ПОЛУЧЕНИЕ НАНОКРИСТАЛЛИЧЕСКОЙ МЕДИ ПУТЕМ ВЗРЫВНОГО НАГРУЖЕНИЯ И ЕЕ ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Цз.-С. Ван¹, Н. Чжо¹, Б.-М. Ли¹, Цз.-Ш. Цянь¹, Чж. Чжао²

¹Научно-технологическая лаборатория физики переходных процессов, Нанкинский университет науки и технологии, Нанкинь 210094, КНР, wjxdlut@sina.com
²Колледж энергетики, Нанкинский университет науки и технологии, Нанкинь, КНР

Образцы нанокристаллической меди получены путем интенсивного пластического деформирования при взрывном нагружении крупнокристаллической меди. Динамические механические свойства нанокристаллической меди исследованы методом разрезного стержня Гопкинсона. Результаты экспериментов показывают, что размер зерна при взрывном нагружении крупнокристаллической меди может быть меньше 100 нм. Двукомпонентное образование дислокаций является основным механизмом измельчения зерен. Динамический предел текучести нанокристаллической меди возрастает с уменьшением среднего размера зерна и ростом скорости деформирования.

Ключевые слова: взрывное нагружение, нанокристаллическая медь, измельчение зерна, предел текучести.

ВВЕДЕНИЕ

ЭКСПЕРИМЕНТ

Схема эксперимента приведена на рис. 1. Образец крупнокристаллической меди помещался в паз стальной пластины-основания. Диаметр образца 20 мм, высота 25 мм, начальный размер зерен меди 50–60 мкм. Стальной ударник диаметром 100 мм и толщиной 20 мм ускорял продукты детонации взрывчатого вещества (ВВ) до скорости несколько сотен метров в секунду и соударялся с образцом. В ка-

Рис. 1. Экспериментальная схема:
1 — детонатор, 2 — BB, 3 — ударник, 4 — алюминиевая оболочка, 5 — образец крупнокристаллической меди, 6 — основание
Таблица 1

<table>
<thead>
<tr>
<th>Номер образца</th>
<th>(l_e, \text{мм})</th>
<th>(l_0, \text{мм})</th>
<th>(l_f, \text{мм})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>20</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>20</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>20</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Примечание: \(l_e \) — толщина слоя ВВ, \(l_0 \) — высота исходного образца, \(l_f \) — высота образца после нагружения.

Чтение ВВ использовалось смесь нитрата аммо- ния с индустриальным маслом. Эксперименты проведены при четырех толщинах слоя ВВ и одном и том же диаметре ударника. Параметры эксперимента представлены в табл. 1.

Тесты на сжатие с высокой скоростью выполнены методом разреза стержня Гопкинсона. Профили падающих отражений и прошедшей волны регистрировались текстолитами, размещенными на каждом стержне. Чтобы избежать возможных искажений, использовались два датчика деформации в конфигурации полумест. Напряжение, деформация и скорость деформации образца получали по уравнениям Гопкинсона [15]:

\[
\sigma(t) = E_0 \frac{A_0}{A} \varepsilon_T(t),
\]

\[
\varepsilon(t) = -\frac{2C_0}{L} \int_0^t \varepsilon_R(t) dt,
\]

\[
\dot{\varepsilon}(t) = -\frac{2C_0}{L} \varepsilon_R(t),
\]

\[
\ddot{\varepsilon}(t) = \dot{\varepsilon}_R(t) + \varepsilon_T(t),
\]

где \(\sigma(t) \), \(\varepsilon(t) \), \(\dot{\varepsilon}(t) \) — среднее напряжение, деформация и скорость деформации соответственно; \(E_0 \), \(A_0 \), \(C_0 \) — модуль упругости, площадь поперечного сечения и длина образца; \(A \) и \(L \) — площадь поперечного сечения и длина образца; \(\varepsilon_I(t) \), \(\varepsilon_R(t) \) и \(\varepsilon_T(t) \) — деформация в падающей, отражённой и прошедшей волнах соответственно.

Результаты и обсуждение

Средний размер зерна образцов нано- кристаллической меди определяли методом рентгеновского анализа на установке D/Max2500VL/PC. Согласно формуле Шеррера [16] соотношение между средним размером зерна и физическим уширением пиков брентонского отражения выражается следующим образом:

\[
D_{hkl} = k \lambda / (\beta_{hkl} \cos \theta).
\]

Здесь \(D_{hkl} \) — толщина зерна в направлении \((hkl) \); \(k \) — константа, связанная с шириной пика и принятая равной 0.89; \(\lambda \) — длина волны излучения; \(\theta \) — центр положения пика; \(\beta_{hkl} \) — интегральная ширина пика, определяемая соотношением \(\beta_{hkl} = (1/I_p) \int I(2\theta) d\theta \), где \(I_p \) — интенсивность вершины пика, а \(I(2\theta) \) — интенсивность при положении \(2\theta_{hkl} \).

На рис. 2 представлена дифрактограмма образца 1 при комнатной температуре. Она соответствует центру области 2 на рис. 3. Согласно относительной максимальной интенсивности брентоновых пиков в образцах нанокриスタЛлической меди присутствует слабая (111) структура. Хорошо видно уширение брентоновых пиков, которое может свидетельствовать о малых размерах зерен и/или о наличии микродеформаций в полученном образце нанокристаллической меди. Средний размер зерна образца 1 равен 31.4 нм, а образцов 2—4 — 28.2, 27.5, 26.1 нм соответственно.

