УДК 551.324

ИСТЕЧЕНИЕ ТОНКОЙ ПЛЕНКИ НЕЛИНЕЙНО-ВЯЗКОЙ ЖИДКОСТИ ИЗ ЩЕЛИ С ПРОСКАЛЬЗЫВАНИЕМ ОТНОСИТЕЛЬНО ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ

В. А. Чугунов, Л. Д. Эскин, С. Л. Тонконог

Казанский государственный университет, 420008 Казань

Решается задача об истечении тонкой пленки неньютоновской жидкости со степенным реологическим законом из щелевидного отверстия с учетом ее проскальзывания относительно подстилающей поверхности. Методом группового анализа, затрагивающего преобразования входящих в задачу параметров, получена асимптотическая формула для профиля пленки и выведен закон движения ее края при малом проскальзывании.

В работе [1] решена задача об истечении нелинейно-вязкой жидкости из щели при условии ее прилипания к ложу. Однако в приложениях возникают ситуации, когда необходимо учитывать проскальзывание растекающейся пленки относительно подстилающей поверхности. В [2] с учетом проскальзывания рассмотрена задача о свободном растекании по горизонтальной плоскости капли неньютоновской жидкости и построена асимптотика ее решения при $\varepsilon \ll 1$ (малое проскальзывание). В основе работы [2] лежит использование инвариантности решения задачи о растекании капли относительно некоторой группы растяжений, преобразующей не только независимые переменные и неизвестную функцию, но и параметр ε . Эта идея используется и в настоящей работе при изучении динамики поверхности тонкой пленки нелинейно-вязкой жидкости, истекающей из неподвижной щели и проскальзывающей относительно горизонтальной цели

В соответствии с работами [1, 3–5] математическая постановка исследуемой задачи в безразмерных переменных может быть записана в виде

$$\frac{\partial l}{\partial t} = \frac{\partial q^{\varepsilon}}{\partial x}, \qquad t > 0, \qquad 0 < x < x_0(t); \tag{1}$$

$$q^{\varepsilon} = \operatorname{sign}\left(\frac{\partial l}{\partial x}\right) [l^2 |\sigma|^n + \varepsilon l |\sigma|^m], \qquad \sigma = ll_x, \qquad n > m;$$
(2)

$$x_0(0) = 0,$$
 $l(0,t) = 1,$ $t > 0,$ $l(x_0(t),t) = 0,$ $q^{\varepsilon}(x_0(t),t) = 0.$ (3)

Здесь l — безразмерная толщина пленки; точка фронта $x_0(t)$ неизвестна и подлежит определению в процессе решения задачи; $\varepsilon \ll 1$. Уравнение (1) получено с учетом известной модели проскальзывания Кэмба [5]. Так как нас интересует монотонно убывающее решение системы (1)–(3), то выражение (2) для потока может быть записано в следующем виде:

$$q^{\varepsilon} = -l^2(-\sigma)^n - \varepsilon l(-\sigma)^m.$$
(4)

Отметим, что все обозначения взяты из работы [2] и при $\varepsilon = 0$ задача (1)–(3) переходит в решенную в [1].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 97-01-00346).

Инфинитезимальный оператор, соответствующий группе преобразований, допускаемой системой (1)–(4) и преобразующей параметр ε , легко находится в виде

$$Y = (n+1)t\frac{\partial}{\partial t} + x\frac{\partial}{\partial x} + (m-n)\varepsilon\frac{\partial}{\partial\varepsilon}.$$

Инвариантами этой группы являются

$$I_1 = \xi = xt^{-\alpha}, \qquad I_2 = \eta = \varepsilon t^{\alpha(n-m)}, \qquad I_3 = l,$$

где $\alpha = 1/(n+1)$. Следовательно, решение задачи (1)–(3) следует искать в виде

$$l = \psi(z, \eta), \qquad x_0(t) = \xi_0 t^{\alpha}, \qquad \xi_0 = g(\eta), \qquad z = \xi/g(\eta).$$
 (5)

