2008. Том 49, № 5

Сентябрь – октябрь

C. 926 – 932

УДК 546.945:548.736

РЕНТГЕНОСТРУКТУРНЫЙ И КОНФОРМАЦИОННЫЙ АНАЛИЗ НОВОГО ТРЕХЪЯДЕРНОГО КЛАСТЕРА ОСМИЯ Оs₃(µ,η²-OCC₆H₅)(η³-C₃H₅)(CO)₉

© 2008 В.А. Максаков^{1, 2}*, Н.В. Первухина¹, Н.В. Подберезская¹, М.Ю. Афонин^{1, 2}, В.А. Потемкин³, В.П. Кирин¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

³Челябинский государственный университет

Статья поступила 31 января 2008 г.

Методом рентгеноструктурного анализа определена кристаллическая структура класте- $Os_3(\mu, \eta^2 - O = CC_6H_5)(\eta^3 - C_3H_5)(CO)_9$, синтезированного в реакции комплекса na (µ-H)Os₃(µ-O=CC₆H₅)(CO)₁₀ с аллиламином в хлороформе. При длительном выдерживании реакционной смеси происходит разрыв связи N-С аллиламина и присоединение аллильного фрагмента по η³-типу к одному из атомов Os (Os—C 2,246, 2,248 и 2,273 Å). Параметры элементарной ячейки комплекса: a = 9,494(1), b = 10,479(1), c = 12,474(2) Å, $\alpha = 84,55(1), \beta = 70,08(1), \gamma = 70,72(1)^{\circ}, V = 1255,8(4) Å^3, пр. гр. P\overline{1}, Z = 2$ состава $C_{19}H_{10}O_{10}Os_3$, $d_{выч} = 2,922$ г/см³, 3085 $I_{hkl} > 2\sigma_I$ из 3611 измеренных, R = 0,0252. Структура соединения $Os_3(\mu, \eta^2 - O = CC_6H_5)(\eta^3 - C_3H_5)(CO)_9$ молекулярная. Плоскость Os_3 -треугольника и плоскость OsCOOs соединены по типу "бабочки" с углом между ними 103,4°. Расстояния Os—Os в кластерном остове меняются в пределах 2,836(1)— 2,844(1) Å, Os—C_{карб} 1,88(1)—1,97(1) Å, расстояния до атомов мостиковых лигандов Os—C 2,11(1), Os—O 2,14(1) Å, связь О—С мостиковая 1,24(1) Å. Проведено теоретическое исследование конформаций трехосмиевого кластера Os₃(µ, η²-O=CC₆H₅)(η³-С₃Н₅)(СО)₉. Определена потенциальная кривая внутреннего вращения аллильного лиганда относительно связи Os(1)—C(9). Барьер вращения аллильного лиганда в кристаллическом состоянии относительно связи Os(1)—C(9) составляет 8,38 кДж/моль, что не препятствует свободному вращению лиганда. Рассмотрено влияние внутри- и межмолекулярных взаимодействий на конформационное состояние кластерного комплекса.

Ключевые слова: карбонильные трехосмиевые кластеры, синтез, кристаллическая структура, конформационный анализ.

В последнее время проводятся интенсивные исследования каталитических свойств кластерных комплексов с хемилабильными лигандами, одна из функциональных групп которых способна легко диссоциировать, в то время как другая прочно координирована ближайшим атомом металла [1—3]. Моноядерные комплексы с аналогичными лигандами, по своей природе заметно отличающиеся от кластерных, в ряде случаев показали высокую каталитическую активность [4—6].

Для кластерных комплексов (μ -H)Os₃(μ -O=CNRCH₂CH=CH₂)(CO)₁₀ (R = H, CH₃) была обнаружена перегруппировка аллильного фрагмента лиганда при комнатной температуре [7]. В дальнейшем установлено, что названные комплексы, как и ряд других, содержащих карбоксамидные лиганды (μ -H)Os₃(μ -O=CNRR')(CO)₁₀ (R = H, R' = CH₃; R = H, R' = CH₂COOEt; R = H, R' = CH(CH₃)COOEt) катализируют аллильную перегруппировку в N-аллилацетамиде [8]. Это

