УДК 539.3

РЕШЕНИЕ ЗАДАЧИ О ГРАВИТАЦИОННОМ СЖАТИИ СЛОИСТОГО ШАРА (НА ПРИМЕРЕ ЗЕМЛИ)

Л. В. Баев, В. Н. Солодовников

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: volk@hydro.nsc.ru

Решается задача о сферически симметричном гравитационном сжатии изотропного гиперупругого слоистого шара, которым представляется область Земли, лежащая ниже границы Мохоровичича. По известным механическим характеристикам Земли в сжатом состоянии находятся ее характеристики в недеформированном состоянии, получаемом при осуществлении адиабатического или изотермического процессов снятия напряжений. Напряженное состояние существенно отличается от состояния чисто гидростатического сжатия. Минимальная объемная деформация сжатия и максимальное радиальное удлинение осуществляются не на границе шара, а в глубине на некоторых расстояниях от границы.

Ключевые слова: Земля, адиабатическое или изотермическое снятие напряжений, изотропная гиперупругость, механические характеристики.

1. Характеристики упругости Земли. Рассматривается область Земли — шар радиуса $\hat{R}_1 = 6341$ км (радиус Земли $\hat{R} = 6371$ км; верхняя граница области лежит на глубине $\hat{R} - \hat{R}_1 = 30$ км). В предлагаемом решении она разбивается на 5 слоев, соответствующих принятым в геофизике слоям B, C, D в мантии, внешнему ядру E и внутреннему ядру G, с введением разрывов для определяющих состояние материала функций или их производных в граничных точках между слоями. Поверхностью разрыва заменяется также переходный между слоями E, G слой F. Разбиение осуществляется с использованием данных [1].

В соответствии с характером приведенных в [1] распределений плотности $\hat{\rho}$ и скоростей распространения продольных и поперечных волн v_p, v_s в точках вдоль радиуса сжатой Земли \hat{r} (узлах) выбираются граничные точки между слоями A, B, C, D, E, G с радиальными координатами $\hat{r}_A = \hat{R}_1 = 6341, \hat{r}_B = 5971, \hat{r}_C = 5371, \hat{r}_D = 3482, \hat{r}_E = 1211 (км) (A — слой, лежащий выше поверхности <math>\hat{r} = \hat{R}_1$; в [1] даются значения не радиусов, а глубин расположения узловых точек $(\hat{R} - \hat{r})$, принимающих здесь для граничных точек значения 30, 400, 1000, 2889, 5160 километров соответственно). В граничной точке приведенные в [1] значения $\hat{\rho}, v_p, v_s$, если они не предполагаются непрерывными, считаются относящимися к нижележащему слою. Для разрывных $\hat{\rho}, v_p, v_s$ значения в граничной точке, относящиеся к вышележащему слою, находятся экстраполяцией их значений в узлах этого слоя. Непрерывными являются v_p в точке $\hat{r}_B; \hat{\rho} - B \hat{r}_E; \hat{\rho}, v_p, v_s - B \hat{r}_C$, но допускается возможность разрывов производных от этих функций. При введении разрывов ни одно приведенное в [1] значение $\hat{\rho}, v_p, v_s$ не исправляется. Добавляются предельные,

Работа выполнена в рамках интеграционного проекта № 82 СО РАН и при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 02-01-00195).

Таблица 1

Узел	$\hat{r},$ KM	\hat{r}'	$\hat{ ho},$ $\Gamma/{ m CM}^3$	$v_p,$ км/с	$v_s,$ км/с	$K, 10^5$ МПа	$\mu, \\ 10^5$ МПа	ν	$ ho,$ $\Gamma/{ m CM}^3$	$K_0, \ 10^5 \ { m M\Pi a}$	$\mu_0,\ 10^5$ МПа	$ u_0$
1	6341	1	3,32	7,74	$4,\!62$	1,044	0,7086	0,2233	2,909	0,6335	0,6209	0,1306
2	6271	0,989	3,35	$7,\!95$	4,5	1,213	0,6784	0,2643	2,933	0,7341	0,594	0,1814
3	6171	0,9732	3,39	8,26	4,5	1,398	0,6865	0,289	2,945	0,8222	0,5963	0,208
4	6071	0,9574	3,42	8,59	4,5	$1,\!6$	0,6926	0,3109	2,953	0,9207	0,5979	0,2331
5	$5971 \\ 5971$	$0,9417 \\ 0,9417$	$3,44 \\ 3,77$	$^{8,92}_{8,92}$	$4,5 \\ 4,72$	$1,808 \\ 1,88$	$0,6966 \\ 0,8399$	$0,3293 \\ 0,3056$	2,954 3,222	$1,021 \\ 1,044$	$0,5982 \\ 0,7179$	$\begin{array}{c} 0,2549 \\ 0,2203 \end{array}$
6	5721	0,9022	4,17	10,48	5,8	2,71	1,403	0,2792	3,489	1,396	1,174	0,1717
7	5371	0,8471	4,54	11,44	$6,\!36$	3,493	1,836	0,2763	3,714	1,664	1,502	0,1531
8	4371	0,6893	5,09	12,79	$6,\!92$	$5,\!077$	2,437	0,2931	3,941	2,007	1,887	0,1421
9	3671	0,5789	5,4	13,61	7,26	6,208	2,846	0,3011	4,05	2,209	2,135	0,1345
10	$\begin{array}{c} 3482\\ 3482 \end{array}$	$0,5491 \\ 0,5491$	$5,695 \\ 9,95$	$13,\!64 \\ 8,\!12$	7,3	$^{6,549}_{6,561}$	$3,036 \\ 0,05$	$0,2993 \\ 0,4962$	$4,234 \\7,813$	$2,264 \\ 2,72$	$2,257 \\ 0,0393$	$\begin{array}{c} 0,1259 \\ 0,4928 \end{array}$
11	2371	0,3739	11,39	9,53	0	10,34	0,05	0,4976	7,879	2,834	0,0346	0,4939
12	1211 1211	$0,191 \\ 0,191$	12,74 12,74	$10,347 \\ 11,25$	$\begin{array}{c} 0\\ 3,86 \end{array}$	$13,\!64 \\ 13,\!59$	$0,05 \\ 1,898$	$0,4982 \\ 0,4333$	8,578 8,557	$3,43 \\ 3,393$	$0,0337 \\ 1,275$	$\begin{array}{c} 0,4951 \\ 0,333 \end{array}$
13	0	0	13,03	11,25	2,91	15,02	1,103	0,4641	8,715	3,699	0,7379	0,4065

Характеристики Земли в сжатом и разгруженном состояниях

относящиеся к вышележащему слою значения в граничных точках \hat{r}_B , \hat{r}_D , \hat{r}_E . После выполнения экстраполяции узловые точки 3485 км, 1251 км, как слишком близко стоящие к точкам \hat{r}_D , \hat{r}_E , в дальнейшем не используются.

