УДК 532.526; 537.86.187

ГЕНЕРАЦИЯ НЕЛИНЕЙНЫХ ВОЛН НА ВЯЗКОУПРУГОМ ПОКРЫТИИ В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ

В. П. Реутов, Г. В. Рыбушкина

Институт прикладной физики РАН, 603600 Нижний Новгород

Исследуется самовозбуждение периодических нелинейных волн на вязкоупругом покрытии, взаимодействующем с турбулентным пограничным слоем несжимаемого потока. Отклик течения на многоволновое возмущение поверхности покрытия определяется в приближении малых наклонов. Получена система уравнений для комплексных амплитуд кратных гармоник медленной (дивергентной) волны, возникающей в результате развития гидроупругой неустойчивости на покрытии с большими потерями. Показано, что трехволновые резонансные связи между гармониками приводят к развитию взрывной неустойчивости, которая стабилизируется благодаря деформации среднего (по периоду волны) сдвигового течения в пограничном слое. Определяются условия мягкого и жесткого возбуждения дивергентных волн. На основе проведенных расчетов объясняются качественные особенности возбуждения дивергентных волн в известных экспериментах.

Введение. Задача о самовозбуждении (генерации) волн на упругих покрытиях, взаимодействующих с потоками жидкости, представляет интерес в связи с поиском путей снижения гидродинамического сопротивления (см., например, [1–3]). Это явление также играет существенную роль в биомеханических течениях жидкости [4]. В рамках линейной теории обнаружено два основных типа гидроупругих (индуцированных потоком) неустойчивостей — флаттер бегущей волны и дивергенция [2]. Квазистатическая неустойчивость (дивергенция) появляется при обтекании покрытия однородным потенциальным потоком, тогда как возникновение флаттера обусловлено необратимой передачей энергии от сдвигового течения в пограничном слое к поверхности. Вязкоупругое сильнодиссипативное покрытие и идеальное (упругое) покрытие были использованы в [5, 6] для наблюдения соответственно дивергенции и флаттера в течении с турбулентным пограничным слоем (ТПС).

В работе [5] дивергенция идентифицировалась как квазистатическая неустойчивость с фазовой скоростью волн, составляющей менее 5% скорости основного потока. В этом случае при переходе скорости потока через критическое значение на поверхности сразу возникали несинусоидальные двумерные волны большой амплитуды с шиповидными подъемами поверхности. Выяснение механизма генерации таких волн является целью настоящей работы.

Численное моделирование генерации гидроупругих волн на ограниченной упругой пластине проводилось в [7], при этом использовалась модель потенциального течения без пограничного слоя. В [8] получено уравнение Ландау для монохроматических волн на упругом и вязкоупругом покрытиях, взаимодействующих с ТПС. Нелинейные процессы конкуренции "быстрых" волн, возбуждаемых при развитии неустойчивости типа флаттера, изучались в [9]. Благодаря малой фазовой скорости медленных (дивергентных) волн возникают условия для синхронизации фаз кратных гармоник, что может привести к образованию нелинейных волн. В данной работе квазилинейная теория взаимодействия ТПС

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 97-01-00183; 96-15-96593).

с волнистой поверхностью, построенная в [10], дополняется учетом резонансных взаимодействий кратных гармоник периодической дивергентной волны. Как и в [8–10], основным малым параметром является наклон поверхности. Такая слабонелинейная теория позволяет изучать генерацию гидроупругих волн только при достаточно малых надкритичностях. Однако ее построение представляется полезным для понимания роли ТПС в механизмах ограничения гидроупругой неустойчивости.

1. Волновая дивергенция на вязкоупругом покрытии в ТПС (линейная задача). Рассмотрим взаимодействие ТПС с волновым прогибом поверхности упругого покрытия. Внешняя область ТПС сращивается с однородным потенциальным течением без градиента давления. Однослойное покрытие из несжимаемого вязкоупругого материала с плотностью ρ_s и модулем сдвига *G* имеет толщину *d*. Скорость распространения плоских поперечных волн в этом материале $c_t = \sqrt{G/\rho_s}$. Период прогиба поверхности λ считается малым по сравнению с масштабом расширения ТПС. Как показано в [8, 9], взаимодействие такого прогиба с ТПС можно считать локальным.

Для описания периодических двумерных возмущений на поверхности покрытия воспользуемся модельным уравнением, представляющим собой модификацию уравнения Кармана теории слабого изгиба тонких пластин:

$$\hat{K}w - \left[\frac{s}{\lambda}\int_{0}^{\lambda} (w_{x'})^2 dx'\right]w_{xx} = -p,$$
(1)

где w(x,t) — смещение уровня поверхности в направлении оси y в точке x в момент времени t; p(x,t) — возмущение поверхностного давления; \hat{K} — линейный интегродифференциальный оператор; $s = Gd/(1-\mu)$ ($\mu \approx 0.5$ — коэффициент Пуассона для несжимаемого вязкоупругого слоя).

