2009. Том 50, № 2

Март – апрель

C. 349 – 356

УДК 546.97:547.82:543.442.2:543.442.3

ИССЛЕДОВАНИЕ СТРУКТУРЫ И ТЕРМИЧЕСКИХ СВОЙСТВ КОМПЛЕКСНЫХ СОЛЕЙ [RhPy₄Cl₂]X, где X = Cl⁻, ReO $\frac{1}{4}$, ClO $\frac{1}{4}$

© 2009 Д.Б. Васильченко²*, И.А. Байдина¹, Е.Ю. Филатов¹, С.В. Коренев¹

¹Институт неорганической химии им. А.В. Николаева СО РАН ²Новосибирский государственный университет

Статья поступила 8 апреля 2008 г.

Синтезированы комплексные соли состава [RhPy₄Cl₂]Cl·4H₂O (I), [RhPy₄Cl₂]ReO₄ (II), [RhPy₄Cl₂]ClO₄ (III), а также [RhPy₄Cl₂]ReO₄·2H₂O. Методом РСА определена кристаллическая структура соединений II (*P*4/*ncc*, *a* = 25,5655(3), *c* = 14,3521(4) Å), III (*P*2₁/*n*, *a* = 13,5308(3), *b* = 15,1044(5), *c* = 23,3457(8) Å, β = 93,327°) и дигидрата соли II (*Pbcm*, *a* = 10,6199(9), *b* = 10,4964(9), *c* = 22,9834(16) Å). Методом дифференциального термического анализа изучены термические превращения комплексов. Вещества охарактеризованы методами ИК спектроскопии, РФА и элементного анализа.

Ключевые слова: родий, пиридин, перренат-ион, перхлорат-ион, рентгеноструктурный анализ, термический анализ.

введение

Большой интерес исследователей к комплексным соединениям родия с различными гетероциклическими лигандами обусловлен широким спектром интересных свойств этих комплексов, которые могут найти практическое применение. Так, например, комплексы родия с 2,2'бипиридилом и фенантролином являются эффективными катализаторами фотоиндуцированной генерации водорода [1], а также люминесцентными метками в биохимической практике [2]. Комплексы с пиколином и пиридином проявляют антибактериальную активность, не обнаруженную для аналогичных комплексов других металлов [3]. Наиболее широко и разносторонне изучены комплексы с пиридином. Такие соединения известны с 1885 г. [4]. В указанной работе описаны методы выделения солей [RhPy₄Cl₂]X с анионами Cl⁻, Br⁻, NO₃⁻ и многими другими, однако отсутствует сколько-нибудь подробное систематическое исследование полученных солей. В ряде работ середины прошлого века описаны некоторые свойства соли [RhPy₄Cl₂]Cl и продуктов ее превращений [5-7], а также метод ее синтеза с применением катализа восстановительными реагентами, открытый М. Делепином в 1929 г. [8]. Катион [RhPy₄Cl₂]⁺ применялся для стабилизации необычных координационных анионов, например $Ag(NO_3)_2^-$ [9]. В плане изучения кристаллических структур эти соединения охвачены в гораздо меньшей степени, чем комплексы с такими лигандами как 2,2'-бипиридил, фенантролин и др. [10]. В связи с вышесказанным было интересно изучить термические свойства различных солей катиона [RhPy₄Cl₂]⁺, а также провести анализ кристаллических структур этих солей. В настоящей работе проведено исследование четырех солей состава [RhPy₄Cl₂]Cl·4H₂O (I), [RhPy₄Cl₂]ClO₄ (III), $[RhPv_4Cl_2]ReO_4$ (II). $[RhPv_4Cl_2]ReO_4 \cdot 2H_2O_4$, для последних трех были определены кристаллические структуры. Все синтезированные соединения изучены комплексом физико-химических

