## МОДЕЛИРОВАНИЕ В ФИЗИКО-ТЕХНИЧЕСКИХ ИССЛЕДОВАНИЯХ

УДК 517.958 : 535.14

## ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ЭВОЛЮЦИИ ЭНЕРГИИ В ДИССИПАТИВНЫХ ВОЛОКОННЫХ ЛАЗЕРАХ\*

А. С. Скидин<sup>1</sup>, И. А. Яруткина<sup>1</sup>, О. В. Штырина<sup>1</sup>, М. П. Федорук<sup>1,2</sup>

<sup>1</sup>Институт вычислительных технологий СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 6 <sup>2</sup>Новосибирский государственный университет, 630090, г. Новосибирск, ул. Пирогова, 2 E-mail: ask@skidin.org

Проводится анализ теоретических результатов эволюции энергии в кольцевом и линейном резонаторах диссипативных солитонных волоконных лазеров. Корректность теоретических результатов подтверждена посредством математического моделирования.

*Ключевые слова:* лазерная теория, математическое моделирование, линейный резонатор, кольцевой резонатор.

Введение. В настоящее время волоконные лазеры используются во многих промышленных и исследовательских приложениях. Для полноценного аналитического описания эволюции импульса в современных волоконных лазерах необходимо принимать во внимание наличие ряда физических эффектов. В частности, к ним относятся насыщенное усиление, ненасыщенные потери, дисперсионные и нелинейные эффекты. Баланс между усилением и потерями в лазерном резонаторе определяет энергию оптического солитона; с другой стороны, дисперсия и нелинейность определяют наличие генерации импульса и его форму [1, 2]. Ввиду этого при анализе динамики энергии в резонаторе можно пренебречь керровской нелинейностью показателя преломления волокна и дисперсией, несмотря на то что данные эффекты необходимо учитывать при комплексном изучении таких лазерных систем.

Теоретический анализ волоконных лазеров с линейным и кольцевым резонаторами включает в себя разработку закономерностей эволюции энергии внутри резонатора, а также математическое моделирование данных лазерных систем. Целью предлагаемого исследования является установление динамики изменения выходной энергии резонатора и её оптимизация. При моделировании не учитывается хроматическая дисперсия высших порядков, насыщение считается мгновенным и неоднородным.

Эволюция энергии в кольцевом резонаторе. В работе [1] была выведена аналитическая формула для выходной энергии (средней мощности) кольцевого резонатора в виде функции от параметров насыщенного усиления и линейных потерь в резонаторе. Рассмотрим данное выражение более подробно с точки зрения энергетического баланса на одном

<sup>\*</sup>Работа выполнена при поддержке Российского научного фонда (грант № 14-21-00110) и частичной поддержке Президиума РАН (программа № 43 фундаментальных исследований по стратегическим направлениям развития науки «Фундаментальные проблемы математического моделирования»).

обходе резонатора в установившемся режиме. Для этого исследуем кольцевой лазерный резонатор, состоящий из активного волокна, пассивного волокна (PF), насыщающегося поглотителя (SA) и ответвителя, как показано в [3].

Пусть  $E_0$  — энергия на входе в активное волокно, а  $E(L_A) = \varphi_0 E_0$  — энергия на выходе из активного волокна ( $L_A$  — длина активного волокна). Энергетический баланс между усилением и потерями в волокне в предложенной конфигурации может быть представлен в следующем виде:

$$E_0 = RR_{\rm SA}R_{\rm PF}\varphi_0 E_0,\tag{1}$$

где R — доля остающейся в резонаторе энергии (отношение энергии, остающейся в резонаторе, к выводимой из резонатора);  $R_{\rm PF}$  и  $R_{\rm SA}$  — отношение выходной энергии ко входной энергии для пассивного волокна и насыщающегося поглотителя соответственно.

Тогда для описанной выше лазерной конфигурации получаем

$$\varphi_0 = \frac{1}{R_{\rm PF}R_{\rm SA}R}.\tag{2}$$

Введём следующие обозначения:  $L_P$  — длина пассивного волокна,  $R_{\rm д B}$  — потери на выходе из резонатора (дБ),  $R_{\rm SA}$  — потери на насыщающемся поглотителе,  $R_{\rm SA, \ д B}$  потери на насыщающемся поглотителе (дБ),  $\alpha_A$ ,  $\alpha_P$  — потери в активном и пассивном волокнах соответственно (дБ/м),  $g_A$  — коэффициент усиления (дБ/м).