Имеющиеся экспериментальные данные по возбуждению гидроупругих волн в ТПС относятся к однослойным покрытиям. В этом случае спектральное представление оператора \hat{K} (для возмущений вида $\exp(ikx - i\omega t)$) можно записать следующим образом [11]:

$$\hat{K}(\Omega,\alpha) = \frac{\rho_s c_t^2}{d} \left[\bar{m}(\alpha^2 \bar{c}_0^2 - \Omega^2) - i\gamma_t b_0 \Omega \right],\tag{2}$$

где $\alpha = kd$ — безразмерное волновое число; $\Omega = \omega d/c_t$ — безразмерная циклическая частота; γ_t — безразмерный параметр потерь; \bar{m} , \bar{c}_0 и b_0 зависят только от α . В рассматриваемом далее случае сильнодиссипативного покрытия формула (2) получается строго (в асимптотическом смысле) через разложение по параметру $1/(\alpha \gamma_t) \ll 1$.

При $\bar{m} = \text{const}, b_0 = \text{const}$ и соответствующем определении \bar{c}_0 выражение (2) описывает комплексную упругость тонкой пластины (или мембраны) с безразмерной поверхностной плотностью \bar{m} и коэффициентом потерь $\gamma_t b_0$. В области волновых чисел $\alpha \ge 1$ (характерных для экспериментов [5]) изменения \bar{m} и b_0 относительно невелики, а их быстрое увеличение начинается при малых α (имеется сингулярный рост при $\alpha \to 0$).

Таким образом, в линейной задаче при определении \hat{K} в форме (2) уравнение (1) описывает деформацию поверхности реального вязкоупругого слоя. При переходе к нелинейному уравнению (1) вязкоупругий слой рассматривается как тонкая свободная пластина толщины d, параметры которой видоизменяются в соответствии с (2).

Возмущения давления в виде бегущей синусоидальной волны, возникающие в ТПС при прогибе поверхности, в линейном приближении найдены в [11] на основе модели течения с вихревой вязкостью (см. также [8]). При этом была предложена квазипотенциальная аппроксимация для комплексной упругости потока, которая при $\alpha > 0$ сводится

к соотношению между комплексными амплитудами давления $p_{\omega k}$ и прогиба $w_{\omega k}$ вида

$$p_{\omega k} \simeq k \rho_0 U^2 \Big[-\left(\frac{\omega}{kU} - f\right)^2 + \delta Z^{(0)} \Big] w_{\omega k}, \tag{3}$$

где f < 1 — параметр редукции статической упругости потенциального потока; $\delta Z^{(0)}$ — резистивная составляющая упругости; U — скорость однородного течения. В [11] дана аналитическая аппроксимация зависимости f от безразмерного волнового числа $\bar{k} = k \delta_*$ и локального числа Рейнольдса $\text{Re} = U \delta_* / \nu_0 (\delta_*$ — толщина вытеснения ТПС, ν_0 — кинематическая вязкость жидкости).

Пренебрегая в (1) нелинейным членом и используя (2) и (3), получим дисперсионное соотношение для гидроупругих волн в виде [11]

$$\alpha \bar{m}(\Omega^2 - \alpha^2 \bar{c}_0^2) + q(\Omega - \alpha f V)^2 + i\gamma_t b_0 \alpha \Omega - q V^2 \alpha^2 \delta Z^{(0)} = 0, \qquad (4)$$

где $V = U/c_t$ — безразмерная скорость потока; $q = \rho_0/\rho_s$. Для вязкоупругого покрытия $\gamma_t b_0 = 6 \div 600$, что позволяет искать решение (4) в виде разложения по $\varepsilon_{\alpha} = 1/(\gamma_t b_0) \ll 1$ [11]. С точностью до членов порядка ε_{α} для частоты слабозатухающих (или слабонарастающих) волн получим выражение

$$\Omega = i\alpha\varepsilon_{\alpha}(qf^2V^2 - \alpha\bar{m}\bar{c}_0^2 - qV^2\delta Z_0^{(0)}), \qquad (5)$$

где $\delta Z_0^{(0)} = \delta Z^{(0)}|_{\Omega=0}$. Заметим, что в уравнения (4) и (5) входят неявно параметры $\operatorname{Re}_t = c_t \delta_* / \nu_0$ и d/δ_* [11].