В переменных ψ , z, η система (1)–(3) запишется следующим образом:

$$\alpha g^{n+1} [z\psi_z - (n-m)\eta(\psi_\eta - zg_\eta g^{-1}\psi_z)] = q_z,$$

$$z = 0, \quad \psi = 1; \quad z = 1, \quad \psi = 0, \quad q = 0,$$
(6)

где $q = \psi^{n+2}(-\psi_z)^n + \eta \psi^{m+1}(-\psi_z)^m g^{n-m}$, а нижние индексы z, η обозначают дифференцирование по этим переменным. Решение системы (6) ищем с точностью $O(\eta^2)$ (отметим, что η и ε малы на конечном интервале изменения t, поскольку n > m):

$$\psi(z,\eta) = V(z) + \eta U(z) + O(\eta^2), \qquad g(\eta) = a + b\eta + O(\eta^2).$$
 (7)

Здесь V(z), U(z) — неизвестные функции; a, b — неизвестные постоянные, определяющие с точностью до $O(\varepsilon^2)$ искомые функции l, x_0 .

Используя определение функции q, легко находим ее разложение по степеням η : $q = q_0 + q_1 \eta + O(\eta^2)$, где $q_0 = V^{n+2}(-V_z)^n$, $q_1 = -nV^{n+2}(-V_z)^{n-1}U_z + (n+2)V^{n+1}(-V_z)^nU + a^{n-m}V^{m+1}(-V_z)^m$.

Из (6) получаем задачи, определяющие V, U:

$$\alpha a^{n+1} z V_z = [V^{n+2} (-V_z)^n]_z, \qquad z = 0, \quad V = 1; \qquad z = 1, \quad V = 0, \quad q_0 = 0; \tag{8}$$

$$\begin{array}{l} \alpha a \ \left\{ b(2n+1-m)zv_z + a[zO_z - (n-m)O] \right\} = q_{1z}, \\ z = 0, \quad U = 0; \qquad z = 1, \quad U = 0, \quad q_1 = 0. \end{array}$$

$$\tag{9}$$

$$V = a^{\gamma}\psi_0(z), \qquad \gamma = (n+1)/(2n+1).$$
 (10)

Тогда для ψ_0 имеем задачу Коши

$$\alpha z \psi_{0z} = [\psi_0^{n+2} (-\psi_{0z})^n]_z, \quad z = 1, \quad \psi_0 = 0, \quad \psi_0^{n+2} (-\psi_{0z})^n = 0, \tag{11}$$

не содержащую параметра *a*, что существенно для дальнейших построений. Решение задачи (11) подробно изложено в [1]. Оно имеет вид

$$\psi_0 = C_n (1-z)^{\beta} [1 + d_1 (1-z) + d_2 (1-z)^2 + \ldots],$$
(12)

где $\beta = n/(2n+1)$, $C_n = \beta^{-\beta} \alpha^{\gamma-\beta}$, а коэффициенты d_1, d_2 в дальнейшем не используются. С учетом (10) и первого граничного условия системы (8) нетрудно найти параметр a:

$$a = [\psi_0(0)]^{-1/\gamma}.$$
(13)

Заметим, что уравнение (11) инвариантно относительно группы подобия с оператором $t \partial/\partial t + \alpha x \partial/\partial x$, а следовательно, допускает понижение порядка заменой

$$\psi_0 = z^{\gamma} \chi(z), \qquad \nu = z \chi'(z). \tag{14}$$

Рис. 1

Из (14) следует

$$\psi_{0z}' = z^{-\beta} \mu(z), \tag{15}$$

где $\mu = \nu + \gamma \chi$. С учетом (14), (15) уравнение (11) переходит в обыкновенное дифференциальное уравнение первого порядка

$$\frac{d\nu}{d\chi} = \frac{P(\chi,\nu)}{Q(\chi,\nu)}.$$
(16)

Здесь $P(\chi,\nu) = \alpha + (n+2)\nu\chi^{n+1}(-\mu)^{n-1} - \beta\chi^{n+2}(-\mu)^{n-2}[(3n+2)\mu/n + (n+1)\nu];$ $Q(\chi,\nu) = n\nu\chi^{n+2}(-\mu)^{n-2}.$