Тогда коэффициент прохождения энергии в пассивном волокне  $R_{\rm PF} = \exp(-\alpha_P L_P \times 0.1 \ln 10)$ . Потери на ответвителе переменны,  $R = \exp(-R_{\rm AB}0.1 \ln 10)$ . Потери на насыщающемся поглотителе  $R_{\rm SA}$  варьируются в зависимости от средней и пиковой мощностей оптического импульса и ограничены сверху глубиной модуляции.

Введём также  $s = \alpha_A/g_A$  — отношение потерь в активном волокне к коэффициенту усиления;  $S = (\alpha_A L_A + \alpha_P L_P + R_{\text{SA, } \pi \text{B}} + R_{\pi \text{B}})/(g_A L_A)$  — отношение полных потерь к полному усилению;  $E_{\text{sat}}$  — энергия насыщения;  $G = g_A L_A 0, 1 \ln 10$ .

После некоторых преобразований получаем выражения для  $E_0$  и  $E_{out}$  (энергия на выходе из ответвителя) [1]:

$$E_0 = E_{\text{sat}} \frac{1-s}{s} \exp(0.5G(s-S)) \frac{\sinh(0.5G(1-S)s)}{\sinh(0.5G(1-s)S)}; \quad E_{\text{out}} = E_0 \frac{1-R}{R}.$$
 (3)

В целях проверки предложенной в [1] теории было проведено сравнение её результатов с результатами математического моделирования и рассмотрен описанный в [3] волоконный лазер с кольцевым резонатором.

Математическое моделирование прохождения импульса в активном и пассивном волокнах основано на нелинейном уравнении Шрёдингера [3–10], которое решено с помощью симметричного варианта метода Фурье — расщепления по физическим процессам. При моделировании активного волокна учтены насыщение усиления и спектральная фильтрация. Данные эффекты обычно принимаются во внимание в частотной области с учётом лоренцева профиля усиления. При моделировании использовалось уравнение

$$\frac{\partial A}{\partial z} = -\frac{i\beta_2}{2}\frac{\partial^2 A}{\partial t^2} + \frac{\beta_3}{6}\frac{\partial^3 A}{\partial t^3} + i\gamma|A|^2A + \frac{\hat{g}}{2}A - \frac{\alpha_A}{2}A \tag{4}$$

с дополнительным членом, описывающим усиление и спектральную фильтрацию [3]. Здесь A(z,t) — огибающая электромагнитного поля; z — пространственная переменная; t — временная переменная;  $\beta_2$  и  $\beta_3$  — дисперсии второго и третьего порядков соответственно;  $\gamma$  —

коэффициент нелинейности. При моделировании распространения импульса по пассивному волокну использовалось уравнение (4) при  $\hat{g} = 0$ . При этом  $\hat{g}$  для активного волокна может быть определено в частотной области по формуле

$$g(\omega) = \frac{1}{1 + \frac{E}{E_{\text{sat}}}} \frac{g_A}{1 + \left(\frac{\omega - \omega_0}{\Omega_g}\right)^2},\tag{5}$$

где  $\Omega_q$  — ширина спектра фильтрации,  $\omega_0$  — несущая частота.

В данной работе применена упрощённая модель насыщающегося поглотителя. В этом случае его действие описывается передаточной функцией [3]  $T(t) = [1 - q(t, P_{in}(t))]$ , где  $P_{in}(t) = |A_{in}(t)|^2$  и q — функция времени и входного поля, которая может быть найдена из уравнения

$$q(t) = \frac{q_0}{1 + |A_{\rm in}(t)|^2 / P_{\rm sat}}.$$
(6)

Для подтверждения корректности теоретических положений были проведены численные эксперименты. На рис. 1 показаны значения выходной энергии для различных величин усиления в активном волокне, варьирующихся от 5 до 30 дБ. Поскольку реальные потери на насыщающемся поглотителе ограничены глубиной модуляции абсорбера  $q_0 = 0,1$ , но их точная величина неизвестна, теоретические результаты получены в предположении, что потери на абсорбере равны 5 %. Как видно из графика, удалось достигнуть хорошего соответствия теоретических и численных результатов, при этом видимое отклонение можно объяснить отклонением реальных потерь на насыщающемся поглотителе от теоретических допущений.

