УДК 536.24

Теплообменные характеристики дисковых вентиляторов

Ю.М. Приходько, В.П. Чехов, В.П. Фомичев

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: prih@itam.nsc.ru, lumin@ngs.ru

Дисковые вентиляторы относятся к машинам трения и конструктивно могут выполняться в двух вариантах: центробежные дисковые вентиляторы и диаметральные дисковые вентиляторы. Характер течения газа в этих вентиляторах разный, различны и их теплообменные характеристики. В статье приводятся результаты экспериментального исследования теплообмена центробежного дискового вентилятора при атмосферном давлении с воздухом в качестве рабочего газа. Получено распределение температуры по радиусу диска при различных оборотах вращения ротора и температурах нагрева дисков. Проведено сравнение теплообменных характеристик центробежного дискового и диаметрального дискового вентиляторов. Выполненные исследования показывают высокую эффективность теплообмена ротора в центробежных дисковых вентиляторах по сравнению с диаметральными дисковыми вентиляторами.

Ключевые слова: дисковый вентилятор, машины трения, теплообмен.

Введение

Дисковый вентилятор — это аппарат, в котором ротор выполнен в виде набора плоских дисков, установленных соосно с некоторыми зазорами между ними. При вращении ротора возникает движение газа вследствие вязкого трения на поверхностях дисков и центробежного ускорения. Ротор размещается в корпусе, который формирует зону входа и выхода газа.

Дисковые вентиляторы конструктивно могут выполняться в двух различных вариантах: с преимущественным движением газа или жидкости в радиальном направлении, так называемые центробежные дисковые вентиляторы (ЦДВ) (рис. 1, *a*), и в азимутальном направлении, с тангенциальными входом и выходом газа с одной стороны ротора, это диаметральные дисковые вентиляторы (ДДВ) [1] (рис. 1, *b*).

Одной из характерных особенностей дисковых вентиляторов является развитая поверхность ротора с дисками, что делает перспективным их использование в качестве теплообменников. В связи с этим исследование процессов теплообмена в таком аппарате представляет значительный интерес.

Исследования теплообмена свободно вращающегося диска, нагреваемого по ободу, проведено в работе [2]. Вопрос о теплоотдаче в зазоре между диском и кожухом без расходного течения и с расходным течением экспериментально исследован в работе [3]. Так же рассматривалась задача о теплообмене в замкнутой полости между двумя

Рис. 1. Характер течения в центробежном (а) и диаметральном (b) дисковых вентиляторах.

вращающимися дисками [4], было получено теоретическое решение для автомодельного случая ламинарной конвекции. Исследования тепло-массообменных характеристик диаметральных дисковых вентиляторов проводились в работе [5]. Были получены характеристики теплообмена диаметральных дисковых вентиляторов на воздухе.

Цель настоящей работы — исследовать характеристики теплообмена дисков в центробежном дисковом вентиляторе, работающем на воздухе и провести сравнение с теплообменными характеристиками диаметрального дискового вентилятора.

1. Экспериментальная установка

Исследование теплообмена проводилось на стенде (рис. 2, *a*), состоящем из корпуса, выполненного в виде «улитки», и размещенного в нем ротора. Ротор представлял собой пакет из одиннадцати гладких алюминиевых дисков с отверстиями в центре, соединенных между собой шпильками с разделительными кольцами, обеспечивающими равные зазоры между дисками. Их внешний радиус R_2 составлял 120 мм, внутренний $R_1 - 60$ мм, толщина δ — 1,8 мм, расстояние между соседними дисками b = 3 мм. Корпус вентилятора (улитка) строился по принципу так называемого конструкторского квадрата в соответствии с рекомендациями для корпусов центробежных вентиляторов [6].

Конструкция установки позволяла изменять угловую скорость вращения ротора и температуру нагрева дисков.

Нагрев всех дисков осуществлялся с помощью нихромовой нити (позиция 1 на рис. 2, b), вклеенной с помощью теплопроводной пасты в канавку каждого диска на радиусе 62 мм. Температура поверхности среднего диска измерялась шестью платиновыми датчиками

Рис. 2. Схема установки (*a*), расположение нагревательного элемента и температурных датчиков на диске (*b*).

1 — нагревательный элемент, *2* — термодатчики.