^{*} E-mail: scrubber@mail.ru

методов (рентгенофазовым анализом, дифференциальным термическим анализом, инфракрасной спектроскопией, спектрофотометрией), а также проведен их элементный анализ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплекс I: Аликвоту 5 мл раствора трихлорида родия в 0,5 М соляной кислоте (C(Rh) = 0,08 М) нагревали в стакане на кипящей водяной бане, добавляли несколько кристаллов солянокислого гидразина (~6.10⁻⁵ моль) в качестве катализатора, тщательно перемешивали раствор. При перемешивании по каплям добавляли ~1 мл пиридина до перехода окраски раствора из вишневой в лимонно-желтую. Полученный раствор охлаждали до комнатной температуры и добавляли равный объем концентрированной соляной кислоты, при этом выпадал желтый осадок в виде блестящих пластинок. Осадок отделяли на фильтре из пористого стекла, перекристаллизовывали из минимального объема воды и сушили на воздухе. Выход составляет около 75 %. Полученное соединение представляет собой кристаллогидрат [RhPy₄Cl₂]Cl 4H₂O. Количество кристаллизационной воды вычислено по данным ДТА и подтверждено элементным анализом. Вычислено, % : С 40,18, Н 4,72, N 9,37, Rh 17,22, RhC₂₀H₂₈N₄O₄Cl₃. Найдено, % : С 40,0, H 3,7, N 9,4, Rh 17,1. Вещество легко растворимо в воде, ацетоне, пиридине, хлороформе, спирте; не растворимо в гексане. В спектре поглощения наблюдается полоса при 412 нм (є = = 82,3 л·моль⁻¹·см⁻¹), отвечающая d—d-переходу ${}^{1}A_{1g} \leftarrow {}^{1}E_{g}$, а также полосы в районе 250 нм с высокой интенсивностью ($\epsilon \approx 20000 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$), соответствующие электронным переходам на орбиталях пиридиновых лигандов.

Комплекс II осаждали из ~0,05 М горячего раствора I при добавлении избытка насыщенного раствора перрената натрия. Осадок светло-желтого цвета отфильтровывали, промывали минимумом воды и сушили на воздухе. Выход 95 %. Вычислено (%): С 32,44, H 2,72, N 7,56, Rh+Re 39,05. RhReC₂₀H₂₀N₄O₄Cl₂. Найдено (%): С 32,4, H 2,8, N 7,8, Rh+Re 39,4. Свежеосажденная соль, по данным РФА, представлена в форме дигидрата, который легко теряет кристаллизационную воду при хранении (сушке), что также подтверждено РФА.

Комплекс III осаждали из ~0,05 М горячего раствора I при добавлении избытка концентрированной HClO₄. Осадок светло-желтого цвета отфильтровывали, промывали минимумом воды и сушили на воздухе. Выход 98 %. Вычислено, %: С 40,74, Н 3,42, N 9,50 RhC₂₀H₂₀N₄O₄Cl₃. Найдено, %: С 40,5, Н 3,5, N 9,5.

Соли **II** и **III** плохо растворимы в воде (даже кипящей), гексане, но хорошо растворяются в ДМФА, пиридине, спирте, ацетоне.

Инфракрасные спектры снимали на приборе IFS-85 фирмы "Bruker" в области волновых чисел $400-4000 \text{ см}^{-1}$ в таблетках KBr. ИК-спектроскопические данные для синтезированных соединений, а также их сравнение с ИК спектром пиридина приведены в табл. 1.

1	a	б	Л	И	ц	а	
---	---	---	---	---	---	---	--

Ι	II	III	Ру	Отнесение	Дополнительная информация
3116, 3085 1607 1483, 1450, 1357	3116, 3079 1609 1485, 1452, 1358	3113, 3088 1607 1484, 1450, 1356	3075, 3037 1592 1450, 1435, 1357	v(C—H) v(C—N) v(C—C)	Слабая Сильная Сильная
1241, 1212, 1153, 1068, 1017	1241, 1216, 1164, 1071, 1017	1241, 1217, 1159, 1073, 1016	1226, 1212, 1147, 1065, 1042	δ(С—Н)	В спектре III вторая группа полос частично закрыта v(Cl—O)
	906	1096, 621		v(Re—O, Cl—O)	
765, 695	763, 697	762, 694	745, 700	δ(С—Н, аром.) неплоск.	Обертоны слабой интенсивности в области 2000—1700 см ⁻¹
467	467	464	—	δ(Rh—N)	Сильная

