{11}$ и $N_1H_{12}\dots N'_3$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wiorkiewicz-Kuczera J., Karplus M. // J. Amer. Chem. Soc. 1990. 112. P. 5324 5340.
- 2. Stepanian S.G., Sheina G.G., Radchenko E.D., Blagoi Yu.P. // J. Mol. Struct. 1985. 131, N 3-4. P. 333 346.
- 3. Plützer Chr., Kleinermanns K. // Phys. Chem. Chem. Phys. 2002. 4, N 20. P. 4877 4882.
- 4. Leszczynski J. // J. Phys. Chem. 1998. **102A**. P. 2357 2362.
- 5. Lord R.C., Thomas G.J. // Spectrochim. Acta. 1967. 23A. P. 2551 2591.
- 6. Aamouche A., Ghomi M., Coulombeau C. et al. // J. Phys. Chem. 1996. 100. P. 5224 5234.
- 7. Nowak M.J., Lapinski L., Fulara J. // Spectrochim. Acta. 1989. 45A. P. 229 242.
- Szczepaniak K., Szczesniak M.M., Kwiatkowski J.S., KuBulat K., Person W.B. // J. Amer. Chem. Soc. 1988. – 110. – P. 8319 – 8330.
- 9. Aamouche A., Ghomi M., Grajcar L., Baron M.H., Romain F., Baumruk V., Stepanek J., Coulombeau C., Jobic H., Berthier G. // J. Phys. Chem. 1997. **101A**. P. 10063 10074.
- 10. Тен Г.Н., Зотов Н.Б., Баранов В.И. // Оптика и спектроскоп. 2009. 107, № 2. С. 250 258.
- 11. Nir E., PlützerCh., Kleinermanns K., de Vries M.S. // Eur. Phys. J. 2002. 20D. P. 317 329.
- 12. Радченко Е.Д., Плохотниченко А.М., Иванов А.Ю., Шеина Г.Г., Благой Ю.П. // Биофизика. 1986. **31**. С. 373 381.
- 13. Sheina G.G., Stepanian S.G., Radchenko E.D., Blagoi Yu.P. // J. Mol. Struct. 1987. 158. P. 275 292.
- 14. Delabar J.-M., Majoube M. // Spectrochim. Acta. 1978. 34A. P. 129 140.
- 15. *Majoube M.* // J. Chim. Phys. 1984. **81**. P. 303 315.
- 16. Mons M., Dimicoli I., Piuzzi F., Tardivel B., Elhanine M. // J. Phys. Chem. 2002. **106A**. P. 5088 5094.
- 17. Nir E., Janzen Ch., Imhof P., Kleinermanns K., de Vries M.S. // J. Chem. Phys. 2001. 115. P. 4604 4611.
- 18. Choi M.Y., Miller R.E. // J. Amer. Chem. Soc. 2006. 128. P. 7320 7328.
- 19. Del Bene J.E., Person W.B., Azczepaniak K. // J. Phys. Chem. 1995. 99. P. 10705 10710.
- Bencivenni L., Ramondo F., Pieretti A., Sanna N. // J. Chem. Soc., Perkin Trans. 2000. 2. P. 1685 1693.
- 21. Santamaria R., Charro E., Zacarias A., Castro M. // J. Comput. Chem. 1999. 20. P. 511 530.
- 22. Батуев М.И. Материалы по истории отечественной химии. М.: Изд-во АН СССР, 1953. С. 51 69.
- 23. Соколов Н.Д. Водородная связь. М.: Наука, 1964. С. 8 39.

- 24. Пиментелл Дж., Мак-Клеллан О. Водородная связь. М.: Мир, 1964.
- 25. Юхневич Г.В. Инфракрасная спектроскопия воды. М.: Наука, 1973.
- 26. Каплан И.Г. Введение в теорию межмолекулярных взаимодействий. М.: Наука, 1982.
- 27. Jeffrey G.A., Saenger W. Hydrogen Bonding in Biological Structures. Berlin, Germany: Springer, 1991.
- 28. Билобров В.М. Водородная связь. Внутримолекулярные взаимодействия. Киев: Наукова думка, 1991.
- 29. Тараканова Е.Г., Юхневич Г.В., Вигасин А.А. // Хим. физика. 1992. 11, № 5. С. 608 626.
- 30. Schmidt J.R., Roberts S.T., Loparo J.J., Tokmakoff A., Fayer M.D., Skinner J.L. // Chem. Phys. 2007. 341, № 1-3. P. 143 157.
- 31. *Efimov Y.Y., Naberukhin Y.I.* // Spectrochim. Acta. Part A: Molecular and Biomolecular Spectroscopy. -2011. -78, N 2. P. 617 623.
- 32. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Gaussian Inc., Pittsburgh PA, 2003.
- 33. Komornicki A., McIver Jr. J.W. // J. Chem. Phys. 1979. 70. P. 2014.
- 34. *Long D.A.* The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Chichester: Wiley & Sons Ltd, 2002.
- 35. Vázquez J., John F., Stanton J.F. // Mol. Phys. 2006. 104, N 3. P. 377 388.
- 36. Barnes A.J., Stuckey M.A., Gall L.Le. // Spectrochim. Acta. 1984. 40A. P. 419 431.
- 37. Chin S., Scott I., Szczepaniak K., Person W.B. // J. Amer. Chem. Soc. 1984. 106. P. 3415 3422.
- 38. Aamouche A., Ghomi M., Grajcar L. et al. // J. Phys. Chem. 1997. 101A. P. 1808 1817.
- 39. Florian J., Hrouda V. // Spectrochim. Acta. 1993. 49A. P. 921 938.
- 40. Dhaouadi Z., Ghomi M., Austin J.C., Chinsky R.B., Turpin P.Y., Coulombeau C., Jobic H., Tomkinson J. // J. Phys. Chem. – 1993. – 97. – P. 1074 – 1084.
- 41. Грибов Л.А., Павлючко А.И. Вариационные методы решения ангармонических задач в теории колебательных спектров молекул. – М.: Наука, 1998.
- 42. Lappi S.E., Collier W., Franzen S. // J. Phys. Chem. 2002. 106A. P. 11446 11455.
- 43. *Тен Г.Н., Нечаев В.В., Панкратов А.Н., Баранов В.И.* // Журн. структур. химии. 2010. **51**, № 3. С. 474 482.
- 44. *Тен Г.Н., Нечаев В.В., Панкратов А.Н., Березин В.И., Баранов В.И. //* Журн. структур. химии. 2010. **51**, № 5. С. 883 889.