Размер зерен и их распределение в образце определяли методом просвечивающей элек-
Рис. 3. Местоположение областей 1–3 рентгеновской фазы образца

Рис. 4. Светло-пупольное изображение образца 2, полученное на электронном микроскопе в радиальном направлении

Рис. 5. Изображение образца 2, полученное на электронном микроскопе в продольном сечении (а), и дифракционное изображение (б)

тронной микроскопии с использованием микроскопа JEM-3000 фирмы JEOL. Образцы диаметром 3 мм вырезали из центра поперечного сечения полученных образцов.

На рис. 4 показано светло-пупольное электронное изображение образца 2 в радиальном направлении. Видно, что образец нанокристаллической меди состоит из ультрамелких кристаллов, приближительно равноосных по форме, и распределение зерен по размеру однородно.

На рис. 5 приведен электронный снимок образца 2, сделанный вдоль направления нагружения. Ясно видна слоистая структура. Дифракционный снимок на рис. 5,б показывает образование двойников.

На начальной стадии деформирования плотность дислокаций возрастает и постепенно образуется низкоэнергетическая стенка дислокаций. С ростом пластической деформации дислокационная стенка и включения трансформируются в малоглуловую границу субзерен, а затем в высокоглуловую границу зерна, т. е. субзерно превращается в зерно. В это время рост плотности дислокаций в субзерне приводит к их взаимодействию и образованию двойников. В результате зерна измельчаются до наноразмерного масштаба.

Таким образом, размножение дислокаций и формирование двойников являются основными механизмами измельчения зерен. Совместный эффект взаимодействия этих процессов со-
проводит пластическую деформацию образца. Когда и плотность дислокаций, и деформации становятся достаточно большими для того, чтобы преодолеть критические напряжения, часть дислокаций деформируется, как показано на рис. 5.

Динамические характеристики образцов нанокристаллической меди изучались при помощи стержня Гопкинсона на образцах диаметром 5.6 мм и высотой 6.0 мм с размером зерна 26.1 ± 31.4 нм. Диаметр стальных стержней из мартенситной стали составлял 14.5 мм. Динамические тесты на сжатие выполнены в диапазоне скоростей деформирования 1800 ± 6300 с⁻¹. Результаты экспериментов приведены в табл. 2.

Изменение динамического предела прочности на сжатие нанокристаллической меди с различными размерами зерна в зависимости от скорости деформирования представлено на рис. 6. С ростом скорости деформирования динамический предел прочности материалов увеличивается (для нанокристаллической меди со средним размером зерна 26.1 нм при скорости деформирования 1864, 3690 и 6247 с⁻¹ предел прочности равен 833, 856 и 882 МПа соответственно). Из данных рис. 6 следует, что с уменьшением среднего размера зерна динамический предел прочности возрастает.

| Таблица 2 |
| Параметры и результаты экспериментов на стержне Гопкинсона |
	Номер образца	\(d_e \), нм	\(p \), МПа	\(v \), м/с	\(\varepsilon \), с⁻¹	\(\sigma_y \), МПа								
1	1-1	26.1	0.15	0.30	0.60	18.19	29.28	44.90	1864	3690	6247	833	856	882
2	2-1	28.2	0.15	0.30	0.60	17.89	29.36	40.43	1871	3737	5571	792	814	833
3	3-1	31.4	0.15	0.30	0.60	17.93	29.30	40.55	1908	3775	5618	771	791	809

П р и м е ч а н и е: \(d_e \) — средний размер зерна, \(p \) — давление в ускоряющей пушке, \(v \) — скорость стержня-ударника, \(\varepsilon \) — скорость деформирования, \(\sigma_y \) — динамический предел прочности на сжатие.

Рис. 6. Зависимость динамического предела прочности на сжатие от скорости деформирования образцов нанокристаллической меди с разным размером зерна

ЗАКЛЮЧЕНИЕ

Нанокристаллическая медь получена путем динамического напряжения крупнокристаллической меди. По результатам рентгенодифракционного анализа средний размер зерна в центре образца равен 26.1 ± 31.4 нм. Формирование дислокаций и образование дислокаций являются основными механизмами измельчения зерен. Динамический предел прочности на сжатие нанокристаллической меди повышается с уменьшением среднего размера зерна и ростом скорости деформирования. В последующих работах необходимо улучшить оборудование и параметры нагружения; выяснить, как измерять скорость деформирования в ходе процесса, и проанализировать ее влияние на измельчение зерен; поскольку процесс деформации крупнокристаллической меди можно рассмотривать как адабатический, необходимо контролировать рост температуры, чтобы избежать рекристаллизации.

Работа поддержана Национальным фондом естественных наук Китая (гранты № 10902054, 10802038), Специальным исследовательским фондом по программе поддержки докторантов высшего образования (грант № 200802881013), фондом Национальной государственной лаборатории науки и технологии по баллистике (грант № 9140C300803086) и фондом перспективных проектов Нанкинского университета науки и технологии.
ЛИТЕРАТУРА

Поступила в редакцию 2/IV 2010 г.,
в окончательном варианте — 20/IX 2010 г.