По $\hat{\rho}$, v_p , v_s вычисляются модули сдвига и объемного сжатия материала в сжатом состоянии Земли [1]:

$$\mu = \hat{\rho}v_s^2, \qquad K = \hat{\rho}(v_p^2 - 4v_s^2/3).$$

Во внешнем ядре (при $v_s = 0$) нулевое значение для μ заменяется на $\mu = 5 \cdot 10^3$ МПа, существенно меньшее, чем в остальных слоях. Координаты узлов \hat{r} , значения $\hat{r}' = \hat{r}/\hat{R}_1$, $\hat{\rho}, v_p, v_s, K, \mu$ и коэффициента Пуассона $\nu = (3K - 2\mu)/[2(3K + \mu)]$ в узлах даны в табл. 1. В слое *B* находятся узлы 1, 2, 3, 4, 5; в слое *C* — 5, 6, 7; в слое D — 7, 8, 9, 10; во внешнем ядре — 10, 11, 12; во внутреннем ядре — 12, 13. Граничными между слоями с координатами $\hat{r}_A, \hat{r}_B, \hat{r}_C, \hat{r}_D, \hat{r}_E$ являются узлы 1, 5, 7, 10, 12 соответственно; узел 13 находится в центре $\hat{r} = 0$. В табл. 1, 2 для узлов 5, 10, 12 дается пара значений каждой величины, первое значение относится к вышележащему, второе — к нижележащему слою; если величина непрерывна, то для нее даются два одинаковых значения; в узле 7 величины непрерывны.

Таким образом, выполненное 5-слойное разбиение позволяет вместо приведенных в [1] участков быстрого изменения $\hat{\rho}$, v_p , v_s , K, μ , ν ввести поверхности разрыва этих величин и получить в каждом слое более гладкие распределения как этих величин, так и определяемых с их использованием искомых функций. Данные из [1] обсуждаются также в работах [2–4].

2. Определяющие уравнения. Предположим, что с устранением гравитационных сил во всей области материал может как изотропный гиперупругий [5] (адиабатически

или изотермически обратимым образом) перейти в состояние с нулевыми напряжениями и деформациями, причем без разрушения и нарушения сплошности материала. Отсюда следует непрерывность радиальных координат материальных точек в разгруженном и сжатом состояниях $r \ge 0$, $\hat{r} \ge 0$, взаимно однозначная зависимость между ними $\hat{r} = \hat{r}(r)$ и выполнение неравенства $\hat{r}_{,r} > 0$. Положение теории изотропных гиперупругих тел о соосности тензоров напряжений и деформаций в данной задаче выполняется в силу сферической симметрии.

Введем инварианты тензоров деформаций

$$J = (\varepsilon_m \varepsilon_n \varepsilon_l)^{1/2}, \qquad \Upsilon = \frac{\varepsilon_m^2 + \varepsilon_n^2 + \varepsilon_l^2}{(\varepsilon_m + \varepsilon_n + \varepsilon_l)^2} - \frac{1}{3}, \qquad I_1 = \frac{1}{2} \left(\varepsilon_m + \varepsilon_n + \varepsilon_l\right)$$
(2.1)

(m, n, l — четная перестановка индексов 1, 2, 3).

Здесь и в дальнейшем ε_i — квадраты главных кратностей удлинений, т. е. отношения квадратов длин (текущих — к исходным) элементарных, проходящих вдоль главных осей тензоров деформаций материальных волокон, связанные с главными компонентами тензора деформаций Грина e_i равенствами $\varepsilon_i = 1 + 2e_i$ (при нулевой деформации волокна $\varepsilon_i = 1$, с удлинением волокна $\varepsilon_i > 1$ и возрастает, с укорочением волокна $\varepsilon_i < 1$ и уменьшается); J — отношение элементарных объемов (текущего — к исходному) или якобиан преобразования исходных декартовых координат материальных точек в текущие (объемная деформация, равная (J-1), является сжатием при J < 1 и расширением при J > 1); $\Upsilon = I_2 I_1^{-2}$ принимает в пространстве с декартовыми координатами ε_i значение одной трети квадрата тангенса угла наклона радиус-вектора данной точки к лучу $\varepsilon_1 = \varepsilon_2 = \varepsilon_3$; I_2 — интенсивность сдвиговых деформаций. Выполняются неравенства $\varepsilon_i > 0$, $I_1 > 0$, $0 \leq \Upsilon < 2/3$, J > 0. Индекс *i* принимает значения 1, 2, 3; переменная в нижнем индексе после запятой обозначает частное дифференцирование.

Главные компоненты тензора напряжений Коши (физические компоненты напряжений) в изотропных гиперупругих телах находятся из определяющих уравнений [6, 7]

$$\hat{\sigma}_i = \hat{\mu}\varepsilon_i(\varepsilon_i - \hat{\chi}) + p, \qquad (2.2)$$

где $\hat{\mu} = \beta I_1^{-2} J^{-1}$; $\hat{\chi} = 2I_1(\Upsilon + 1/3)$; $\beta = \Psi_{,\Upsilon}$; $p = \Psi_{,J} = (\hat{\sigma}_m + \hat{\sigma}_n + \hat{\sigma}_l)/3$ — среднее напряжение (сжимающее давление при p < 0 и расширяющее при p > 0); Ψ — задаваемая для материалов определяющая функция — плотность энергии деформации. В сферически симметричных состояниях напряжения и деформации во всех направлениях, ортогональных к радиальному, одинаковые: $\hat{\sigma}_2 = \hat{\sigma}_3$, $\varepsilon_2 = \varepsilon_3 = (\hat{r}/r)^2$, в радиальном направлении $\varepsilon_1 = (\hat{r}_{,r})^2$.

В адиабатических процессах Ψ определяется по приращению плотности внутренней энергии как функция Υ , J, S при постоянной плотности энтропии на единицу объема недеформированного тела S, а в изотермических процессах — по приращению плотности свободной энергии как функция Υ , J, T при постоянной абсолютной температуре T. Значения аргумента S в адиабатическом и аргумента T в изотермическом процессе могут быть в разных точках разными, но в каждой материальной точке они остаются постоянными. Поэтому Ψ зависит только от двух аргументов Υ , J. Входящие в выражение для Ψ модули сдвига и объемного сжатия μ_0 , K_0 , характеризующие материал в недеформированном состоянии, находятся из решения задачи по известным характеристикам материала в деформированном состоянии.

Используем зависимость давления от объемной деформации в виде закона Берча — Мурнагана [8, 9]

$$p = (3/2)K_0(J^{-5/3} - J^{-7/3}), (2.3)$$

где K_0 — модуль объемного сжатия материала в исходном недеформированном состоянии $(p_{,J} = K_0$ при J = 1). С уменьшением объема давление p по абсолютной величине возрастает.