В силу соотношений (14), (15) для построения неотрицательных монотонно убывающих решений уравнения (11) необходимо исследовать поведение решений уравнения (16) в области $\chi \ge 0$, $\mu \le 0$ (рис. 1). В этой области имеется два семейства L_1 и L_2 решений уравнения (16) (штриховые кривые) и разделяющее их решение L (сплошная кривая). Для кривых семейства L_2 и кривой L прямая $\chi = 0$ является вертикальной асимптотой, причем для кривых семейства L_2 при $\chi \to 0$ справедлива асимптотика $\nu \sim K\chi^{-(n+2)/n}$ (константа K < 0 для различных кривых имеет различные значения), а для кривой Lпри $\chi \to 0$ получаем асимптотику $\nu_L \sim -\alpha^{1/n}\chi^{-(n+1)/n}$. При $\chi \to \infty$ все решения имеют двучленную асимптотику $\nu \sim -\gamma\chi + M\chi^{-n\alpha}$ (константа M < 0 для различных кривых имеет различные значения). Таким образом, для всех указанных кривых прямая $\mu = 0$ является наклонной асимптотой.

Каждое решение уравнения (16), принадлежащее области $\chi \ge 0$, $\mu \le 0$, в силу соотношений (14), (15) порождает однопараметрическое семейство неотрицательных монотонно убывающих решений уравнения (11). Однако с помощью полученных выше асимптотик нетрудно убедиться, что единственное определенное на отрезке $0 \le z \le 1$ неотрицательное монотонно убывающее решение ψ_0 уравнения (11), удовлетворяющее обоим условиям (11) при z = 1, порождается решением $\nu = \nu_L(\chi)$ уравнения (16). Это решение строится следующим образом. Из второго соотношения (14) получаем

$$\ln z = \int_{0}^{\chi} \frac{d\chi}{\nu_L(\chi)}, \qquad \chi \ge 0.$$
(17)

Уравнение (17) неявно определяет функцию $\chi(z)$ на $0 \leq z \leq 1$ (напомним, что $\nu_L(\chi) < 0$ на $0 < \chi < \infty$), причем $\chi(0) = \infty$, $\chi(1) = 0$. В результате искомое решение определяется с помощью первого соотношения (14), при этом в точке z = 0 оно строго

больше нуля и конечно. В этом нетрудно убедиться, используя асимптотику $\nu_L(\chi)$ при $\chi \to \infty$, откуда следуют положительность и конечность константы *a*, определяемой формулой (13).

Соотношения (10), (12) и (13) с учетом равенств (7) определяют первые члены разложений неизвестных функций ψ и g по степеням η .

Для построения U выпишем разложения функции V и коэффициентов уравнения задачи (9) по степеням бинома 1 - z, ограничиваясь главными членами этих разложений при $z \to 1 - 0$:

$$V = C_n a^{\gamma} (1-z)^{\beta} + o[(1-z)^{\beta}], \qquad V_z = -\beta C_n a^{\gamma} (1-z)^{-\gamma} + o[(1-z)^{-\gamma}]; \tag{18}$$

$$nV^{n+2}(-V_z)^{n-1} = a^{n+1}\gamma^{-1}(1-z) + o(1-z),$$
(19)

$$(n+2)V^{n+1}(-V_z)^n = \alpha(n+2)a^{n+1} + o(1).$$

Функция U удовлетворяет неоднородному уравнению (9), для которого соответствующее однородное уравнение может быть записано в виде

$$\alpha a^{n+1}[zw_z - (n-m)w] = [r(z)w_z + p(z)w]_z, \tag{20}$$

где $r(z) = -nV^{n+2}(-V_z)^{n-1}$, $p(z) = (n+2)V^{n+1}(-V_z)^n$, причем r(z), p(z) разлагаются по степеням 1-z. Старшие члены этих разложений с учетом соотношений (19) равны