^{*} E-mail: maksakov@che.nsk.su

оказалось достаточно неожиданным, поскольку ранее было показано [9—12], что хиральные трехосмиевые комплексы с мостиковыми лигандами RR'C=O весьма стабильны и не рацемизуются по фрагменту [Os₂(μ -H)(μ -O=CRR')] даже при нагревании их растворов вплоть до 100 °C, что может свидетельствовать об отсутствии хемилабильности таких кластеров. Возникшее противоречие разрешается, если ключевой стадией механизма изомеризации N-аллиламидов, катализируемой кластерами (μ -H)Os₃(μ -O=CNRR')(CO)₁₀, является образование водородной связи между фрагментом амида HNR₂ и атомом кислорода лиганда μ -O=CNHR [8]. Водородная связь способствует диссоциации связи OS—O и последующей координации аллильной группы атомом металла. Но если это так, то в аналогичных условиях и кластеры с ацильными лигандами (O=CR) должны обладать хемилабильными свойствами и катализировать аллильную перегруппировку. Чтобы проверить это, мы изучили реакции кластеров (μ -H)Os₃(μ -O=CR)(CO)₁₀ (R = Ph, Me) с органическими лигандами, содержащими аллильную и NH-группы.

Настоящее сообщение посвящено синтезу, исследованию строения и конформационному анализу кластерного комплекса $Os_3(\mu,\eta^2-O=CC_6H_5)(\eta^3-C_3H_5)(CO)_9$ (1), полученного в реакции (μ -H)Os_3(μ,η^2 -O=CC₆H₅)(CO)₁₀ (2) с аллиламином. Следует отметить, что если аллильная перегруппировка N-производных аллиламина известна для различных процессов, катализируемых комплексами многих металлов [1, 13], то миграция двойной связи в самом аллиламине неизвестна. Как показал эксперимент, и в реакции $NH_2(C_3H_5)$ с кластером (μ -H)Os₃(μ -O=CC₆H₅)× ×(CO)₁₀ происходят превращения органического лиганда, не связанные с аллильной перегруппировкой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакции проводили в свежеперегнанных растворителях в атмосфере аргона. Исходный кластерный комплекс 2 синтезирован по стандартной методике [14]. Для анализа реакционных смесей и выделения продуктов реакций использовался метод TCX на пластинах Silufol (силикагель на алюминиевой подложке производства Чехословакии) и стеклянные пластины с носителем "Silica gel 60 PF₂₅₄" фирмы Merck. ИК спектры получены на спектрометре Specord IR-75 в гексане. Спектры ¹Н ЯМР регистрировали на приборе Bruker DPX-250 (¹H, 250,13 МГц) в CDCl₃, внутренний эталон TMC. Отнесение сигналов ¹Н ЯМР спектров комплекса 1 проводили в соответствии с нумерацией атомов, данной на рис. 1. Элементный анализ выполнен в лаборатории аналитической химии Института элементоорганических соединений.

За ходом реакции следили хроматографически и по спектрам ПМР. Наряду с изменениями в растворе на стенках реакционного сосуда образуется белое твердое вещество. Реакцию прерывали после полного расходования аллиламина, взятого в ~25-кратном избытке относительно

кластерного комплекса. Белое твердое вещество нерастворимо в воде и органических растворителях. Оно имеет сложный состав строение его устанавливается.

Os₃(μ , η^2 -O=CC₆H₅)(η^3 -C₃H₅)(CO)₉ (1). Комплекс 2 (~30 мг, 0,031 ммоль) растворяли в 0,7 мл CDCl₃ или CHCl₃ и добавляли три капли (~43 мг, 0,747 ммоль) свежеперегнанного над NaOH аллиламина при комнатной температуре. За реакцией следили хроматографически и по изменениям в спектрах ¹H ЯМР. Наблюдение вели до исчезновения сигналов протонов исходного аллиламина. После