Из предположения о зависимости p только от J следует равенство нулю производных $p, \Upsilon = \beta_{,J} = 0$ и, значит, зависимость β только от одного аргумента Υ . Из-за отсутствия данных о характере зависимости β от Υ и с учетом малой изменяемости Υ в качестве первого приближения считаем β постоянной с тем же значением, что и в законе Гука: $\beta = 9\mu_0/4$. В результате Ψ представляется в виде суммы двух слагаемых — плотностей энергий сдвиговых и объемных деформаций, зависящих каждое только от одного аргумента:

$$\Psi = \Psi_1 + \Psi_2, \qquad \Psi_1 = (9\mu_0/4)\Upsilon, \qquad \Psi_2 = (9K_0/8)(1 - J^{-2/3})^2.$$

При стремлении деформаций к нулю Ψ непрерывно переходит в определяющую функцию закона Гука с теми же двумя константами материала, что и в законе Гука: $\mu_0 = E_0/[2(1 + \nu_0)], K_0 = E_0/[3(1 - 2\nu_0)] (E_0, \nu_0$ — модуль Юнга и коэффициент Пуассона для недеформированного материала).

Отметим, что условие постоянства или даже ограниченности β ведет при достаточно больших деформациях к существованию падающих диаграмм зависимости напряжений от деформаций.

3. Связь характеристик упругости материала в деформированном и недеформированном состояниях. В [1] вызываемые распространением продольных и поперечных волн приращения напряжений и деформаций связаны линейным законом Гука для изотропного материала с двумя константами — модулями сдвига и объемного сжатия μ , K. Для порождающих эти приращения компонент тензоров скоростей напряжений Яумана $\hat{\Sigma}$ и скоростей деформаций $\hat{\eta}$ соотношения закона Гука записываются в виде (m, n, l)четная перестановка индексов 1, 2, 3

$$\hat{\Sigma}_{mm} = 2\mu\hat{\eta}_{mm} + (K - 2\mu/3)(\hat{\eta}_{mm} + \hat{\eta}_{nn} + \hat{\eta}_{ll}), \qquad \hat{\Sigma}_{mn} = 2\mu\hat{\eta}_{mn}.$$
(3.1)

Установим связь μ , K с модулями сдвига и объемного сжатия μ_0 , K_0 недеформированного материала в соответствии с теорией изотропных гиперупругих тел [5–7].

Положим приращение давления Δp пропорциональным приращению объемной деформации, определяемому по отношению к величине текущего объема материала с коэффициентом — модулем объемного сжатия $K: \Delta p = KJ^{-1}\Delta J$. Устремляя приращение величины якобиана ΔJ к нулю, придем к равенству $p_{,J} = KJ^{-1}$, совпадающему с приведенным в [1] (с учетом противоположного в [1] знака p и выражения $J = \rho/\hat{\rho}$ через начальную и текущую плотности ρ , $\hat{\rho}$). Отсюда и из (2.3) следует соотношение, связывающее модули объемного сжатия в разгруженном и сжатом состояниях: $K = (1/2)K_0(7J^{-7/3} - 5J^{-5/3})$. С уменьшением объема сопротивление дополнительному деформированию возрастает: $K \to \infty$ при $J \to 0$.

Перейдем к установлению связи между μ и μ_0 . В изотропных гиперупругих телах недиагональные компоненты тензоров $\hat{\Sigma}$, $\hat{\eta}$ (которые здесь могут иметь иные значения, чем в (3.1)) удовлетворяют равенствам [6, 7]

$$\hat{\Sigma}_{mn} = B_l \,\hat{\eta}_{mn}, \qquad B_l = \frac{9\mu_0(\varepsilon_m + \varepsilon_n)}{J(\varepsilon_m + \varepsilon_n + \varepsilon_l)^3} \left[2\varepsilon_m\varepsilon_n + (\varepsilon_m + \varepsilon_n)\varepsilon_l - \varepsilon_l^2\right]$$

с коэффициентами B_l , зависящими от текущего деформированного состояния материала. Учтем $\varepsilon_2 = \varepsilon_3$, $B_2 = B_3$ и введем параметр $\xi = (\varepsilon_2 - \varepsilon_1)/(\varepsilon_2 + \varepsilon_1)$. Проведенные вычисления показывают, что параметр ξ должен быть малым. При этом коэффициенты $B_l > 0$, их среднее значение $(B_1 + 2B_2)/3$ близко́ к удвоенному значению $\mu = \mu_0 J^{-1}$, которое можно принять как значение модуля сдвига материала в сжатом состоянии. Относительные величины разностей между B_1 , B_2 и 2μ небольшие. Они достигают максимумов (до 20 %) вблизи граничной поверхности $\hat{r} = \hat{R}_1$ и уменьшаются при приближении к внешнему ядру. При переходе из мантии во внешнее ядро относительные величины разностей возрастают скачкообразно, но ввиду малости μ во внешнем ядре это возрастание несущественно и разностями можно пренебречь. Во внутреннем ядре разности пренебрежимо малы.

В уравнениях изотропных гиперупругих тел [6, 7], в отличие от уравнений (3.1), скорости напряжений $\hat{\Sigma}_{mm}$ выражаются через скорости деформаций $\hat{\eta}_{ii}$ (i = 1, 2, 3) с несимметричной матрицей коэффициентов, причем зависящей от текущего деформированного состояния материала. Разности между компонентами этой матрицы (вычисленной по результатам приведенного ниже решения с удовлетворением равенств $\mu_0 = \mu J$, $K_0 = 2K(7J^{-7/3} - 5J^{-5/3})^{-1})$ и соответствующими компонентами матрицы в (3.1) существенны лишь в мантии (относительные величины разностей между диагональными компонентами матриц не превышают 3 %, между недиагональными компонентами они достигают 40 % на граничной поверхности $\hat{r} = \hat{R}_1$ и уменьшаются при приближении к внешнему ядру). В ядрах, внешнем и внутреннем, разностями между компонентами матриц можно пренебречь и считать применимыми уравнения (3.1).

Итак, полагая

$$\mu_0 = \mu J, \qquad K_0 = 2K(7J^{-7/3} - 5J^{-5/3})^{-1},$$
(3.2)

приходим к задаче: по известным в узлах с координатами \hat{r} значениям μ , K найти координаты узлов r и значения модулей μ_0 , K_0 недеформированного материала. Координаты r и \hat{r} ($r' = r/R_1$, $\hat{r}' = \hat{r}/\hat{R}_1$ — обезразмеренные координаты, отнесенные к радиусам граничной поверхности в разгруженном и сжатом состояниях шара R_1 , \hat{R}_1) связываются через функцию ε_2 равенствами

$$r' = \hat{r}'(\varepsilon_{2(A)}/\varepsilon_2)^{1/2},$$
 (3.3)

где $\varepsilon_{2(A)} = (\hat{R}_1/R_1)^2$ — значение ε_2 в точке $\hat{r}' = r' = 1$.