$$r(z) \sim -a^{n+1}\gamma^{-1}(1-z), \qquad p(z) \sim \alpha(n+2)a^{n+1}.$$

Поэтому решение уравнения (20) следует искать в виде

$$w = (1 - z)^{\tau} [1 + o(1)], \qquad z \to 1 - 0.$$

Из (20) для τ получаем характеристическое уравнение

$$(n+1)\tau = -(2n+1)\tau^2,$$

из которого находим $\tau_1 = -\gamma$, $\tau_2 = 0$. Следовательно, имеем два независимых частных решения уравнения (20) с асимптотикой

$$w_1 = (1-z)^{-\gamma} [1+o(1)], \qquad w_2 = 1+o(1).$$

Общее решение уравнения (20) будет иметь вид $w = Aw_1 + Bw_2$, где A, B — произвольные постоянные.

Асимптотика функций w_1 , w_2 показывает, что ни одно решение однородного уравнения (20) не удовлетворяет условию U(1) = 0. Таким образом, можно утверждать, что это условие определяет функцию U(z) единственным образом. Найдем асимптотическое поведение U(z) в окрестности точки z = 1. Для этого уравнение (9), определяющее данную функцию, перепишем в следующей форме:

$$\alpha a^{n+1}[zU_z - (n-m)U] = [r(z)U_z + p(z)U]_z + f(z), \qquad (21)$$

где $f(z) = f_1(z) + bf_2(z); f_1(z) = a^{n-m} [V^{m+1}(-V_z)^m]_z; f_2(z) = -a^n \alpha (2n+1-m) z V_z;$ асимптотика функций r(z), p(z) при $z \to 1-0$ определена выше.

Пользуясь разложениями (18), (19), нетрудно получить

$$f_1(z) \sim -C_n^{2m+1} \beta^m (1-\chi) a^{n+\chi} (1-z)^{-\chi}, \qquad f_2(z) \sim C_n \alpha \beta (2n+1-m) a^{n+\gamma} (1-z)^{-\gamma},$$
(22)
$$\chi = (n+m+1)/(2n+1).$$

Решение уравнения (21) следует искать в виде

$$U = U_1(z) + bU_2(z), (23)$$

где U_i — решение уравнения (21) при $f(z) = f_i(z), i = 1, 2$. Если $z \to 1 - 0$, то

$$U_i(z) = C_{i0}(1-z)^{r_i}, \qquad i = 1, 2.$$
 (24)

Подставляя (23), (24) в (21), с учетом (22) найдем

$$r_1 = 1 - \chi, \qquad r_2 = 1 - \gamma,$$

$$C_{10} = -C_n^{2m+1} a^{\chi - 1} \beta^m \alpha^{-1} (2n - m + 1)^{-1}, \qquad C_{20} = C_n a^{\gamma - 1} (2n + 1 - m) / (3n + 2).$$

Очевидно, что при $z \to 1-0$ и m > 0 в асимптотике правой части равенства (23) остается только старший член первого слагаемого, т. е.

$$U \sim C_{10}(1-z)^{1-\chi},$$
 (25)

и, следовательно,

$$q_1 \sim B(1-z)^{1-\chi}, \qquad B = C_n^{2m+1} a^{n+\chi} \beta^m (2n+1-m)^{-1}.$$
 (26)

Так как n > m, то $1 - \chi > 0$, и из (25), (26) следует, что граничные условия в точке z = 1 для функции U выполняются. Остается найти параметр b, воспользовавшись граничным условием в точке z = 0. С учетом того, что U(0) = 0, из (23) находим $b = -U_1(0)/U_2(0)$.

Аналогично [2] легко устанавливается зависимость параметра b от a. Действительно, согласно определению функций f_1 , f_2 и формуле (10) получим

$$f_1(z) = a^{n+\chi} [\psi_0^{m+1}(-\psi_{0z}^m)]_z, \qquad f_2(z) = -\alpha a^{n+\gamma} (2n+1-m) z \psi_{0z}.$$

Поэтому

$$U_1(z) = a^{\chi - 1} U_{11}(z), \qquad U_2(z) = a^{\gamma - 1} U_{21}(z),$$
(27)

где $U_{11}(z), U_{21}(z)$ — решения уравнения (21) при a = 1. Следовательно,

$$b = -a^{\chi - \gamma} U_{11}(0) / U_{21}(0).$$
(28)

В заключение сформулируем алгоритм решения поставленной задачи.