Рис. 1. Нумерация атомов в молекуле комплекса 1

Таблица 1

Соединение	$Os_3(\mu, \eta^2 - OCC_6H_5)(\eta^3 - C_3H_5)(CO)_9$
Эмпирическая формула	$C_{19}H_{10}O_{10}Os_3$
Молекулярный вес	968,87
Сингония	Триклинная
Пространственная группа	$P\overline{1}$
Параметры ячейки, Å, град.	a = 9,494(1), b = 10,479(1), c = 12,474(2)
	$\alpha = 84,55(1), \beta = 70,08(1), \gamma = 70,72(1)$
Объем, Å ³	1255,8(4)
Ζ	2
$d_{\rm Bbiy}, \Gamma/{\rm cm}^3$	2,922
Коэффициент поглощения, мм ⁻¹	17,319
Размеры кристалла, мм	$0,23 \times 0,20 \times 0,11$
θ _{max} , град.	24,96
<i>I_{hkl}</i> измер. / <i>I_{hkl}</i> независ.	$3611 / 3085 R_{\rm int} = 0,0280$
$R\left(I > 2\sigma(I)\right)$	$R_1 = 0,0252, \ wR_2 = 0,0317$
<i>R</i> (все данные)	$R_1 = 0,0581, \ wR_2 = 0,0596$

Основные кристаллографические и экспериментальные данные для 1

окончания реакции раствор упаривали досуха при пониженном давлении. Твердый остаток растворяли и делили на стеклянных пластинах с силикагелем, элюент — петролейный эфир. Выделяли две основные фракции: с R_f 0,85 — непрореагировавший 2 (8,5 мг, 28,6 %) и R_f 0,65 1 (9,7 мг, 32,4 %). Также выделен твердый бесцветный продукт, не растворимый в большинстве органических растворителей.

Таблица 2

	-	· ,			-				
Атом	x	У	Ζ	$U_{_{3KB}}*$	Атом	x	У	Z	$U_{_{3KB}}*$
Os(1)	8071(1)	3981(1)	2676(1)	28(1)	C(12)	8498(11)	4080(10)	4034(8)	40(2)
Os(2)	6099(1)	2353(1)	2959(1)	27(1)	O(12)	8828(9)	4142(9)	4801(6)	65(2)
Os(3)	9326(1)	1124(1)	2762(1)	35(1)	C(21)	3949(11)	3289(10)	3058(8)	38(2)
O(1)	7639(7)	3796(6)	1132(5)	35(2)	O(21)	2676(9)	3817(8)	3119(8)	70(2)
C(1)	6804(10)	3059(9)	1282(8)	32(2)	C(22)	6238(11)	646(10)	2491(8)	36(2)
C(2)	6348(10)	2850(9)	298(8)	32(2)	O(22)	6338(9)	-398(7)	2209(6)	53(2)
C(3)	5358(12)	2117(10)	350(9)	44(3)	C(23)	5384(12)	1962(11)	4609(9)	45(3)
C(4)	5026(13)	1928(10)	-608(9)	49(3)	O(23)	4860(11)	1753(10)	5528(7)	84(3)
C(5)	5692(12)	2432(10)	-1614(9)	47(3)	C(31)	8612(13)	1293(10)	4400(10)	48(3)
C(6)	6662(13)	3177(11)	-1705(10)	54(3)	O(31)	8255(11)	1381(9)	5370(7)	76(3)
C(7)	6986(12)	3388(11)	-746(8)	46(3)	C(32)	9924(13)	1210(10)	1073(11)	50(3)
C(8)	8180(12)	5995(10)	1918(9)	45(3)	O(32)	10345(10)	1262(9)	133(7)	71(2)
C(9)	9649(12)	5267(10)	1960(9)	41(2)	C(33)	9467(13)	-754(12)	2855(11)	58(3)
C(10)	10463(11)	3987(10)	1433(8)	44(3)	O(33)	9512(11)	-1852(8)	2944(9)	85(3)
C(11)	5878(12)	4828(9)	3466(8)	35(2)	C(34)	11400(13)	932(10)	2713(10)	51(3)
O(11)	4671(8)	5596(7)	3924(6)	45(2)	O(34)	12669(10)	853(9)	2636(9)	84(3)

Координаты атомов ($\times 10^4$) и эквивалентные изотропные тепловые параметры ($\mathring{A}^2 \times 10^3$) для 1

* $U_{_{3KB}} = U_{11} + U_{22} + U_{33}$.