Значения μ_0, K_0, r' находятся итерациями. На начальной итерации для якобиана J согласно (2.3), (3.2) берем значения

$$J = \left(\frac{3K+7p}{3K+5p}\right)^{3/2}$$

при давлении p = P (P > -3K/7), определяемом по формуле чисто гидростатического сжатия; полагая $\varepsilon_1 = \varepsilon_2$, $\varepsilon_2 = J^{2/3}$, находим μ_0 , K_0 , r'. На остальных итерациях J, ε_2 берутся из решения задач равновесия, по формулам (3.2), (3.3) вычисляются μ_0 , K_0 , r'(на второй итерации используем те же J, что и на первой итерации; берем только новые значения ε_2).

На каждой итерации в слоях B, C, D и во внешнем ядре модули μ_0, K_0 аппроксимируются как функции r' проходящими через узловые значения интерполяционными полиномами, плотность $\hat{\rho}$ и заключенная в шаре радиуса \hat{r} масса M — интерполяционными функциями второго порядка. Уточним, что в слое B для подавления волнообразного изменения μ_0, K_0 на полиномы дополнительно налагаются условия равенства заданным значениям производных $\mu_{0,r'}, K_{0,r'}$ в граничной точке \hat{r}_B , а для $\hat{\rho}$ берется интерполяционная функция первого порядка. Во внутреннем ядре для аппроксимации $\mu_0, K_0, \hat{\rho}, M$ используются кубические полиномы с равными нулю производными по r' первого и второго порядков в центре r' = 0. Полиномы третьей степени берутся для обеспечения при вычислениях по заданному алгоритму требуемой сферической симметричностью задачи малости производных от искомых функций по r' при приближении к центру. В результате находятся μ_0 , K_0 , $\hat{\rho}$, M как функции r' с разрывами самих этих функций или их производных в граничных точках между слоями.

В процессе итераций разности итераций μ_0 , K_0 , r' в узлах монотонно уменьшаются. На последней выполненной итерации относительные величины разностей между значениями μ , K, \hat{r}' , приведенными в табл. 1 и вычисленными по формулам $\mu = \mu_0 J^{-1}$, $K = (1/2)K_0(7J^{-7/3} - 5J^{-5/3}), \hat{r}' = r'(\varepsilon_2/\varepsilon_{2(A)})^{1/2}$, возрастая при приближении к центру r' = 0, во всей области не превышают $1,25 \cdot 10^{-4}$; $4 \cdot 10^{-4}$; $3 \cdot 10^{-5}$ соответственно.

4. Решение задачи. Для сферически симметричных состояний уравнение равновесия представляется в виде

$$\hat{\sigma}_{1,\hat{r}} + \frac{2}{\hat{r}}\left(\hat{\sigma}_1 - \hat{\sigma}_2\right) + \hat{q} = 0 \qquad \left(\hat{q} = -\frac{\gamma M \hat{\rho}}{\hat{r}^2}, \quad M = 4\pi \int_0^{\hat{r}} \hat{\rho} \hat{r}^2 \, d\hat{r}\right). \tag{4.1}$$

Здесь \hat{q} — действующая на единицу объема деформированного материала, направленная к центру Земли, сила гравитационного притяжения со стороны всего Земного шара; $\gamma = 6.67 \cdot 10^{-8} \text{ см}^3/(\text{r} \cdot \text{c}^2)$ — гравитационная постоянная.

Проинтегрируем уравнение (4.1) по слою A до поверхности $\hat{r} = \hat{R}$, где предполагается $\hat{\sigma}_1 = 0$. Учитывая относительную малость толщины слоя и опуская интеграл от второго слагаемого в (4.1), найдем величину

$$\hat{\sigma}_1 = P_1 = -\int_{\hat{R}_1}^{\hat{R}} \frac{\gamma M \hat{\rho}}{\hat{r}^2} d\hat{r} \qquad \text{при} \quad \hat{r} = \hat{R}_1,$$
(4.2)

которую примем как действующее со стороны слоя A на нижележащую область Земли радиальное напряжение. Для его оценки берем среднее значение плотности в слое A: $\hat{\rho} = 2,84 \text{ г/см}^3$, тогда $P_1 = -0,8409 \cdot 10^3 \text{ MIIa}$.

Интегрируя уравнение (4.1) от \hat{r} до \hat{R}_1 , с учетом (4.2) получаем

$$\hat{\sigma}_1 = P + \int_{\hat{r}}^{R_1} \frac{2}{\hat{r}} \left(\hat{\sigma}_1 - \hat{\sigma}_2 \right) d\hat{r}, \qquad P = -\int_{\hat{r}}^{\hat{R}} \frac{\gamma M \hat{\rho}}{\hat{r}^2} d\hat{r} \qquad (0 \le \hat{r} \le \hat{R}_1), \tag{4.3}$$

где P — давление чисто гидростатического сжатия (определяемое здесь с противоположным, чем в [1], знаком: P < 0). Напряженное состояние не является близким к чисто гидростатическому сжатию. Окружные напряжения на поверхности $\hat{r} = \hat{R}_1$, как показывает решение, в 19 раз превышают радиальное напряжение; почти во всей области $\hat{\sigma}_2 < \hat{\sigma}_1 < 0$ интеграл в правой части первого равенства в (4.3) положителен. Поэтому P дает лишь оценку сверху для радиальных напряжений $P \leq \hat{\sigma}_1 < 0$.

Для решения задач равновесия удобно перейти в (4.1) к другой независимой переменной — исходной радиальной координате r ($0 \leq r \leq R_1$):

$$\hat{\sigma}_{1,r} + \frac{2\sqrt{\varepsilon_1}}{r\sqrt{\varepsilon_2}} \left(\hat{\sigma}_1 - \hat{\sigma}_2\right) - \frac{\gamma M \hat{\rho}\sqrt{\varepsilon_1}}{\varepsilon_2 r^2} = 0 \qquad \left(M = 4\pi \int_0^r \hat{\rho} \hat{r}^2 \, d\hat{r}\right). \tag{4.4}$$

 \hat{r}

Здесь $\hat{\rho}$, M интерполяцией их известных значений в узлах представляются функциями r. Удовлетворяются условия непрерывности $\hat{\sigma}_1$, \hat{r} в граничных точках между слоями и равенство $\hat{\sigma}_1 = P_1$ при $r = R_1$; в центре $\hat{r} = r = 0$. Если в (4.4) положить $\hat{\rho} = \rho J^{-1}$ и считать плотность в недеформированном состоянии ρ известной, то придем к уравнению

$$\hat{r}^2 \hat{\sigma}_{1,r} + (\hat{r}^2)_{,r} (\hat{\sigma}_1 - \hat{\sigma}_2) - \frac{\gamma M \rho r^2}{\hat{r}^2} = 0 \qquad \left(M = 4\pi \int_0^r \rho r^2 \, dr \right), \tag{4.5}$$

которое, в отличие от уравнений (4.1), (4.4), с учетом (2.2) следует из условия стационарности функционала

$$\Pi = \int_{0}^{R_1} \left(\Psi - \frac{\gamma M \rho}{\hat{r}} \right) r^2 dr - \frac{1}{3} P_1 \hat{R}_1^3.$$

В [7] задача о гравитационном сжатии шара при постоянных ρ , μ_0 , K_0 , в отличие от данной работы, решается с использованием уравнения (4.5).