Следует отметить, что для больших значений коэффициентов усиления (25 и 30 дБ) в ходе численного эксперимента наблюдалось отсутствие устойчивой генерации в середине области. Это означает, что использованная теоретическая формула позволяет указать набор параметров, при котором импульсы могут обладать желательными энергетическими характеристиками, но не заменяет полного моделирования, необходимого для проверки возможности генерации.



*Рис. 1.* Зависимость энергии на выходе из резонатора от потерь на ответвителе при различных значениях коэффициента усиления в кольцевом резонаторе. Сплошные линии — численные результаты, точки — теоретические результаты

Эволюция энергии в линейном резонаторе. Представленный подход может быть адаптирован к другим типам резонаторов, в частности к резонаторам линейной структуры. Рассмотрим применение теории для линейных резонаторов на примере тулий-гольмиевого волоконного лазера, описанного в работе [11]. Волоконный лазер состоит из компенсатора дисперсии, активного и пассивного волокон [11], а также насыщающегося поглотителя [12].

Обозначим  $E_1^+$  энергию на входе в активное волокно при обходе резонатора по направлению к насыщающемуся поглотителю, а  $E_2^-$  энергию на входе в активное волокно при обходе резонатора в сторону компенсатора дисперсии. Тогда по аналогии со случаем для кольцевого резонатора обозначим энергии на выходе из активного волокна в разных направлениях  $\varphi_1 E_1^+$  и  $\varphi_2 E_2^-$ .

С учётом введённых обозначений запишем следующую систему уравнений:

$$E_1^+ = E_{\text{sat}} \frac{1-s}{s} f(\varphi_1),$$

$$E_2^- = E_{\text{sat}} \frac{1-s}{s} f(\varphi_2),$$

$$E_1^+ = E_2^- \varphi_2 R_{\text{PF}} R R_{\text{PF}},$$

$$E_2^- = E_1^+ \varphi_1 R_{\text{SA}},$$

где  $f(\varphi_i)$  определяется по формуле

$$f(\varphi_i) = \frac{1 - \varphi_i^s \exp[s(s-1)g_A L_A 0, 1\ln 10]}{\varphi_i - \varphi_i^s \exp[s(s-1)g_A L_A 0, 1\ln 10]}.$$
(7)

Из системы уравнений можно получить связь между  $\varphi_1$  и  $\varphi_2$ :  $\varphi_1 \varphi_2 R_{\rm PF}^2 R R_{\rm SA} = 1$ . Используя данную зависимость, преобразуем систему к нелинейному уравнению относительно  $\varphi_1$ :

$$f(\varphi_1) = f\left(\frac{1}{\varphi_1 R_{\rm PF}^2 R R_{\rm SA}}\right) \frac{1}{\varphi_1 R_{\rm SA}}.$$
(8)

Далее разрешим его методом деления отрезка пополам. Выражение для энергии на выходе из резонатора в принятых обозначениях будет иметь вид

$$E_{\rm out} = E_1^+(\varphi_1) \frac{1}{R_{\rm PF}} \frac{1-R}{R}.$$
 (9)

Для проверки данной формулы проведено сравнение результатов, полученных путём применения вышеописанных формул, с результатами математического моделирования рассмотренного тулий-гольмиевого лазера. Детали математического моделирования приведены в работе [13].

В представленном волоконном лазере была использована техника дисперсионного управления (см., например, [2, 14, 15]), а именно активное и пассивное волокна обладают аномальной дисперсией, нормальная дисперсия в резонаторе обеспечивается волоконной чирпованной брэгговской решёткой [11] и знак средней дисперсии резонатора меняется при изменении длины пассивного волокна. Рис. 2 иллюстрирует сравнение теоретических результатов с результатами математического моделирования [13]. Для сопоставления были проведены расчёты выходной энергии для длин резонатора от 5 до 20 м, длина резонатора менялась за счёт увеличения длины пассивного волокна. Верхняя пунктирная линия



*Рис. 2.* Зависимость энергии на выходе из резонатора от длины резонатора в тулийгольмиевом волоконном лазере. Сплошные линии иллюстрируют результаты математического моделирования, пунктирные — теоретически предсказанные результаты при нулевых и 10 %-ных потерях на насыщающемся поглотителе