Основные полосы поглошения в ИК спектрах синтезированных соединений и пиридина

351

2

Таблица

Параметр	П	III	II · 2H ₂ O
M	740,41	1179,32	776,44
Пространственная группа	P4/ncc	P21/n	Pbcm
<i>a, b, c,</i> Å	25,5655(3), 25,5655(3), 14,3521(4)	13,5308(3), 15,1044(5), 23,3457(8)	10,6199(9), 10,4964(9), 22,9834(16)
β, град.	90,00	93,3270(10)	90,00
$V, Å^3$	9380,5(3)	4763,2(3)	2562,0(4)
$\rho_{\rm выч}, \Gamma/cm^3$	2,097	1,645	2,013
Ζ	16	4	4
Область углов θ, град.	2,25—34,94	1,61—27,49	1,77—32,00
Число отражений: всего / независимых	9355 / 6430	10909 / 7655	3711 / 1887
Диапазон индексов	$-40 < h < 39, -38 < k < 40, \\ -21 < l < 9$	-17 < h < 10, -19 < k < 18, -30 < l < 30	$-12 < h < 14, -14 < k < 14, \\ -22 < l < 33$
GOOF по F^2	1,08	1,008	1,077
$\Delta \rho_{\text{max}}, \ \Delta \rho_{\text{min}}, \ \mathbf{e} \cdot \mathbf{\mathring{A}}^3$	4,644, -10,628	0,835, -0,705	4,110, -4,291
Число уточняемых параметров	327	577	173
R_1 и wR_2 для $I > 2\sigma(I)$	0,0429 и 0,1011	0,0417 и 0,0939	0,1049 и 0,2314
<i>R</i> ₁ и <i>wR</i> ₂ для всех отражений	0,0820 и 0,1134	0,0705 и 0,1064	0,2016 и 0,2616
№ CCDC	652835	652841	680023

Основные кристаллографические параметры и характеристики рентгеноструктурного эксперимента для соединений II и III

Термические свойства соединений изучали на дериватографе Q-1000, модифицированном для съемки в различных газовых атмосферах. Навеску вещества ~100 мг помещали в кварцевый тигель без крышки, нагревание вели со скоростью 7—10 град/мин в токе гелия 150 мл/мин.

Анализ на сумму металлов или на металл проводили путем прокаливания в токе водорода навески комплексов в кварцевом трубчатом реакторе, нагреваемом при помощи разъемной печи до 600 °C. Подробно режим нагревания описан ниже. Соль $[RhPy_4Cl_2]ClO_4$ при температуре около 250 °C разлагается со взрывом, вследствие чего термолиз в атмосфере водорода для анализа на содержание родия в этой соли не проводился.

Монокристаллы II и III получали медленным охлаждением горячих (60 °C) водных растворов соответствующих комплексов. Разделение монокристаллов II и его дигидрата проводили визуально под микроскопом по форме кристаллов.

Экспериментальные данные для расшифровки кристаллической структуры солей получены при комнатной температуре на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Apex, оснащенном двухкоординатным CCD-детектором (Мо*K*_α-излучение, графитовый монохроматор). Кристаллографические характеристики исследованных соединений и параметры эксперимента приведены в табл. 2. Структуры расшифрованы прямым методом и уточнены в анизотропно-изотропном (для H) приближении, атомы водорода частично локализованы из разностных синтезов, частично заданы геометрически. Все расчеты выполнены по комплексу программ SHELX-97 [11]. Для исследованных соединений по монокристальным данным рассчитаны теоретические дифрактограммы. Основные межатомные расстояния и валентные углы комплексов приведены в табл. 3. Дополнительные кристаллографические данные доступны из Кембриджского центра кристаллографических данных (http://www.ccdc.cam.ac.uk/): для **II** № 652835, для **III** № 652841 и № 680023 для [RhPy₄Cl₂]ReO₄ · 2H₂O. Рентгенодифрактометрические