На рис. 1 представлена зависимость инкремента неустойчивости Im Ω от α при различных скоростях потока (кривые 1–3 соответствуют V = 5,6; 6,1; 6,6). Здесь и далее приводятся результаты расчетов для системы поток — покрытие с параметрами q = 1, $\gamma_t = 15$, $\operatorname{Re}_t = 350$, $d/\delta_* = 0.78$ (см. [11]). Аналогичные результаты получены при других значениях γ_t , Re_t и d/δ_* .

Как следует из рис. 1, неустойчивость возникает после того, как скорость потока переходит через критическое значение $V_c \simeq 5,6$. На границе возникновения неустойчивости возбуждается волна с волновым числом $\alpha_c \simeq 2$ (длина волны $\lambda_c = 2\pi d/\alpha_c$). Фазовая скорость нарастающих волн мала по сравнению со скоростью потока, что позволяет считать данную неустойчивость волновой дивергенцией [2].

Заметим, что резистивная составляющая отклика ТПС $\delta Z^{(0)}$ оказывает слабое влияние на поведение кривых, представленных на рис. 1, а также на величину критической скорости потока V_c . Фактически неустойчивость возникает в результате превышения статической упругости потока над статической упругостью покрытия при произвольных потерях в покрытии. Такое поведение системы поток — покрытие является следствием преобладания вклада диссипативной составляющей (член $i\gamma_t b_0\Omega$ в (2)) в динамическую упругость покрытия. В этом случае влияние реактивной и резистивной составляющих упругостей потока и покрытия на распространение волн оказывается противоположным для покрытий с малыми и большими потерями. В частности, действительная часть $\delta Z^{(0)}$, которая при малых потерях в покрытии определяет сдвиг частоты волн, в случае сильнодиссипативного покрытия дает вклад в затухание (усиление) волн. Очевидно, что аналогичные изменения должны происходить также с нелинейными упругостями потока и покрытия.

2. Вывод замкнутой системы уравнений для амплитуд гармоник прогиба поверхности. Для определения нелинейного отклика ТПС на волновой прогиб поверхности в [10] использовалось квазилинейное приближение, в рамках которого основное проявление нелинейности связано с деформацией среднего (по периоду волнистости) течения в ТПС. В рамках этого приближения в [8] получено уравнение Ландау. Как отмечалось в [10], вклад в нелинейный отклик второй гармоники гидродинамических полей мал при условии, что она либо отсутствует в прогибе поверхности, либо имеет порядок $k\tilde{a} \ll 1$ по сравнению с первой гармоникой (k, \tilde{a} — характерные значения волнового числа и амплитуды отклонения поверхности). Однако это условие может нарушаться при наличии резонанса фазовых скоростей первой и второй гармоник. В случае дивергентных волн, фазовая скорость которых мала при $\varepsilon_{\alpha} \ll 1$, условия резонанса выполняются не только для второй, но и для высших кратных гармоник. Это может приводить к генерации дивергентных волн существенно несинусоидальной формы.

При выводе уравнения для амплитуд гармоник нелинейной волны необходимо в квазилинейной модели отклика ТПС учесть резонансное взаимодействие между гармониками. Как и в [8–10], воспользуемся приближением слабой нелинейности, считая наклон поверхности малым: $k\tilde{a} \ll 1$. Перейдем в (1) к безразмерным времени $t_1 = c_t t/d$, координате $x_1 = x/d$ и подъему поверхности $\bar{w} = w/d$. В (1) положим $p = p_{qp} + p_{nl}$, где p_{qp} квазипотенциальный линейный отклик течения на волновой прогиб поверхности, определяемый в спектральном представлении формулой (3); p_{nl} — нелинейная составляющая отклика.

Для того чтобы перейти от спектральных связей (2), (3) к пространственно-временным, используем формальную замену $\Omega \to \hat{\Omega} = i\partial/\partial t_1$, $\alpha \to \hat{\alpha} = -i\partial/\partial x_1$. Сначала получим уравнение возбуждения кратных гармоник "нелинейной силой" p_{nl} , рассматривая ее как заданную функцию x_1 и t_1 . Для этого прогиб поверхности представим в виде набора гармоник

$$\bar{w}(x_1, t_1) = \sum_{\alpha} a_{\alpha}(\varepsilon_{\alpha} t_1) e^{i\alpha x_1}, \qquad (6)$$

где a_{α} — нормированная комплексная амплитуда гармоники прогиба с волновым числом α . Поскольку \bar{w} — действительная величина, выполняется условие $a_{\alpha} = a_{-\alpha}^*$ (звездочка означает комплексное сопряжение). В случае кратных гармоник $\alpha = n\alpha_1$, где $n = 1, 2, 3, \ldots$ — номер гармоники; α_1 — волновое число первой гармоники (длина нелинейной волны $\lambda = 2\pi d/\alpha_1$).