Обратимся к вычислению ε_1 , ε_2 на поверхности $\hat{r} = \hat{R}_1$. Подставим в равенство $\hat{\sigma}_1 = P_1$ выражение для радиального напряжения, следующее из (2.1)–(2.3) при $\varepsilon_2 = \varepsilon_3$, получим уравнение

$$\frac{9\mu_0 f}{4J} + \frac{3}{2} K_0 (J^{-5/3} - J^{-7/3}) = P_1 \qquad \left(f = \frac{16\xi(\xi^2 - 1)}{(3+\xi)^3}, \quad \xi = \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + \varepsilon_1}\right),\tag{4.6}$$

имеющее при $\mu_0 > 0, K_0 > 0, P_1 < 0, -1 < \xi < 0, f > 0, 0 < J < 1$ единственный вещественный корень J. Определив J, найдем

$$\varepsilon_1 = J^{2/3} \left(\frac{1-\xi}{1+\xi}\right)^{2/3}, \qquad \varepsilon_2 = J^{2/3} \left(\frac{1+\xi}{1-\xi}\right)^{1/3}.$$
 (4.7)

Диаграммы зависимости p, $\hat{\sigma}_2$ от ξ переходят в падающие при $\xi = \xi_* = -(1 + 2\sqrt{7})/9 \approx -0,699$ (в этой точке f принимает максимальное значение). Ветвление решений уравнений (2.2) исключается, если $\xi > \xi_{**} = 3 - 2\sqrt{3} \approx -0,464$ [7], что в рассматриваемой задаче выполняется.

Из задания на граничной поверхности величин μ , K вытекают ограничения на параметр ξ . Подставив в (4.6) выражения для μ_0 , K_0 из (3.2), придем к уравнению

$$\frac{9\mu f}{4} + \frac{3K(J^{2/3} - 1)}{7 - 5J^{2/3}} = P_1,$$

которое удовлетворяется при 0 < J < 1, только если $f < 4(3K + 7P_1)/(63\mu)$. Отсюда следует $\xi > -0.363$, что в рассматриваемой задаче выполняется.

Если принять, что модуль сдвига при деформировании не меняется (т. е. $\mu = \mu_0$), то это ведет к нарушению краевых условий на поверхности $\hat{r} = \hat{R}_1$. Действительно, тогда должно было бы выполняться уравнение

$$\frac{9\mu f}{4J} + \frac{3K(J^{2/3} - 1)}{7 - 5J^{2/3}} = P_1,$$

имеющее в интервале 0 < J < 1два корня вместо одного при $f < 0,0956, \, \xi > -0,1424$ и не имеющее корней, когда $\xi < -0,1424.$

Для решения задач равновесия применяем следующий алгоритм. Подставляем в (4.4) получаемые из (2.1)–(2.3) при $\varepsilon_2 = \varepsilon_3$ выражения

$$\hat{\sigma}_1 = \frac{18\mu_0\sqrt{\varepsilon_1}(\varepsilon_1 - \varepsilon_2)}{(\varepsilon_1 + 2\varepsilon_2)^3} + \frac{3}{2}K_0(J^{-5/3} - J^{-7/3}), \qquad \hat{\sigma}_1 - \hat{\sigma}_2 = \frac{27\mu_0\sqrt{\varepsilon_1}(\varepsilon_1 - \varepsilon_2)}{(\varepsilon_1 + 2\varepsilon_2)^3}.$$

Присоединяя к (4.4) равенство $\varepsilon_{2,r} = (2/r)(\sqrt{\varepsilon_1\varepsilon_2} - \varepsilon_2)$, приходим к системе дифференциальных уравнений первого порядка относительно $\varepsilon_1, \varepsilon_2$

$$\varepsilon_{1,r'} + \frac{1}{f_1} \left(f_2 + \frac{f_3}{r'} - \frac{\alpha f_4}{r'^2} \right) = 0, \qquad \varepsilon_{2,r'} - \frac{f_5}{r'} = 0 \qquad (0 \leqslant r' \leqslant 1), \tag{4.8}$$

в которой

$$f_{1} = \frac{9\mu_{0}(11\varepsilon_{1}\varepsilon_{2} - 3\varepsilon_{1}^{2} - 2\varepsilon_{2}^{2})}{\sqrt{\varepsilon_{1}}(\varepsilon_{1} + 2\varepsilon_{2})^{4}} + \frac{K_{0}}{4\varepsilon_{1}}(7J^{-7/3} - 5J^{-5/3}), \qquad J = \varepsilon_{2}\sqrt{\varepsilon_{1}},$$

$$f_{2} = \frac{18\sqrt{\varepsilon_{1}}(\varepsilon_{1} - \varepsilon_{2})}{(\varepsilon_{1} + 2\varepsilon_{2})^{3}}\mu_{0,r'} + \frac{3}{2}(J^{-5/3} - J^{-7/3})K_{0,r'}, \qquad f_{5} = 2(\sqrt{\varepsilon_{1}\varepsilon_{2}} - \varepsilon_{2}),$$

$$f_{3} = \left[\frac{18\mu_{0}\sqrt{\varepsilon_{1}}(4\varepsilon_{2} - 7\varepsilon_{1})}{(\varepsilon_{1} + 2\varepsilon_{2})^{4}} + \frac{K_{0}}{2\varepsilon_{2}}(7J^{-7/3} - 5J^{-5/3})\right]f_{5} + \frac{54\mu_{0}\varepsilon_{1}(\varepsilon_{1} - \varepsilon_{2})}{\sqrt{\varepsilon_{2}}(\varepsilon_{1} + 2\varepsilon_{2})^{3}},$$

$$f_{4} = \frac{M\hat{\rho}\sqrt{\varepsilon_{1}}}{\varepsilon_{2}}, \qquad M = 3\int_{0}^{\hat{r}'}\hat{\rho}\hat{r}'^{2}d\hat{r}', \qquad \alpha = \alpha_{1}\varepsilon_{2(A)}^{1/2}, \qquad \alpha_{1} = \frac{4\pi G}{3\mu_{*}}\rho_{*}^{2}\hat{R}_{1}^{2};$$