Таблица 3

Основные межатомные расстояния d, À	🕯 и валентные угле	ы ω, град.	в кристаллич	еских
структ	nypax II u III			

Descent	d					
Расстояние	II	III				
Комплексный катион [RhPy ₄ Cl ₂] ⁺						
Rh-Cl(1)	2,351(1)	2,340(1)				
Rh-Cl(2)	2,313(1)	2,335(1)				
Rh—N(1)	2,056(3)	2,066(3)				
Rh—N(2)	2,062(3)	2,057(3)				
Rh—N(3)	2,056(3)	2,059(3)				
Rh—N(4)	2,064(3)	2,061(3)				
N—C	1,343(5)-1,352(5)	1,332(5)-1,353(5)				
С—С	1,377(6)-1,397(6)	1,353(7)—1,383(6)				
	Анионы ReO_4^- и ClO_4^-					
Re(Cl)—O	1,666(4)-1,748(10)	1,227(7)—1,437(5)				
Угол	ω					
Комплексный катион [RhPv ₄ Cl ₂] ⁺						
N(1)—Rh—N(2)	90,30(12)	90,46(12)				
N(1)— Rh — $N(3)$	87,93(12)	179,26(12)				
N(1)— Rh — $N(4)$	178,36(12)	89,46(12)				
N(4)—Rh—N(2)	91,19(13)	179,69(12)				
N(4)—Rh—N(3)	90,57(12)	89,92(12)				
N(2)—Rh—N(3)	177,93(12)	90,17(12)				
N(1)— Rh — $Cl(1)$	90,96(9)	89,26(8)				
N(2)—Rh— $Cl(1)$	90,16(9)	89,31(8)				
N(3)—Rh—Cl(1)	90,94(9)	91,14(8)				
N(4)— Rh — $Cl(1)$	89,70(9)	90,38(8)				
N(1)—Rh—Cl(2)	89,74(9)	89,73(8)				
N(2)—Rh— $Cl(2)$	88,74(9)	89,36(8)				
N(3)— Rh — $Cl(2)$	90,18(9)	89,89(8)				
N(4)—Rh— $Cl(2)$	89,62(9)	90,94(8)				
C—N—C	117,93(34)-119,02(33)	117,25(34)—118,05(35)				
C—C—C	117,90(47)—119,72(48)	118,20(43)—119,79(38)				
Анионы ReO_4^- и ClO_4^-						
O(1)—Re(Cl)—O(4)	102,98(1)—116,23(33)	104,48(41)—116,55(49)				

ское исследование поликристаллических образцов проводили на дифрактометре ДРОН-SEIFERT-RM4 (Си K_{α} -излучение, графитовый монохроматор на отраженном пучке, детектор сцинтилляционный с амплитудной дискриминацией). Образцы готовили нанесением суспензии в гексане на полированную сторону кюветы из плавленого кварца. В качестве внешнего эталона использовали образец поликристаллического кремния (a = 5,4309 Å), приготовленный аналогичным образом. Регистрацию дифрактограмм проводили в пошаговом режиме, для комплексных солей в диапазоне углов 20 от 5 до 60°, для продуктов термолиза в диапазоне углов 20 от 5 до 135°.