Подставляя (6) в (1) и сохраняя члены порядка единицы, получим следующее уравнение возбуждения гармоник с $\alpha > 0$:

$$\frac{da_{\alpha}}{dt_1} = \gamma_{\alpha} a_{\alpha} - \varepsilon_{\alpha} \bigg[\sum_{\beta > 0} K_{\alpha\beta}^{(1)} |a_{\beta}|^2 a_{\alpha} + \frac{2}{\rho_s c_t^2} \, (p_{nl})_{\alpha} \bigg],\tag{7}$$

где

$$\gamma_{\alpha} = \alpha \varepsilon_{\alpha} (qf^2 V^2 - \alpha \bar{m} \bar{c}_0^2 - q V^2 \delta Z_0^{(0)}), \quad (p_{nl})_{\alpha} = \frac{1}{\lambda} \int_0^{\gamma} p_{nl} e^{-i\alpha x_1} dx_1 \Big|_{\hat{\Omega}=0}, \quad K_{\alpha\beta}^{(1)} = \frac{\alpha^2 \beta^2}{2(1-\mu)}.$$

Отметим, что в данном приближении нелинейные силы находятся без учета производных по t в уравнениях гидродинамики (квазистационарное обтекание). При переходе к (7) условие малых наклонов поверхности не использовалось в явном виде, однако оно присутствует неявно как одно из условий применимости теории слабого изгиба тонких пластин.

Квазилинейный отклик ТПС в случае многоволнового (мультигармонического) прогиба поверхности определялся в [9] на основе обобщения моногармонической квазилинейной теории [8]. Предложенная в [9] численная схема позволяет рассчитать разложение для гармоник поверхностного давления нулевой частоты, которое имеет вид

$$p_k = \left[Z^{(0)}(\bar{k}) + \sum_{k_0 > 0} Z^{(1)}(\bar{k}, \bar{k}_0) |k_0 \tilde{a}_{k_0}|^2 \right] \tilde{a}_k, \tag{8}$$

где $\tilde{a}_k = a_{\alpha}d$ — ненормированные комплексные амплитуды гармоник прогиба; $Z^{(0)}$ — линейная комплексная упругость потока (совпадающая с полным значением коэффициента при $w_{\omega k}$ в правой части (3)); $Z^{(1)}(\bar{k}, \bar{k}_0)$ — коэффициенты матрицы взаимных нелинейных упругостей потока для гармоник с волновыми числами \bar{k} и $\bar{k}_0 = k_0 \delta_*$. Отметим, что подобное (8) соотношение можно записать также для отклика покрытия, возбуждаемого внешним полем давления, при этом вместо $Z^{(1)}$ в него войдут величины $K^{(1)}_{\alpha\beta}$ из (7) (см. [9]).

Трехволновые резонансные связи между гармониками прогиба определяются членами второго порядка разложения p_{nl} по малым амплитудам гармоник. Их вычисление для ТПС с вихревой вязкостью связано со значительным усложнением изложенной в [9] численной процедуры. В то же время оценки для характерных параметров ТПС и дивергентных волн показывают, что глубина проникания осциллирующего (с периодом волнистости) течения в ТПС k^{-1} существенно превышает толщину буферной области ТПС $y_b \simeq 30\nu_0/u_*$ (u_* — динамическая скорость ТПС), а также длину затухания возмущений завихренности, которая оценивается как $\sqrt{\nu_b/(kU_b)}$ (ν_b и U_b — значения эффективной вязкости и скорости течения при $y = y_b$). Заметим, что слои совпадения фазовых скоростей гармоник дивергентной волны со скоростью потока находятся глубоко в вязком подслое.

Учитывая указанные особенности дивергентных волн, для расчета членов второго порядка разложения p_{nl} будем использовать модель потенциального течения с уменьшенной скоростью $U \to f_1 U$ ($f_1 < 1$ — коэффициент редукции скорости свободного течения). Положим $f_1 = U_b/U \simeq 0.5$, что согласуется с величиной близкого по смыслу коэффициента f в формуле (3). Система уравнений и граничных условий для возмущений потенциала φ и выражение для поверхностного давления, записанные с точностью до членов второго порядка, принимают вид

$$\varphi_{xx} + \varphi_{yy} = 0 \quad (y > 0), \qquad f_1 U w_x - \varphi_y = -\varphi_x w_x + w \varphi_{yy} \big|_{y=0},$$

$$p/\rho_0 = -f_1 U(\varphi_x + w \varphi_{xy}) - (1/2)(\varphi_x)^2 - (1/2)(\varphi_y)^2 \big|_{y=0}.$$
(9)