929

Связь	d	Связь	d	Связь	d
Os(1)—Os(2)	2,8436(6)	C(12)—O(12)	1,117(11)	Os(3)—C(31)	1,927(12)
Os(1) - Os(3)	2,8401(6)	Os(2) - C(1)	2,109(9)	C(31)—O(31)	1,143(12)
Os(2) - Os(3)	2,8365(6)	O(1)—C(1)	1,239(10)	Os(3)—C(32)	1,987(13)
Os(1)—C(9)	2,246(9)	C(1)—C(2)	1,490(12)	C(32)—O(32)	1,104(13)
Os(1)—C(8)	2,248(9)	Os(2)—C(21)	1,916(10)	Os(3)—C(33)	1,923(12)
Os(1)—C(10)	2,273(9)	C(21)—O(21)	1,130(11)	C(33)—O(33)	1,133(13)
Os(1)—O(1)	2,139(6)	Os(2)—C(22)	1,883(10)	Os(3)—C(34)	1,893(11)
Os(1) - C(11)	1,908(10)	C(22)—O(22)	1,146(11)	C(34)—O(34)	1,150(12)
C(11)—O(11)	1,149(11)	Os(2)—C(23)	1,984(10)	C(8)—C(9)	1,367(13)
Os(1)—C(12)	1,891(10)	C(23)—O(23)	1,116(11)	C(9)—C(10)	1,402(13)
Угол	ω	Угол	ω	Угол	ω
C(12)—Os(1)—C(11)	89,2(4)	C(11)—Os(1)—O(1)	92,2(3)	C(34)—Os(3)—C(32)	92,1(5)
C(12)—Os(1)—C(9)	84,4(4)	C(12)—Os(1)—O(1)	177,9(3)	C(33)—Os(3)—C(32)	95,8(5)
C(11) - Os(1) - C(9)	119,4(4)	C(22) - Os(2) - Os(1)	139,2(3)	C(31)—Os(3)—C(32)	172,5(4)
C(12)—Os(1)—C(8)	100,8(4)	C(22)—Os(2)—C(21)	98,1(4)	C(33)—Os(3)—Os(1)	160,8(3)
C(11)—Os(1)—C(8)	88,3(4)	C(22)—Os(2)—C(23)	94,2(4)	C(34)—Os(3)—Os(2)	160,2(3)
C(12) - Os(1) - C(10)	97,3(4)	C(21)—Os(2)—C(23)	89,7(4)	O(1) - C(1) - Os(2)	114,5(7)
C(11) - Os(1) - C(10)	152,8(4)	C(22) - Os(2) - Os(1)	139,2(3)	C(2) - C(1) - Os(2)	128,3(6)
C(8) - Os(1) - Os(2)	136,7(3)	C(21)—Os(2)—Os(3)	176,3(3)	C(1) - O(1) - Os(1)	109,9(6)
C(9) - Os(1) - Os(2)	164,5(3)	C(23) - Os(2) - C(1)	171,6(4)	O(1) - C(1) - C(2)	117,0(8)
C(10) - Os(1) - Os(2)	135,1(3)	C(34)—Os(3)—C(33)	98,7(4)	C(3) - C(2) - C(1)	123,9(8)
C(8)—Os(1)—Os(3)	152,4(3)	C(34)—Os(3)—C(31)	89,9(5)	C(7) - C(2) - C(1)	118,6(8)
C(9)—Os(1)—Os(3)	121,5(3)	C(33)—Os(3)—C(31)	91,0(5)	C(8)—C(9)—C(10)	121,4(9)
C(10) - Os(1) - Os(3)	88,4(3)				

Основные длины связей d, Å и валентные углы ω , град. для кластера 1

Комплекс 1. ИК спектр (гексан, v_{CO} , см⁻¹): 2098 сл, 2055 с, 2023 ср, 2013 с, 1999 ср, 1994 ср, 1976 сл (СО лиганды). ¹Н ЯМР (250 МГц, δ , м. д.): 7,68 (д, 2H, H-3+H-7); 7,57 (д.д, 1H, H-5); 7,36 (д.д, 2H, H-4+H-6); 5,36 (м. 1H, H-9); 5,23, 4,88 (д., д 2H, H8- β , H-10 β); 2,59, 1,72 (д., д, 2H, H-8 α , H-10 α). Найдено, %: С 23,82, Н 1,16, Os 58,35. С₁₉H₁₀O₁₀Os₃. Вычислено, %: С 23,54, Н 1,03, Os 58,71.