Рентгенофазовый анализ продуктов термолиза был проведен по аналогии с дифрактограммами чистых веществ, приведенными в картотеке PDF [12]. Параметры металлических фаз уточнены по всему массиву данных с помощью прикладной программы PowderCell 2.3 [13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Получение комплексов. Получение исходного хлорида I мы проводили по модифицированной каталитической методике Делепина [8]. В качестве восстанавливающего агента использовали солянокислый гидразин, а сам процесс проводили в водной среде. Эта реакция позволяет количественно переводить родий из трихлорида в форму катиона [RhPy₄Cl₂]⁺. Неколичественный выход комплекса I (75%) определяется растворимостью хлорида (около 18 г/л). Высокие выходы перренатной и перхлоратной солей связаны с их чрезвычайно низкой растворимостью, что позволяет использовать первую из них как весовую форму для гравиметрического определения родия [14]. Катион [RhPy₄Cl₂]⁺ образует перренатную соль как в виде дигидрата, так и в безводной форме. Свежеосажденная соль представлена, в основном, дигидратом, который при хранении или сушке легко и необратимо обезвоживается. Удалось выделить и изучить методами РСА, РФА и ДТА обе формы этой комплексной соли, эти данные представлены ниже.

Кристаллическая структура. Общий вид кристаллических структур **II** и **III** показан на рис. 1 и 2 соответственно. Обе структуры имеют островной мотив и построены из комплексных катионов *mpanc*-[RhPy₄Cl₂]⁺ искаженного октаэдрического строения и тетраэдрических анионов ReO_4^- или ClO_4^- в **II** и **III** соответственно. Соединения не изоструктурны и кристаллизуются в ячейках с тетрагональной (для **II**) и моноклинной (для **III**) симметрией. На рис. 3 представлено строение катиона и аниона на примере таковых для структуры **III**. Катионы *mpanc*-[RhPy₄Cl₂]⁺ представлены в обеих структурах в двух формах, правого и левого винта, в зависимости от направления наклона плоскости кольца пиридинового лиганда относительно оси Cl— Rh—Cl. При этом с экваториальной плоскостью RhN₄ пиридиновые кольца образуют углы от 41,52 до 55,07°. Расстояние Rh—Cl меньше суммы ионных радиусов и близко к сумме ковалентных радиусов соответствующих атомов. Строение комплексного катиона согласуется с рентгеноструктурными данными, полученными для [RhPy₄Cl₂]Аg(NO₃)₂ в [9].

В структуре III каждый катион окружен восьмью анионами ClO_4^- , четыре из которых располагаются в полостях, образованных двумя пиридиновыми лигандами, находящимися в *цис*положении. Расстояние Rh—Cl (рассматривается атом хлора аниона ClO_4^-) около 6,4 Å. Остальные четыре аниона располагаются напротив каждого из пиридиновых колец (Rh—Cl \approx

Рис. 1. Общий вид кристаллической структуры соли **III**. Атомы водорода не показаны для ясности. В центральной части хорошо видны две формы ком-

плексного катиона *mpaнc*-[RhPy₄Cl₂]⁺

Рис. 2. Общий вид кристаллической структуры соли **II**.

Атомы водорода не показаны для ясности. Ориентационное разупорядочение анионов показано прерывистыми связями

Рис. 3. Геометрия комплексного катиона *транс*- $[RhPy_4Cl_2]^+$ и аниона ClO_4^- в структуре **III**

≈ 8,9 Å). Дополнительно выше и ниже плоскости гетероциклических лигандов располагаются еще два аниона с характерным расстоянием Rh—Cl около 9,5 Å. В свою очередь каждый перхлоратный анион окружен 10 катионами *mpaнc*- $[RhPy_4Cl_2]^+$, которые образуют вокруг него полость сложной формы.

Анионы ReO₄⁻ в соли **II** занимают 3 кристаллографически независимые позиции, в двух из которых они ориентационно разупорядоче-

ны. Вследствие большего размера они не могут расположиться также близко к родию, как перхлоратный анион. Расстояние Rh—Re составляет в этом случае от 6,6 до 7,2 Å, одна из полостей между двух гетероциклов не занята анионом и содержит пиридиновое кольцо соседнего катиона, так что образуется плотноупакованный димер из двух катионов с расстоянием Rh—Rh, равным 7,32 Å. Один из анионов занимает позицию над пиридиновыми кольцами с коротким расстоянием Rh—Re 5,61 Å, остальные 9 анионов располагаются аналогично перхлоратным анионам в структуре III.