В (9) подставим выражение (6) для w, записанное в исходных (ненормированных) переменных. Тогда с точностью до членов первого порядка для возмущений потенциала получим выражение

$$\varphi = -\sum_{k} \frac{ikf_1U}{|k|} \tilde{a}_k e^{ikx-|k|y}.$$

Производя вычисления *p* с точностью до членов второго порядка, находим

$$p_k = \rho_0 f_1^2 U^2 \bigg(-|k| \tilde{a}_k + \sum_{k_0} S_{kk_0} \tilde{a}_{k_0} \tilde{a}_{k-k_0} \bigg),$$
(10)

где $S_{kk_0} = (1/2)[-(|k_0|+|k|)|k-k_0|-|kk_0|+k^2+k_0^2-kk_0]$. Составляя p_{nl} из вторых членов в разложениях (8) и (10) и переходя к безразмерным переменным, можно привести (7) к виду

$$\frac{da_{\alpha}}{dt_1} = \gamma_{\alpha} a_{\alpha} + \sum_{\beta} \sigma_{\alpha\beta} a_{\beta} a_{\alpha-\beta} - \sum_{\beta>0} T_{\alpha\beta} |a_{\beta}|^2 a_{\alpha}, \tag{11}$$

где $T_{\alpha\beta} = \varepsilon_{\alpha} (K_{\alpha\beta}^{(1)} + qV^2 \alpha \beta^2 Z_{kk_0}^{(1)}); \sigma_{\alpha\beta} = -(1/2)\varepsilon_{\alpha} q f_1^2 V^2 (d^2 S_{kk_0}); k = \alpha/d; k_0 = \beta/d.$ Уравнения (11) для комплексных амплитуд гармоник известны в теории нелинейных

Уравнения (11) для комплексных амплитуд гармоник известны в теории нелинеиных волн как уравнения резонансного и несинхронного (энергетического) взаимодействия волн (см., например, [12]). Первый член в правой части определяет инкременты и линейные сдвиги частот гармоник, второй — резонансные связи между гармониками, третий нелинейное затухание и нелинейные сдвиги частот гармоник.

Следует отметить, что деформация среднего течения в ТПС приводит к большим значениям коэффициентов $Z_{kk_0}^{(1)}$ в разложении (8) (подробнее см. [9, 10]). Поэтому вклады членов второго и третьего порядка в уравнении (11) могут быть сравнимы при малых наклонах поверхности, при которых применимы разложения (8) и (10). Заметим, что подобная аномалия $Z_{kk_0}^{(1)}$ отсутствует в случае чисто потенциального обтекания поверхности (ввиду отсутствия деформации среднего течения).

3. Взрывная неустойчивость и жесткое возбуждение нелинейных дивергентных волн. Процедура расчета коэффициентов $Z^{(1)}$ разложения (8) для ТПС с вихревой вязкостью разработана в [9]. Проведенные на ее основе вычисления для типичных значений \bar{k} и Re показали, что действительные части $Z^{(1)}$ всегда положительны. Таким образом, диссипативная кубичная нелинейность в (11) играет стабилизирующую роль.

Для выяснения роли "резонансных" членов в (11) представим соответствующую им сумму в виде

$$\sum_{\beta} \sigma_{\alpha\beta} a_{\beta} a_{\alpha-\beta} = \sum_{0 < \beta < \alpha/2} \sigma_{\alpha\beta}^{(1)} a_{\beta} a_{\alpha-\beta} + \sum_{\beta > \alpha} \sigma_{\alpha\beta}^{(2)} a_{\beta} a_{\beta-\alpha}^* + \sigma_{\alpha}^{(3)} a_{\alpha/2}^2, \tag{12}$$

где $\sigma_{\alpha\beta}^{(1)} = \varepsilon_{\alpha}qf_1^2V^2\beta(\alpha-\beta), \ \sigma_{\alpha\beta}^{(2)} = \varepsilon_{\alpha}qf_1^2V^2\alpha(\beta-\alpha), \ \sigma_{\alpha}^{(3)} = (1/8)q\alpha^2f_1^2V^2; \ \alpha = n\alpha_1, \ \beta = m\alpha_1 \ (n,m=1,2,3,\ldots,N).$ В правой части (12) суммирование производится только по положительным волновым числам, исключены члены с повторяющимися комбинациями амплитуд (последнее слагаемое появляется только при четном n).