Желтые монокристаллы 1 получены из раствора комплекса в CHCl₃. Уточнение параметров элементарной ячейки соединения и измерение интенсивностей отражений проведены по стандартной методике (автоматический дифрактометр Enraf-Nonius CAD4, графитовый моно-хроматор, λMoK_{α} , $\theta/2\theta$ -сканирование с переменной скоростью). Пересчет I_{hkl} в F_{hkl} проведен с учетом факторов Лорентца и поляризации. Структура комплекса решена с использованием программы SIR-97 [15], уточнение координат атомов проведено полноматричным МНК в анизотропном приближении по комплексу программ SHELX-97 [16]. Атомы водорода органических лигандов локализованы геометрически и уточнены в приближении жесткого тела. Экспериментальные данные для комплекса 1 даны в табл. 1, окончательные значения координат атомов и тепловых параметров $U_{_{3KB}}$ приведены в табл. 2, основные длины связей и валентные углы — в табл. 3. Структура комплекса депонирована в Кембриджскую базу структурных данных (ССDC 674284).

ОПИСАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ

Структура комплекса 1 молекулярная, строение молекулы и обозначения атомов приведены на рис. 1, упаковка молекул в элементарной ячейке показана на рис. 2. Атомы осмия расположены по вершинам треугольника с максимальным различием в расстояниях Os—Os 0,007 Å при величинах среднеквадратичных стандартных отклонений $\sigma = 0,0006$ Å. Значения углов в Os-треугольнике отклоняются от идеальных на ±0,123° ($\sigma = 0,015^{\circ}$). Плоскость Os₃-треугольника и плоскость OsCOOs соединены по типу *бабочки* с углом между ними 103,4°. Расстояния Os—Os в кластерном остове меняются в пределах 2,836(1)—2,844(1) Å, Os—C_{карб} 1,88(1)— 1,97(1) Å, расстояния до атомов мостиковых лигандов Os—C 2,11(1) и Os—O 2,14(1) Å, связь O—C мостиковая 1,24(1) Å.

Расчет отклонений для атомов мостикового и карбонильных лигандов от плоскости Os-треугольника показывает, что атомы из ближайшего окружения ионов металла, называемые "экваториальными", отклоняются от этой плоскости в пределах 0,02—0,20 Å по абсолютному значению (таких всего три — C(21), C(33), C(34)). Пределы для отклонений атомов в аксиальном положении 1,70—1,97 Å (это мостиковые O(1), C(1) и карбонильные C(12), C(23), C(31), C(32)). Таким образом, только атом Os(3) кластерного ядра имеет в "чистом" виде по два экваториальных и аксиальных лигандов с валентными углами $C_{akc}OsC_{3kB}$, $C_{3kB}OsC_{3kB}$ и $C_{akc}OsC_{akc}$, близкими к 90, 100 и 170° соответственно. При этом аксиальные лиганды по отношению к соответствуюцим ребрам Os-треугольника расположены под углами, близкими к 90°, а для экваториальных значения таких углов близки к 100 и 160° (табл. 3). Остальные лиганды из окружения атомов осмия занимают промежуточные (между экваториальным и аксиальным) положения с отклонениями от плоскости кластерного ядра в пределах 0,70—1,25 Å. Такое промежуточное положение сказывается и на изменениях величин валентных углов типа LOsL и LOsOs этих лигандов. Форма, размеры и позиции как мостиковых, так и концевых лигандов могут приводить к существенным искажениям углов этого типа.

Мостиковый лиганд O(1)C(1)Ph в целом по отношению к плоскости Os₃-треугольника занимает позицию, близкую к аксиальной, с углами между этой плоскостью и плоскостями Os(2)C(1)O(1)Os(1) и Ph-кольца 103,4 и 101,7° соответственно. Ориентация Ph-кольца относительно плоскости кластерного остова достаточно сильно искажает геометрию расположения экваториальных связей Os(2)—C(21) и Os(2)—C(22) относительно ребер Os(2)—Os(1) и Os(2)—Os(3) Os-треугольника. Увеличение угла C(23)_{акс}Os(2)Os(1) обусловлено *транс*-расположением связей C(23)_{акс}—Os(2) и Os(2)—C(1)_{мост}.