Дигидрат [RhPy₄Cl₂]ReO₄·2H₂O кристаллизуется в ячейке с ромбической симметрией. Общий вид упаковки частиц в ячейке показан на рис. 4. В целом структура дигидрата образована слоями катионов с кратчайшими расстояниями Rh…Rh около 7,0 Å и слоями, состоящими из анионов и молекул кристаллизационной воды. Слои располагаются параллельно плоскости *ab* ячейки. Анионы ReO_4^- с молекулами воды образуют в слоях цепочки водородных связей. В цепочках пары молекул воды, с d(O - O) 2,636 Å, связаны с атомами кислорода перренат-иона водородными связями с параметрами $d(O - O(\text{ReO}_4^-))$, равными 2,744 и 2,824 Å. Кратчайшие расстояния Rh…Re располагаются вдоль оси *с* ячейки в виде цепочек и имеют длину 6,239 Å. Они обусловлены нахождением аниона в полости, образованной двумя парами гетероциклических колец соседних катионов [RhPy₄Cl₂]⁺. Таким образом, в отличие от безводной формы соли [RhPy₄Cl₂]ReO₄, где скорее можно выделить канальные структуры, образованные катионами, дигидрат образует структуру с послойным расположением катионов и анионов.

Термический анализ в атмосфере гелия. Термограммы соединений I и II приведены на рис. 5 и 6. Первой ступенью разложения I является стадия дегидратации комплекса с потерей всех молекул кристаллизационной воды. Далее при 190 °C следует ступень превращения комплекса, по потере массы соответствующая образованию 1,2,6-[RhPy₃Cl₃] с потерей молекулы пиридина. Подобная перегруппировка известна давно и описана, например, в процессе сушки комплекса I при повышенной температуре в работе [5]. Дальнейшее повышение температуры, видимо, первоначально приводит к отщеплению пиридина и образованию полимерной фазы, содержащей мостиковые хлоридные лиганды. Эта фаза внешне представляет собой порошок розового цвета, не растворимый в воде, ацетоне и пиридине (на холоде), однако легко раство-

римый при кипячении в растворе КОН или пиридина. В ИК спектре этой фазы

Рис. 4. Общий вид кристаллической структуры $[RhPy_4Cl_2]ReO_4 \cdot 2H_2O.$

Атомы водорода опущены для ясности. Атомы кислорода кристаллизационной воды показаны отдельными шарами. Штриховыми линиями указаны водородные связи

Рис. 5. Термограмма I в атмосфере гелия, 8 град./мин

Рис. 6. Термограмма II в атмосфере гелия, 10 град./мин

в области 4000—400 см⁻¹ не наблюдается никаких дополнительных полос по сравнению с I, при этом в области 400—200 см⁻¹ происходит расщепление полос поглощения, относимых к валентным колебаниям Rh—N и Rh—Cl, что говорит о потере первоначальной симметрии D_{4h} комплексной частицы. Увеличение температуры приводит к разрушению лигандов с образованием углерода и восстановлению Rh^{3+} до Rh^{0} , вследствие чего конечный продукт разложения представляет собой по данным РФА смесь металлического родия и углерода (характерное гало на дифрактограмме).

Комплекс II, в отличие от I, не содержит внешнесферных анионов, способных к замещению пиридиновых лигандов во внутренней сфере, что приводит к повышению термической устойчивости этого комплекса по сравнению с І. На термограмме ІІ наблюдается две ступени потери массы. Первая ступень (около 300 °C), по расчету, соответствует разложению комплекса с удалением Ру HCl. При этом в ИК спектре продукта разложения наблюдается расщепление полос поглощения деформационных колебаний связей С-Н, что говорит о произошедшем хотя бы в одном из пиридиновых колец замещении атома водорода на какой-либо заместитель [15]. Полоса поглощения валентных колебаний связи Re—О не изменяется, что свидетельствует о сохранении перренат-иона. Вторая ступень, видимо, как и в случае с последней ступенью для I, отвечает разложению лигандов до углерода, но с параллельным восстановлением перренат-иона до Re^{0} . Конечным продуктом термолиза соли **II** в атмосфере гелия по данным РФА является смесь твердого раствора Rh_{0.5}Re_{0.5} и углерода.