 α_1, α — безразмерные постоянные, причем в выражение α включается значение искомой функции $\varepsilon_2 = \varepsilon_{2(A)}$ при r' = 1, которое должно определяться из решения задачи; произведен переход к безразмерным величинам: $\hat{\rho}, \rho$ даются отнесенными к $\rho_*; \mu_0, K_0$ — к $\mu_*; M$ к $(4/3)\pi \hat{R}_1^3 \rho_*$ ($\rho_* = 1 \ r/cm^3, \mu_* = 10^5 \ M\Pi a$). Для представления $\hat{\rho}, M$ функциями r' интерполируются известные значения этих величин в узлах с определением координат узлов r'по \hat{r}' по имеющейся на итерации зависимости $r'(\hat{r}')$. Удовлетворяются краевые условия $\hat{\sigma}_1 = P_1$ при r' = 1; $\varepsilon_1 = \varepsilon_2$ при r' = 0 и условия непрерывности $\hat{\sigma}_1, \varepsilon_2$ в граничных точках между слоями.

Решение системы (4.8), удовлетворяющее заданным краевым условиям, находится методом Рунге — Кутты как решение задачи с начальными условиями, получаемыми в точке r' = 1 при задании значения параметра ξ . При каждом ξ по формулам (4.6), (4.7) определяются $J, \varepsilon_1, \varepsilon_2 = \varepsilon_{2(A)}$ при r' = 1 и значения констант α_1, α . Методом Рунге — Кутты вычисления ведутся, начиная от точки r' = 1 в направлении к точке r' = 0. В каждом слое, вычислив $\varepsilon_1, \varepsilon_2$, из условия непрерывности $\hat{\sigma}_1, \varepsilon_2$ в граничной точке с нижележащим слоем находятся значения ε_1 , ε_2 в этой точке для нижележащего слоя и затем продолжаются вычисления в этом слое. Для исключения неопределенности 0:0 в центре r'=0 вычисление во внутреннем ядре ведется только до точки $r'_{\delta} = 0,0005$. Итерациями находится ξ , обеспечивающее вычисление $\varepsilon_1, \varepsilon_2$ до точки r'_{δ} , в которой с достаточной точностью выполняется равенство $\varepsilon_1 = \varepsilon_2$. Следует сказать, что значение ξ должно определяться с высокой точностью (15–18 цифр после запятой для достижения малости разности ($\varepsilon_1 - \varepsilon_2$) порядка 10^{-6} в точке r'_{δ}). Погрешности решений уравнений (4.8) (значения левых частей этих уравнений) представляются осциллирующими функциями r' с достаточно малыми амплитудами осцилляций, меньшими на средних участках слоев и возрастающими при приближении к граничным точкам между слоями. Интегралы от левых частей уравнений (4.8) в каждом слое B, C, D, E, G, вычисляемые от переменной точки r' в слое до верхней границы слоя, имеют порядок не ниже 10^{-6} .

Таким образом, правильность найденных изложенным алгоритмом решений задач равновесия подтверждается удовлетворением с достаточно малыми погрешностями как самих уравнений (4.8), так и получаемых из них интегрированием по r' интегральных равенств.

Отметим, что численное решение во внешнем ядре, найденное при заданном малом модуле сдвига μ , незначительно отличается от аналитического при $\mu = 0$, определяемого по формулам

$$p = \hat{\sigma}_1 = \hat{\sigma}_2 = (\hat{\sigma}_1 - P)_{\hat{r} = \hat{r}_D} + P, \qquad J = \left(\frac{3K + 7p}{3K + 5p}\right)^{3/2},$$
$$\varepsilon_2 = \hat{r}^2 \left\{ \int_{\hat{r}_D}^{\hat{r}} 3\hat{r}^2 J^{-1} d\hat{r} + \left[(\hat{r}^{-2}\varepsilon_2)_{\hat{r} = \hat{r}_D} \right]^{-3/2} \right\}^{-2/3}, \qquad \varepsilon_1 = \left(\frac{J}{\varepsilon_2}\right)^2,$$

где берутся значения $P, \hat{\sigma}_1, \varepsilon_2$, вычисленные в мантии на границе с внешним ядром $\hat{r} = \hat{r}_D$. Этому решению соответствуют во внешнем ядре значения плотности $\rho = J\hat{\rho}$, модуля $K_0 = 2K(7J^{-7/3} - 5J^{-5/3})^{-1}$ и радиальной координаты $r' = \hat{r}'(\varepsilon_{2(A)}/\varepsilon_2)^{1/2}$, близкие к данным табл. 1.

В табл. 1 приведены значения плотности ρ , модулей сдвига и объемного сжатия μ_0 , K_0 и коэффициента Пуассона ν_0 недеформированного материала. Рассмотрим распределения этих величин на отрезке $0 < \hat{r}' < 1$. Модуль объемного сжатия K_0 с глубиной в основном возрастает. Характерны малое скачкообразное уменьшение K_0 при переходе из внешнего во внутреннее ядро и наличие слабого минимума во внешнем ядре вблизи границы с мантией. При переходе из мантии во внешнее ядро скачкообразное возрастание у K_0 существенно больше, чем у K.

Распределения μ_0 , ν_0 и μ , ν аналогичны. Коэффициент Пуассона ν_0 в слоях B и C принимает максимальные значения в пределе при приближении к граничной точке между этими слоями, в которой ν_0 скачкообразно уменьшается при переходе из B в C; в слое D значение ν_0 на большей части слоя изменяется слабо, возрастая при подходе к слою C и уменьшаясь при приближении к внешнему ядру. Во внешнем ядре коэффициент Пуассона ν_0 (так же как и ν в сжатом состоянии Земли) близок к 0,5. Во всей области определения решения $0 < \nu_0 < 0,5$.

Плотность материала в разгруженном состоянии ρ с глубиной в основном возрастает. Она имеет несколько большее, чем у $\hat{\rho}$, скачкообразное возрастание на границе мантии и ядра. Характерны слабые минимумы ρ в слое D, во внешнем ядре, центре $\hat{r}' = 0$ и малое скачкообразное уменьшение при переходе из внешнего во внутреннее ядро.

На рис. 1–5 диаграммы, представляющие зависимости функций от \hat{r}' , претерпевают разрывы в граничных точках между слоями *B* и *C*, мантией и внешним ядром, внешним и внутренним ядрами при скачкообразном изменении представляемых функций в этих граничных точках. Значения $\hat{\sigma}_1$, $\hat{\sigma}_2$, *P*, Ψ , Ψ_1 , Ψ_2 на рисунках даются отнесенными к μ_* .