амплитуд (последнее слагаемое появляется только при четном n). Из приведенных выражений для $\sigma_{\alpha\beta}^{(1)}$, $\sigma_{\alpha\beta}^{(2)}$ и $\sigma_{\alpha}^{(3)}$ следует, что эти величины действительны и положительны. Предположим, что амплитуды волн достаточно малы и кубическими членами в (11) можно пренебречь. Легко видеть, что система (11) с заменой (12) описывает так называемую взрывную неустойчивость волн [12-15], что выражается в наличии асимптотических решений вида $a_{\alpha} \rightarrow C_{\alpha}/(t_{1\infty}-t_1)$ при $t_1 \rightarrow t_{1\infty}$ ($t_{1\infty} \sim C_{\alpha}/a_{\alpha}(0)$ — время "взрыва", $C_{\alpha} = \text{const}$). Взрывная неустойчивость изучалась в теории плазменных волн (см., например, [13]), где она связывалась в основном с трехволновыми взаимодействиями в средах, близких к консервативным (взаимодействием волн с разными знаками энергии). Примером взрывной неустойчивости в диссипативной среде может служить неустойчивость волновых триплетов в пограничном слое [14]. Взрывной рост волн за счет чисто диссипативных резонансных связей между ними был обнаружен для электромагнитных волн в волноводе с нелинейным током утечки [15].

Как отмечалось выше, диссипативный характер динамического отклика покрытия приводит к тому, что реактивные нелинейности типа упругости покрытия и упругости потока (определяемые коэффициентами $K^{(1)}$ и Re $Z^{(1)}$ соответственно) после перехода к

уравнениям связанных волн (11) преобразуются в диссипативные нелинейности (нелинейное затухание). "Квадратичная" часть отклика потока из реактивной также преобразуется в диссипативную. В конечном счете это приводит к взрывной неустойчивости.

Характерной особенностью взрывной неустойчивости является синхронизация фаз взаимодействующих волн при $t_1 \rightarrow t_{1\infty}$ [12, 13]. Нетрудно видеть, что в случае кратных гармоник стремятся к нулю разности фаз $\varphi_2 - 2\varphi_1$, $\varphi_3 - \varphi_2 - \varphi_1$ и т. д. ($\varphi_n = \arg a_n$, n — номер гармоники). При этом без ущерба общности можно считать, что $\varphi_n \rightarrow 0$. Таким образом, в случае гидроупругих волн взрывная неустойчивость должна приводить к формированию нелинейных волн с шиповидными подъемами поверхности. Дивергентные волны такого вида наблюдались в экспериментах на вязкоупругом покрытии [5]. Аналогичный процесс взрывного взаимодействия гармоник с формированием нелинейных электромагнитных волн наблюдался в волноводе с нелинейным током утечки [15].

Кубическое затухание стабилизирует взрывную неустойчивость и приводит к установлению стационарного режима с конечной амплитудой [12, 15]. Стабилизирующее действие оказывают также нелинейные сдвиги частот гармоник (вклад членов порядка $\text{Im } Z^{(1)}$). В средах с взрывной неустойчивостью возможно жесткое возбуждение волн и связанное с ним явление гистерезиса.

Для изучения перехода от мягкого возбуждения волн к жесткому рассмотрим предельный случай вещественных γ_{α} и $T_{\alpha\beta}$, когда в режиме синхронизации фаз a_{α} являются действительными величинами. Пусть волновое число первой гармоники α_1 равно критическому волновому числу α_c (см. рис. 1), скорость потока близка к критической V_c и вторая гармоника затухает ($\gamma_2 < 0$). Предполагая, что $|a_2| \ll |a_1|$, для действительных $a_{1,2}$ получим систему уравнений вида

$$\frac{da_1}{dt_1} = \sigma_{12}a_1a_2 - T_{11}a_1^3 + \gamma_1a_1, \qquad \frac{da_2}{dt_1} = \sigma_2a_1^2 - T_{21}a_1^2a_2 - |\gamma_2|a_2.$$
(13)

В стационарном состоянии $(d/dt_1 = 0)$ из (13) находим

$$|a_1| = \left[\frac{r \pm \sqrt{r^2 + 4\gamma_1 T_{11} T_{21}}}{2T_{11} T_{21}}\right]^{1/2},\tag{14}$$

где $r = \sigma_{12}\sigma_2 - |\gamma_2|T_{11}$. Согласно (14) мягкое возбуждение возникает при r < 0. В этом случае нелинейное затухание волны a_1 и линейное затухание волны a_2 подавляют взрывной рост. При выполнении условия r > 0 в области $\gamma_1 < 0$ реализуется жесткое возбуждение с гистерезисом зависимости стационарной амплитуды от надкритичности γ_1 . Следует учитывать, что для "ненулевого" состояния равновесия (13), которое появляется при $\gamma_1 = 0$ и r > 0, допущение $|a_2| \ll |a_1|$ оправдано только в вырожденном случае малых r. Очевидно, что в отсутствие такого вырождения уже при $\gamma_1 \to 0$ может возникать нелинейная волна, в которой сравнимую с a_1 амплитуду имеет не только вторая, но и более высокие гармоники.