1. Из системы (11), которая легко сводится к задаче Коши, определяется $\psi_0(z)$:

$$\psi_{0z} = -s^{1/n}\psi_0^{-(n+2)/n}, \quad s_z = -\alpha z s^{1/n}\psi_0^{-(n+2)/n}, \quad z = 1, \quad \psi_0 = 0, \quad s = 0.$$

При численном решении задачи Коши начальные условия ставятся в точке, близкой к точке z = 1. Для этого используется асимптотика (18).

2. По формуле (13) находится параметр a.

3. Из решения двух задач Коши

$$U_{z} = [S - p(z)U]/r(z),$$

$$S_{z} = \alpha a^{n+1} \{ zS - U[zp(z) + r(z)(n-m)] \}/r(z) - f_{i}(z), \quad i = 1, 2, z < 1;$$

$$U = 0, \quad S = 0, \quad a = 1, z = 1$$

определяются функции $U_{11}(z), U_{21}(z)$.

- 4. По формуле (28) находится параметр b, а по формулам (27) строятся функции U_1, U_2 .
- 5. По формулам (10), (23) вычисляются значения функций V, U.

6. По найденным значениям V, U, a, b с помощью соотношений (5), (7) с точностью до слагаемых порядка $O(\varepsilon^2)$ определяются неизвестные функции l(x,t) и $x_0(t)$.

На основе предложенного алгоритма проведены расчеты, результаты которых представлены на рис. 2–4 (в расчетах полагалось $\varepsilon = 0,1$). На рис. 2 показана зависимость коэффициента b (см. (28)) от показателя степени в законе Кэмба. Видно, что с ростом m

величина коэффициента *b* уменьшается, следовательно, уменьшается влияние проскальзывания на движение края пленки. Кроме того, при $m \to n$ влияние проскальзывания на закон движения края пленки становится независимым от временного фактора. На рис. 3 представлена зависимость положения координаты края пленки x_0 от времени *t* с учетом (кривая 1) и без учета (кривая 2) проскальзывания (в расчетах полагалось m = 0,5 и n = 3). Как и следовало ожидать, при проскальзывании пленки скорость движения ее края выше, чем без проскальзывания. Таким образом, профиль пленки, проскальзывающей относительно ложа (кривая 1 на рис. 4; t = 1), всегда расположен выше профиля пленки, растекающейся при условии ее прилипания к ложу (кривая 2 на рис. 4).

ЛИТЕРАТУРА

- Чугунов В. А. Решение двух автомодельных задач о течении субизотермического ледника // Исследования по прикладной математике. Казань: Изд-во Казан. ун-та, 1984. Вып. 11, ч. 2. С. 105–110.
- 2. Тонконог С. Л., Чугунов В. А., Эскин Л. Д. Методы группового анализа в задаче о растекании с проскальзыванием тонкой пленки нелинейно-вязкой жидкости // Прикл. математика и механика. 1994. Т. 58, вып. 4. С. 63–69.
- 3. Саламатин А. Н., Чугунов В. А., Мазо А. Б. Численные и инвариантные решения задач о динамике субизотермического ледника в одномерном приближении // Задачи механики природных процессов. М.: Изд-во Моск. ун-та, 1983. С. 82–96.
- 4. Ritz C. Un modele thermo-mecanique d'evolution pour le bassin glaciaire antarctique Vostok Clacier Byrd: sensibilite aux valeurs des parametres mal connus: These Doctorat d'Etat. Grenobl: Centre nat. de la rech. sci. Lab. de Glaciol. et Geophys. de l'Environnement, 1992. P. 377.
- Kamb B. Sliding motion of glaciers: theory and observation // Rev. Geophys. Space Phys. 1970.
 V. 8, N 4. P. 673–728.

Поступила в редакцию 27/V 1998 г., в окончательном варианте — 12/XI 1998 г.