На рис. 7 приведена кривая потери массы для дигидрата соли ІІ. Видно, что его термораспад после дегидратации протекает при более низких температурах, чем у безводной фазы. Объяснение этого факта достаточно затруднительно.

Таким образом, нами были синтезированы и изучены комплексные соли составов [RhPy₄Cl₂]Cl·4H₂O, [RhPy₄Cl₂]ReO₄, [RhPy₄Cl₂]ClO₄, а также [RhPy₄Cl₂]× ×ReO₄·2H₂O. Установлена кристаллическая структура всех солей, исключая хлоридную. Неизоструктурность перхлоратной и перренатной солей объяснена в рамках размерных характеристик этих тетраэдрических ионов. Гидратная фаза [RhPv4Cl2]ReO4 · 2H2O была описана слоями катионов чередующихся со слоями анионов, связанных сеткой водородных связей с молекулами

m, %

100

90

80

300 400 500 600 700 Температура, °С

-34 а.е.м. (-2H₂O)

-115 а.е.м. (-РуНСІ)

Рис. 7. Кривая потери массы [RhPy₄Cl₂]ReO₄·2H₂O в атмосфере аргона, 10 град./мин

кристаллизационной воды. Показаны отличия, возникающие в термических свойствах при замене хлоридного аниона на перренатный. Описаны промежуточные и конечные продукты термолиза комплексов.

Авторы выражают глубокую признательность Н.И. Алферовой за помощь в снятии ИК спектров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Balzani V., Juris A., Venturi M. et al. // Chem. Rev. 1996. 96. P. 759.
- 2. Jackson B.A., Barton J.K. // Biochemistry. 2000. 39. P. 6176.
- 3. Gillard R.D., Lekkas E. // Trans. Met. Chem. 2000. 25. P. 617 621.
- 4. Jørgensen S.M. // J. Pract. Chem. 1885. 27. P. 487.
- 5. Gillard R.D., Willkinson G. // J. Chem. Soc. 1964. P. 1224 1228.
- 6. Rund J.V., Basolo F., Pearson R.G. // Inorg. Chem. 1964. 3. P. 658 661.
- 7. Gillard R.D., Osborn J.A., Willkinson G. // J. Chem. Soc. 1965. P. 1951 1965.
- 8. Delepien M. // Bull. Soc. Chim. France. 1929. 45. P. 235.
- 9. Gillard R.D., Hanton L. R., Mitchell S. H. // Polyhedron. 1990. 9, N 17. P. 2127 2133.
- 10. Burke H.M., Gallagher J.F., Indelli M.T., Vos J.G. // Inorg. Chim. Acta. 2004. 357. P. 2989 3000.
- 11. Sheldrick G.M. SHELX-97. Release 97-1. University of Göttingen, 1997.
- 12. PCPDFWin, Ver. 1.30, JCPDS ICDD, Swarthmore, PA, USA, 1997.
- 13. *Kraus W., Nolze G.* Powder Cell 2.4, Program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Federal Institute for Materials Research Testing, Berlin, Germany, 2000.
- 14. А.С. 1346967 СССР, МКИ4 С01 G55/00. Способ определения родия / Коренев С.В., Беляев А.В. (СССР) № 4030490/31-26; Заяв. 28.02.86; Опубл. 22.06.87, Бюл. № 39. 1 с.
- 15. Коврова Н.Б., Бондаренко В.С., Корниец Е.Д., Соколенко В.А. // Журн. неорган. химии. 1994. **39**, № 6. С. 929 932.

356