Для исследования возбуждения нелинейных волн без ограничений, использованных при выводе (13), проводилось численное решение системы уравнений (11). Уравнения (11) записывались для вещественных переменных $\operatorname{Re}(a_{\alpha})$ и $\operatorname{Im}(a_{\alpha})$ и интегрировались методом Рунге — Кутты для конечного числа гармоник N. Проверялось влияние выбора числа гармоник N на результаты расчетов. Вычисления проводились при значениях параметров, указанных в п. **1**.

На рис. 2,*а* показана зависимость высоты подъема поверхности в нелинейной волне $A = w_{\text{max}} - w_{\text{min}}$ от скорости потока V при совпадении волнового числа ее первой гармоники с критическим значением $\alpha_1 = \alpha_c \approx 2$ (расчет проведен с N = 4). На рис. 2,*а* цифрами I–III обозначены области с качественно различным поведением решений. В данном случае реализуется мягкий режим возбуждения, аналогичный полученному выше в

рамках модели с двумя гармониками. При малых надкритичностях (область I) возбуждаемые волны близки к синусоидальным. В переходной области II наблюдается бурный рост кратных гармоник и периодические биения (стационарные волны отсутствуют). При дальнейшем росте скорости потока (в области III) формируется нелинейная волна, профиль которой приведен на рис. 2, б. Учитывая быстрый, скачкообразный рост амплитуды A (рис. 2, a), такое возбуждение нелинейных волн можно назвать псевдожестким.

В экспериментах [5] возбуждение волн происходило несколько иначе. Сразу после потери устойчивости возникали нелинейные дивергентные волны с большой высотой подъема поверхности ($A \approx 0.45$). В работе [8] обращалось внимание на то, что их длина приблизительно в два раза превышала критическое значение λ_c , предсказываемое линейной теорией. В связи с этим с помощью системы уравнений (11) изучалось возбуждение нелинейных волн с длиной $2\lambda_c$ ($\alpha_1 = \alpha_c/2$).

На рис. 3,*а* показана зависимость A(V), полученная при N = 8. При малых надкритичностях, когда амплитуда первой гармоники a_1 мала по сравнению с амплитудой второй гармоники a_2 , зависимость A(V) ведет себя так же, как в рассмотренном выше случае $\alpha_1 = \alpha_c$. Однако с ростом надкритичности при $V \approx 6$ происходит скачок амплитуды и появляется гистерезис зависимости A(V), что соответствует жесткому возбуждению. Нарастание во времени суммарной амплитуды $\bar{A} = \Sigma_{\alpha} |a_{\alpha}|$ с обеих сторон от скачка показано на рис. 3, δ (сплошная линия — V = 6,05, штриховая — V = 5,95). На рис. 3, ϵ приведен профиль нелинейной волны при V = 6,05. Из представленных данных следует, что мягкое возбуждение волны с длиной λ_c вызывает взрывной рост гармоник, в результате в потоке скачкообразно возникает нелинейная волна с длиной $2\lambda_c$. Заметим, что значение $A \approx 0,45$ для этой волны согласуется с экспериментальными данными. Таким образом, основные качественные особенности возбуждения волн на вязкоупругом покрытии в ТПС являются следствием взрывного характера взаимодействия кратных гармоник нелинейной волны с периодом $2\lambda_c$.

Подстановка в коэффициенты уравнения (11) $K_{\alpha\beta}^{(1)} = 0$ приводит к незначительному изменению результатов вычислений, представленных выше. Это означает, что при небольших надкритичностях основной вклад в насыщение неустойчивости дает гидродинамическая нелинейность, связанная с деформацией среднего течения в ТПС. Доминирующая роль гидродинамической нелинейности является следствием аномалии численных значений $Z_{kk_0}^{(1)}$.

Мягкого возбуждения волны с длиной λ_c , предшествующего скачкообразному возникновению нелинейной волны, в экспериментах не наблюдалось. Причиной этого могут быть

крупномасштабные пульсации скорости потока в пограничном слое, которые способны вызвать сильно выраженную нестационарность волнового поля. Кроме того, как показали расчеты, интервал мягкого возбуждения на рис. 3, a уменьшается с увеличением параметра f_1 (см. п. 2) и исчезает при $f_1 = 0,71$.