соответствует случаю без потерь на насыщающемся поглотителе, а нижняя — потерям, равным глубине модуляции  $q_0$ . Поскольку, как было сказано ранее, реальные потери на насыщающемся поглотителе принадлежат этому промежутку, то и численно полученные значения энергии должны находиться между данными теоретически предсказанными предельными случаями, что и наблюдается на рисунке. При этом стоит отметить, как и для кольцевого резонатора, не во всех случаях теоретические формулы могут быть альтернативой численному эксперименту, так как вблизи нулевой дисперсии наблюдается отсутствие устойчивой генерации, а также выход значений энергии из теоретически предсказанного диапазона ввиду нарушения применимости модели равномерного усиления, используемой для получения теоретических результатов.

Заключение. В данной работе проведён анализ теоретических результатов эволюции энергии в кольцевом и линейном резонаторах диссипативных солитонных волоконных лазеров. В ходе исследований была получена теоретическая зависимость энергии выходного импульса от длины резонатора, подтверждённая математическим моделированием. Погрешность теоретических расчётов не превосходит 10 % во всём диапазоне длин резонатора, в котором наблюдается генерация импульса. Результаты показывают, что теоретическое приближение описывает динамику с достаточной степенью точности.

## СПИСОК ЛИТЕРАТУРЫ

- Turitsyn S. K. Theory of energy evolution in laser resonators with saturated gain and nonsaturated loss // Opt. Express. 2009. 17, N 14. P. 11898–11904.
- Turitsyn S. K., Bale B., Fedoruk M. P. Dispersion-managed solitons in fibre systems and lasers // Phys. Rep. 2012. 521, N 4. P. 135–203.
- Yarutkina I. A., Shtyrina O. V., Fedoruk M. P., Turitsyn S. K. Numerical modeling of fiber lasers with long and ultra-long ring cavity // Opt. Express. 2013. 21, N 10. P. 12942–12950.
- 4. Bale B. G., Okhotnikov O. G., Turitsyn S. K. Modeling and technologies of ultrafast fiber lasers // Fiber Lasers /Ed. O. G. Okhotnikov. Weinheim, Germany: Wiley-VCH, 2012. 280 p.
- Grelu P., Akhmediev N. Dissipative solitons for mode-locked lasers // Nature Photonics. 2012. N 6. P. 84–92.

- Schreiber T., Ortaç B., Limpert J., Tünnermann A. On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations // Opt. Express. 2007. 15, N 13. P. 8252–8262.
- Wise F. W., Chong A., Renninger W. H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion // Laser Photon. Rev. 2008. 2, N 1–2. P. 58–73.
- Shtyrina O., Fedoruk M., Turitsyn S. et al. Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers // JOSA B. 2009. 26, N 2. P. 346–352.
- Haus H. A. Theory of mode locking with a slow saturable absorber // IEEE Journ. Quant. Electron. 1975. 11, N 9. P. 736–746.
- 10. Siegman A. E. Lasers. Sausalito, USA: University Science Books, 1986. 1283 p.
- Gumenyuk R., Vartiainen I., Tuovinen H., Okhotnikov O. G. Dissipative dispersionmanaged soliton 2 μm thulium/holmium fiber laser // Opt. Lett. 2011. 36, N 5. P. 609–611.
- 12. Kivistö S., Hakulinen T., Guina M., Okhotnikov O. G. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser // IEEE Photon. Technol. Lett. 2007. 19, N 12. P. 934–936.
- Yarutkina I. A., Shtyrina O. V. Mathematical modelling of dispersion-managed thulium/ holmium fibre lasers // Quant. Electron. 2013. 43, N 11. P. 1019–1023.
- 14. Haus H. A., Tamura K., Nelson L. E., Ippen E. P. Stretched-pulse additive pulse modelocking in fiber ring lasers // IEEE Journ. Quant. Electron. 1995. **31**, N 3. P. 591–603.
- 15. **Харенко Д. С., Бабин С. А.** Генерация диссипативных солитонов в волоконных фемтосекундных лазерах // Автометрия. 2013. **49**, № 4. С. 100–120.

Поступила в редакцию 25 декабря 2014 г.