На рис. 1 показаны зависимости напряжений $\hat{\sigma}_1$, $\hat{\sigma}_2 = \hat{\sigma}_3$ и давления чисто гидростатического сжатия P от \hat{r}' . Радиальное напряжение $\hat{\sigma}_1$ (сплошная кривая) изменяется непрерывно и с глубиной возрастает. Окружные напряжения $\hat{\sigma}_2$ (штриховая кривая) внутри слоев с глубиной возрастают; при переходе из слоя B в слой C они скачкообразно возрастают, а при переходе из мантии во внешнее ядро и из внешнего во внутреннее ядро скачкообразно уменьшаются. В мантии $\hat{\sigma}_1$ и $\hat{\sigma}_2$ существенно разные по величине; на граничной поверхности $\hat{r}' = 1$ окружные напряжения почти в 19 раз больше радиального напряжения. С возрастанием глубины разность напряжений ($\hat{\sigma}_1 - \hat{\sigma}_2$), ненамного уменьшаясь в слое B, скачкообразно возрастает при переходе в слой C и, продолжая возрастать, достигает максимума в слое D, а затем в мантии уменьшается. На границе с внешним ядром $\hat{\sigma}_2$ в мантии все еще примерно на 22 % больше $\hat{\sigma}_1$. В ядре реализуется напряженное состояние с почти одинаковыми напряжениями $\hat{\sigma}_1 \approx \hat{\sigma}_2 \approx p$. Давление чисто гидростатического сжатия P (на рис. 1 показано точками) в мантии с глубиной возрас-

Рис. 1

тает и приближается по величине к $\hat{\sigma}_2$. В ядре напряжения меньше P, причем в центре примерно на 10 %.

Переменность μ_0, K_0, ρ обусловливает сложный характер распределения деформаций вдоль радиуса Земли, развивающихся в случае осуществления адиабатического или изотермического процесса снятия напряжений. На рис. 2 сплошной и штриховой кривыми показаны квадраты главных кратностей удлинений ε_1 , ε_2 как функции \hat{r}' (при рассмотрении деформированного состояния следует иметь в виду, что в радиальных и окружных волокнах (i = 1, 2) в случае деформации удлинения $\varepsilon_i > 1$ при снятии напряжений развивается укорочение, а в случае деформации укорочения $\varepsilon_i < 1$ происходит удлинение; при объемной деформации сжатия J < 1 в процессе снятия напряжений происходит увеличение объема материала, причем тем большее, чем сильнее сжатие). В окружном направлении имеем деформацию укорочения $\varepsilon_2 < 1$ (штриховая кривая), с возрастанием глубины ε_2 изменяется непрерывно и уменьшается. Отметим значительную деформацию укорочения окружных волокон $\varepsilon_2 = 0.8579$ на поверхности $\hat{r}' = 1$; в центре $\varepsilon_1 = \varepsilon_2 \approx 0.7648$.

В радиальном направлении в мантии до глубины 506 км (отсчитываемой от поверхности $\hat{r} = \hat{R}$) имеем деформацию удлинения $\varepsilon_1 > 1$ (сплошная кривая на рис. 2), причем в слое B значение ε_1 и удлинение радиальных волокон с глубиной возрастают от $\varepsilon_1 = 1,0431$ при $\hat{r}' = 1$ до максимума $\varepsilon_1 = 1,0473$ на глубине 71,7 км, после чего ε_1 в мантии уменьшается. При переходе из мантии во внешнее ядро значение ε_1 скачкообразно возрастает,

радиальная деформация во внешнем ядре, несмотря на почти равные напряжения $\hat{\sigma}_1 \approx \hat{\sigma}_2$, существенно меньше окружной. С возрастанием глубины ε_1 уменьшается, сближаясь с ε_2 . Имеется минимум ε_1 около границы с внутренним ядром. При переходе во внутреннее ядро ε_1 скачкообразно уменьшается.

Во внутреннем ядре при близости значений $\varepsilon_1 \approx \varepsilon_2$ можно отметить непростой характер изменения величины ε_1 , которая, практически совпадая с ε_2 на границе с внешним ядром, с удалением от границы возрастает, достигает максимума и после этого уменьшается, приближаясь к ε_2 . Значение ε_2 во внутреннем ядре монотонно уменьшается.

Во всем шаре происходит объемная деформация сжатия J < 1 (рис. 3), однако сжатие минимально не на поверхности $\hat{r}' = 1$, где J = 0.8762, а на глубине 56,8 км при J = 0.8771. Характерно скачкообразное уменьшение J при переходе из слоя B в слой C и из внешнего во внутреннее ядро и скачкообразное возрастание J при переходе из мантии во внешнее ядро. Имеются минимум J во внешнем ядре вблизи границы с внутренним ядром и локальный максимум J во внутреннем ядре. Максимальное сжатие достигается в центре $\hat{r}' = 0$, где $J \approx 0.6689$.

Величина Υ характеризует интенсивность сдвиговых деформаций. В слое B она возрастает с глубиной от $\Upsilon = 0,003\,004$ на поверхности $\hat{r}' = 1$ до максимума во всем шаре $\Upsilon = 0,003\,18$ на глубине 81,6 км, после чего Υ в мантии уменьшается. Значение Υ скачкообразно уменьшается при переходе из слоя B в слой C и скачкообразно возрастает при переходе из слоя B в слой C и скачкообразно возрастает при переходе из слоя B в слой C и скачкообразно возрастает при переходе из мантии во внешнее ядро. Во внешнем ядре Υ с глубиной уменьшается, достигает минимума вблизи границы с внутренним ядром, ненамного возрастает и скачкообразно

Рис. 5

уменьшается при переходе во внутреннее ядро. Во внутреннем ядре Y пренебрежимо мало́ при наличии здесь локального максимума.

Плотности энергий деформаций Ψ , Ψ_2 (представлены сплошной и штриховой кривыми на рис. 4) с увеличением глубины возрастают всюду, за исключением точки перехода из мантии во внешнее ядро, где они скачкообразно уменьшаются. Плотность энергии сдвиговых деформаций $\Psi_1 = \Psi - \Psi_2$ (рис. 5) изменяется более сложным образом. Она имеет максимумы: меньший $\Psi_1 = 428$ МПа — на глубине 64,3 км и больший $\Psi_1 = 527$ МПа — на глубине 821,8 км. Характерно существенное скачкообразное уменьшение Ψ_1 при переходе из мантии во внешнее ядро. Вклад Ψ_1 в величину Ψ составляет 41 % на границе $\hat{r}' = 1$ и с возрастанием глубины в мантии уменьшается. В ядре, внешнем и внутреннем, Ψ_1 и ее вклад в Ψ пренебрежимо малы.