Положение терминального аллильного лиганда C_3H_5 в позиции, близкой к экваториальной, существенно изменяет конфигурацию окружения атома Os(1). Атомы C(8) и C(9) этого лиганда находятся на равных (в пределах σ) расстояниях от Os(1), атом C(10) удален от металла в пределах 3 σ . Отклонения от плоскости Os-треугольника –0,6 и –0,7 Å первых и –1,25 Å последнего атомов аллильного лиганда и величины углов между связями Os(1)—C(8), C(9), C(10) и ребрами треугольника Os(2)—Os(1), Os(3)—Os(1) приводят к искажению углов C(11)Os(1)Os(3) и C(11)Os(1)Os(2) до 118,3(3) и 64,4(3)° соответственно.

Длины связей в карбонильных лигандах меняются незначительно — от 1,10(1) до

Рис. 2. Проекция кристаллической структуры 1 на плоскость (010)

1,15(1) Å, в бензольном кольце мостикового лиганда — от 1,34(1) до 1,39(1) Å. Значения валентных углов бензольного кольца 119—121°, углы при атомах углерода карбонильных лигандов типа (OC)Os 164—179° при $\sigma = 1^{\circ}$ для каждого из приведенных типов углов.

КОНФОРМАЦИОННЫЙ АНАЛИЗ

Конформационный анализ комплекса 1 проводили комбинированным методом MM3/MEPA. Энергия связей, искажение валентных углов и *π*-электронные эффекты рассчитаны методом MM3 [17—19]. Расчет энергий проводили в силовом поле MERA. Потенциальная энергия взаимодействия в системе представляется в виде суммы внутри- и межмолекулярных кулоновских и ван-дер-ваальсовых взаимодействий:

$$E_{\rm tot} = E_{\rm Q} + E_{\rm V} + E_{\rm QI} + E_{\rm VI},$$

где E_Q и E_V — энергии внутримолекулярных кулоновских и ван-дер-ваальсовых взаимодействий соответственно; E_{QI} и E_{VI} — энергии межмолекулярных кулоновских и ван-дер-ваальсовых взаимодействий соответственно. Применимость этого подхода для оценки структурных и термодинамических характеристик органических, металлоорганических и неорганических соединений продемонстрирована ранее в [20—24].

Комплекс 1 состоит из двух различных фрагментов: высокополярный фрагмент поверхности кластера $Os_3(CO)_9$ и неполярный, включающий фенильный и аллильный фрагменты. Это влияет на упаковку молекул в кристалле — липофильные фрагменты соседних молекул распорожены рядом (рис. 3). Вследствие значительного сдвига фенильных колец соседних молекул относительно друг друга (3,03 Å) взаимодействия между ними носят чисто ван-дер-вальсов характер без заметного π -вклада.

Конформационный анализ кластера 1 проводили следующим образом: производили поворот относительно связи C(9)—Os(1) с шагом 15°. Затем выполняли оптимизацию всех других геометрических параметров по описанному алгоритму [25, 26] для получения минимальной энергии конформера для данного угла ф. Потенциальная кривая внутреннего вращения кластера в кристаллической решетке представлена на рис. 4.

На кривой потенциального вращения наблюдается глобальный максимум при 45°, соответствующий максимальной энергии барьера вращения, а глобальный минимум наблюдается при 60°. Согласно данным рентгеноструктурного анализа в кристалле кластер находится в конформационном состоянии, близком к $\phi = 60^{\circ}$.

Барьер энергии вращения составляет 8,38 кДж/моль, что не может препятствовать свободному вращению аллильного лиганда в кластере относительно связи C(9)—Os(1). Свободное вращение аллильной группы в кристалле возможно за счет наличия свободного места в кристаллической решетке — отсутствия стерических препятствий и отсутствия сокращенных кон-

Рис. 3. Фрагмент структуры 1

Рис. 4. Потенциальная кривая внутреннего вращения относительно связи C(9)—Os(1) в кластере. Расчет для индивидуального вещества