Теоретический профиль возбуждаемой волны (см. рис. 3, 6) имеет более нелинейную форму (большее отношение периода волны к ширине пиков), чем в экспериментах, и в расчетах амплитуда нелинейной волны нарастает медленнее при увеличении V. Причиной расхождения теории и экспериментальных данных может быть, в частности, недостаточная точность квазипотенциального приближения, использованного при расчете коэффициентов резонансной связи между гармониками.

Заключение. В данной работе выяснен механизм возбуждения существенно нелинейных дивергентных волн на вязкоупругом покрытии в ТПС несжимаемого потока. В результате резонансного взаимодействия кратных гармоник, имеющих малые фазовые скорости, профиль волны становится существенно несинусоидальным уже при умеренно малых надкритичностях. При больших потерях в покрытии консервативные нелинейности типа упругости потока и покрытия в уравнениях связанных волн преобразуются в диссипативные нелинейности. Диссипативная резонансная связь между гармониками приводит к их взрывной неустойчивости. Основной причиной ограничения взрывного роста волн в данном случае является деформация профиля среднего (по периоду нелинейной волны) сдвигового течения в ТПС.

Синхронизация фаз кратных гармоник, связанная с развитием взрывной неустойчивости, определяет шиповидную форму волн смещения поверхности. С точки зрения общей теории взрывной неустойчивости следует отметить "неэволюционный" характер роста высоты волны при увеличении надкритичности, когда взрывное взаимодействие кратных гармоник приводит к жесткому возбуждению нелинейных волн либо стимулирует быстрый переход к волнам существенно несинусоидального вида (псевдожесткое возбуждение). Ввиду принятия достаточно сильных упрощений рассмотренная задача, по существу, является модельной. Тем не менее проведенный анализ позволил объяснить основные особенности возбуждения дивергентных волн в экспериментах: скачкообразное возникновение нелинейных волн с характерной шиповидной формой смещения поверхности, а также возбуждение более длинных волн по сравнению с полученными в рамках линейной теории устойчивости.

ЛИТЕРАТУРА

- Riley J. J., Gad-el-Hak M., Metcalfe R. W. Compliant coatings // Annu. Rev. Fluid Mech. 1988. V. 20. P. 393–420.
- Carpenter P. W., Garrad A. D. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Pt 2. Flow induced surface instabilities // J. Fluid Mech. 1986. V. 170. P. 199–231.
- Semenov B. N., Semenova A. V. Recent developments in interference analysis of compliant boundary action on near-wall turbulence // Proc. of the Intern. symp. on sea water drug reduction. Newport (USA), 1998. P. 189–195.
- Grotberg J. B. Pulmonary flow and transport phenomena // Annu. Rev. Fluid Mech. 1994. V. 26. P. 529–571.
- Gad-el-Hak M., Blackwelder R. F., Riley J. J. On the interaction of the compliant coatings with boundary layer flows // J. Fluid Mech. 1984. V. 140. P. 257–280.
- Gad-el-Hak M. The response of elastic and visco-elastic surfaces to a turbulent boundary layer // Trans. ASME. J. Appl. Mech. 1986. V. 53. P. 206–212.
- Lucey A. D., Carpenter P. W. A numerical simulation of the interaction of a compliant wall and inviscid flow // J. Fluid Mech. 1992. V. 234. P. 121–146.
- Реутов В. П., Рыбушкина Г. В. О нелинейном развитии двумерной гидроупругой неустойчивости в турбулентном пограничном слое на упругом покрытии // ПМТФ. 2000. Т. 41, № 4. С. 69–80.
- Реутов В. П., Рыбушкина Г. В. Квазилинейная теория генерации гидроупругих волн в турбулентном пограничном слое на упругом покрытии // Изв. РАН. Механика жидкости и газа. В печати.
- 10. Реутов В. П. Нелинейные характеристики взаимодействия турбулентного пограничного слоя с волнистой поверхностью // ПМТФ. 1998. Т. 39, № 6. С. 72–84.
- 11. Reutov V. P., Rybushkina G. V. Hydroelastic instability threshold in a turbulent boundary layer over compliant coating // Phys. Fluids. 1998. V. 10, N 2. P. 417–425.
- 12. Рабинович М. И., Трубецков Д. И. Введение в теорию колебаний и волн. М.: Наука, 1984.
- 13. Вильхельмссон Х., Вейланд Я. Когерентное нелинейное взаимодействие волн в плазме / Пер. с англ. М.: Энергоатомиздат, 1981.
- 14. Craik A. D. D. Wave interactions and fluid flows. Cambridge: Cambridge Univ. Press, 1985.
- 15. Кияшко С. В., Рабинович М. И., Реутов В. П. Взрывная неустойчивость и генерация солитонов в активной среде // Журн. техн. физики. 1972. Т. 42, № 12. С. 2458–2465.

Поступила в редакцию 20/XII 1999 г.