В табл. 2 приведены значения r', $(r - \hat{r})$, ε_1 , ε_2 , J, $\hat{\sigma}_1$, $\hat{\sigma}_2$, p, P, Ψ_1 , Ψ_2 в узлах, причем для центра берутся приблизительные значения, вычисленные в близкой точке r' = 0,001. Величины разностей $(r - \hat{r})$ представляют приращения координат узлов при переходе из сжатого в разгруженное состояние. Так, радиус граничной поверхности $\hat{R}_1 = 6341$ км возрастает до $R_1 = 6846$ км, т. е. на $R_1 - \hat{R}_1 = 505$ км.

Выводы. 1. Получены при адиабатическом или изотермическом процессе снятия напряжений распределения модулей сдвига и объемного сжатия μ_0 , K_0 и плотности материала ρ в недеформированном состоянии.

2. С учетом теории изотропных гиперупругих тел следует существование в мантии анизотропии сопротивления материала дополнительному деформированию, что влияет на распространение порождаемых сейсмическими возмущениями объемных волн.

3. Установлено существенное отличие напряженного состояния в мантии от состояния чисто гидростатического сжатия. Окружные напряжения на верхней границе области значительно превышают радиальное напряжение, что приводит к сильному сжатию окружных волокон на этой границе. В центре Земли давление примерно на 10 % меньше давления чисто гидростатического сжатия.

4. В мантии до глубины 506 км имеем радиальные деформации не укорочения, а удлинения, которые достигают максимума на глубине 71,7 км. Во внешнем ядре у границы с мантией (хотя напряжения $\hat{\sigma}_1 \approx \hat{\sigma}_2$) радиальная и окружные деформации существенно разные.

5. Во всей области происходит объемная деформация сжатия (J < 1), но сжатие с глубиной начиная от граничной поверхности не возрастает, а уменьшается и достигает минимума на глубине 56,8 км, затем сжатие в мантии возрастает. Максимальная объемная

Узел	r'	$r - \hat{r},$ KM	ε_1	ε_2	J	$\hat{\sigma}_1,\ 10^3$ M Π a	$\hat{\sigma}_{2}, \ 10^{3} \ \mathrm{M\Pi a}$	Р, 10 ³ МПа	$\Psi_1,\ 10^3$ MIIa	$Ψ_2, 10^3$ ΜΠα
1	1	505	1,0431	0,8579	0,8762	-0,841	-15,94	-0,841	0,4197	0,6045
2	0,990	$506,\! 6$	1,0461	0,8561	0,8756	-2,82	$-17,\!67$	-3,15	0,4229	0,7079
3	0,9757	$508,\! 6$	1,0359	0,8535	0,8687	-5,69	-20,17	-6,494	0,3953	0,8955
4	0,9613	510,2	1,0292	0,851	0,8633	-8,61	-22,94	-9,887	0,382	1,098
5	$0,9469 \\ 0,9469$	511,5 511,5	$1,0245 \\ 1,015$	$0,8484 \\ 0,8484$	$0,8577 \\ 0,8547$	$-11,57 \\ -11,57$	$-25,85 \\ -27,84$	$-13,32 \\ -13,32$	$0,3758 \\ 0,4061$	$1,311 \\ 1,429$
6	0,9104	511,3	0,9859	0,8427	0,8367	-19,82	-43,46	-23,31	0,5062	2,502
7	0,8585	506,4	0,9594	0,8351	0,818	-31,9	-59,06	-38,69	0,5035	3,846
8	0,7068	467,5	0,9001	0,8161	0,7742	-69,11	-94,12	-88,22	0,3114	7,812
9	0,5981	423,4	0,8704	0,8039	0,75	-97,46	-121	-125,1	0,2309	11,11
10	$0,5684 \\ 0,5684$	409,3 409,3	$0,8621 \\ 0,9617$	$0,8007 \\ 0,8007$	$0,7434 \\ 0,7852$	$-106,1 \\ -106,1$	$-129,4 \\ -107,1$	$-136,3 \\ -136,3$	$0,2107 \\ 2,324 \cdot 10^{-2}$	$12,16 \\ 9,363$
11	0,3942	327,5	0,8028	0,772	0,6917	-218,7	-218,9	-247,9	$8,9 \cdot 10^{-4}$	24,73
12	$0,202 \\ 0,202$	171,8 171,8	$0,7707 \\ 0,767$	$0,767 \\ 0,767$	$0,6733 \\ 0,6717$	$-300,1 \\ -300,1$	$-300,2 \\ -300,1$	-334,8 -334,8	$\begin{array}{c} 1,3\cdot 10^{-5} \\ 1,4\cdot 10^{-9} \end{array}$	35,13 35,23
13	0	0	0,7648	0,7648	0,6689	-333,5	-333,5	-369,1	0	39,35

Напряженное и деформированное состояние

деформация сжатия осуществляется в центре Земли.

6. Плотность энергии сдвиговых деформаций Ψ_1 вносит существенный вклад в величину полной плотности энергии деформаций Ψ вблизи граничной поверхности. С возрастанием глубины вклад Ψ_1 быстро уменьшается и в ядре становится пренебрежимо малым. Максимумы Ψ_1 достигаются на глубинах 64,3 км (меньший максимум) и 821,8 км (больший).

7. Используемый алгоритм позволяет получить решение задачи равновесия с высокой точностью, что подтверждается удовлетворением с достаточно малыми погрешностями условий задачи.

ЛИТЕРАТУРА

- 1. Буллен К. Е. Плотность Земли. М.: Мир, 1978.
- 2. Jeffreys Sir H. The Earth. Cambridge: Cambridge Univ. Press, 1970.
- Dziewonsky A. M., Gilbert F. Observations of normal modes from 84 recordings of the Alaskan earthquakes of 1964 March 28, II. Further remarks based on new spheroidal overtone data // Geophys. J. Astr. Soc. 1973. V. 35. P. 401–437.
- Jordan T. N., Anderson D. L. Earth structure from free oscillations and travel times // Geophys. J. Astr. Soc. 1974. V. 36. P. 411–459.
- 5. Солодовников В. Н. Определяющие уравнения изотропного гиперупругого тела // ПМТФ. 2000. Т. 41, № 6. С. 178–183.
- Солодовников В. Н. Устойчивость деформирования изотропных гиперупругих тел // ПМТФ. 2001. Т. 42, № 6. С. 142–151.

Таблица 2

- 7. Солодовников В. Н. К теории деформирования изотропных гиперупругих тел // ПМТФ. 2004. Т. 45, № 1. С. 99–106.
- Birch F. Elasticity and constitution of the Earth's interior // Geophys. Res. 1952. V. 57. P. 227–286.
- 9. Murnaghan F. D. Finite deformation of unelastic solid. N. Y.: John Wiley and Sons, 1951.

Поступила в редакцию 3/XI 2003 г., в окончательном варианте — 10/II 2004 г.