тактов. Наиболее выгодное энергетическое состояние с углом $\varphi = 60^{\circ}$ соответствует отсутствию стерических взаимодействий аллильного фрагмента с карбонильными группами Os₃(CO)₉, поскольку расстояние между атомами H(8A) и O(1) составляет 2,65 Å, H(9A) и C(12) — 2,73 Å, C(8) и C(11) — 2,91 Å. Существующие контакты между атомами водорода аллильного фрагмента двух соседних молекул H(10B)...H(8A) (2,151, 2,151 Å) и между атомом водорода ароматического кольца одной молекулы с атомом углерода аллильной группы другой молекулы H(7A)...C(9) (2,859 Å) (см. рис. 3) не препятствуют вращению аллильной группы. Межмолекулярные контакты атомов С аллильного фрагмента с атомами O и C соседних молекул соответствуют ван-дер-ваальсовым контактам (3,313—4,087 Å).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Catalysis* by Di- and Polynuclear Metal Cluster Complexes / R.D. Adams, F.A. Cotton. N. Y.: Wiley-VCH, 1998.
- 2. Cabeza J.A. // Eur. J. Inorg. Chem. 2002. N 7. P. 1559 1570.
- 3. Туник С.П. // Изв. АН. Сер. хим. 2004. № 12. С. 2547 2559.
- 4. Slone C.S., Weinberger D.A., Mirkin C.A. // Prog. Inorg. Chem. 1999. 48. P. 232 289.
- 5. Braunstein P., Naud F. // Angew. Chem., Int. Ed. 2001. 40. P. 680 699.
- 6. Bader A., Lidner E. // Coord. Chem. Rev. 1991. 108. P. 27 110.
- 7. Maksakov V.A., Ershova V.A., Kirin V.P., Golovin A.V. // J. Organomet. Chem. 1997. 532 P. 11 15.
- 8. *Максаков В.А., Кирин В.П., Ткачев С.В., Головин А.В.* // Изв. АН. Сер. хим. 1999. № 11. С. 2182 2186.
- 9. Arse A.J., Deeming A.J. // J. Chem. Soc., Chem. Commun. 1980. № 22. P. 1102 1103.
- 10. Azam K.A., Deeming A.J., R. Rothwell I. // J. Chem. Soc., Dalton Trans. 1981. N 1. P. 91 98.
- 11. Максаков В.А., Ершова В.А. // Изв. АН СССР. Сер. хим. 1986. № 1. С. 250 251.
- 12. Henvenston M.C., Lynch T.J. // Organometallics. 1987. 6. P. 208 210.
- 13. Мастерс К. Гомогенный катализ переходными металлами. М.: Мир, 1983. С. 80.
- 14. Jonson B.F.G., Lewis J., Odiaka T.I., Raithby P.R. // J. Organomet. Chem. 1981. 216. P. 56 57.
- 15. Altomare A., Burla M.C., Camalli M. et al. // J. Appl. Crystallogr. 1999. 32. P. 115 119.
- 16. Sheldrick G.M. SHELX-97 Release 97-2, University of Göttingen, Germany, 1998.
- 17. Allinger N., Li F., Yan L. // J. Comput. Chem. 1990. 11. P. 848 859.
- 18. *Allinger N., Li F., Yan L.* // Ibid. P. 868 875.
- 19. Li F., Allinger N. // Ibid. 1998. 11. P. 868 875.
- 20. Барташевич Е.В., Потемкин В.А., Гришина М.А. и др. // Журн. структур. химии. 2002. **43**, № 6. С. 1112 1120.
- 21. Потемкин В.А., Арсламбеков Р.М., Барташевич Е.В. и др. // Там же. 43, № 6. С. 1134 1138.
- 22. Potemkin V.A., Sukharev Yu.I. // Chem. Phys. Lett. 2003. 371. P. 626 633.
- 23. Потемкин В.А., Максаков В.А., Кирин В.П. // Журн. структур. химии. 2003. 44, № 5. С. 811 817.
- 24. Potemkin V.A., Krasnov V.P., Levit G.L. et al. // Mendeleev Commun. 2004. 45, № 1. P. 69 71.
- 25. Nakamura S., Hirose H., Ikeguchi M. et al. // J. Phys. Chem. 1995. 99. P. 8374 8379.
- 26. Ponder J.W., Richards F.M. // J. Comput. Chem. 1987. 8. P. 1016 1024.