температуры (позиция 2 на рис. 2, b), каждый из которых был наклеен на поверхность диска по радиусу с шагом 10 мм, начиная с радиуса, равного 66,25 мм. Контакты датчиков присоединялись к токосъемнику из латунных колец с графитовыми щетками. Датчики запитывались постоянным напряжением через мостовую схему. Напряжение на мостовую схему подавали от источника опорного напряжения REF195 с погрешностью не более 0,04 %. Полученные с датчиков сигналы, пропорциональные изменяющемуся сопротивлению, с помощью АЦП USB-4716 Advantech записывались на ПК. Опросы датчиков производились последовательно. Изменением сопротивления соединяющих проводов пренебрегали из-за крайней малости величин этих сопротивлений по сравнению с сопротивлением датчиков.

Эксперимент проводился следующим образом. Ротор раскручивался до заданной угловой скорости ω (от 600 об./мин до 3800 об./мин с шагом 400 об./мин). Затем осуществлялся нагрев дисков до заданной температуры T_1 (35, 40, 50, 60 и 70 °C) в точке расположения первого датчика при температуре воздуха на входе вентилятора 22–24 °C. После выхода системы на стационарный режим проводились замеры напряжения датчиков. Значения напряжений, полученные в течение одного опроса, усреднялись, по ним вычислялись значения температуры датчиков, при этом погрешность полученной температуры не превышала 0,5 %. На рис. 3 представлено относительное распределение температуры $T_{\text{отн}}$ вдоль радиуса R по диску при нагреве внутренней кромки до 60 °C при различной скорости вращения ротора. Здесь $T_{\text{отн}} = T_i/T_1$ (отношение температуры каждого датчика к температуре первого датчика), i = 1,...,6.

Температура воздуха на входе и выходе вентилятора измерялась с помощью термоанемометра TTM-2 с разрешающей способностью измерения температуры 0,1 °C. На рис. 4 представлена зависимость разности температур ΔT воздуха на входе и выходе вентилятора от числа оборотов ротора.

2. Обработка экспериментальных данных

Обработка полученных распределений температуры осуществлялась на основе следующей методики. Примем, что температура в диске постоянна по его толщине δ . Тогда, согласно закону Фурье, количество теплоты, проходящее в единицу времени по диску в радиальном направлении, равно:

$$Q = -2 \cdot \lambda \pi r \delta \frac{dt}{dr},\tag{1}$$

Рис. 4. Зависимость величины нагрева воздуха при прохождении через вентилятор от оборотов ротора при различной степени нагрева внутренней кромки дисков. $T_1 = 30 (1), 35 (2), 40 (3), 50 (4), 60 (5), 70 °C (6).$

где λ — коэффициент теплопроводности, δ — толщина диска. По измеренным значениям температуры диска строится зависимость вида $T_{\rm g} = T_{\rm g}(r)$. Подставляя эту функцию в уравнение (1), определим температурное поле диска в виде зависимости Q = Q(r). Весь диск разбивается на кольца шириной Δr , и для каждого участка находится количество теплоты, отданное воздуху: $\Delta Q_i = Q(r_i) - Q(r_{i-1})$. Зная массовый расход воздуха в междисковом пространстве, можно определить изменение его температуры на каждом участке и построить зависимость $T_{\rm B} = T_{\rm B}(r)$. На рис. 5 представлены распределения температуры вдоль радиуса R для воздуха и диска.

Средние по всему диску коэффициенты теплоотдачи $\alpha_{\rm cp}$ определялись по формуле:

$$\alpha_{\rm cp} = \frac{Q(r_1) - Q(r_2)}{(t_{\pi} - t_{\rm B})S},\tag{2}$$

где $Q(r_1)$ и $Q(r_2)$ — количество теплоты, проходящее в единицу времени на внутренней и внешней кромке диска, $t_{\rm g}$ — средняя температура диска, $t_{\rm g}$ — средняя температура воздуха, S — площадь поверхности диска.

На рис. 6 представлена зависимость величин α_{cp} от частоты вращения диска при различных температурах нагрева внутренней кромки диска. Можно видеть, что средний коэффициент теплопередачи на малых скоростях вращения дисков практически не зависит от температуры внутренней кромки диска.

Рис. 5. Распределение температуры диска (1) и воздуха (2) при нагреве внутренней кромки до 60 °C при скорости вращения ротора 3000 об/мин.

Puc. 7. Зависимость lg Nu от lg Re при различных температурах на внутреннем радиусе диска относительно первого датчика. $T_1 = 35 (1), 40 (2), 50 (3), 60 (4), 70 (5) ^{\circ}C.$

По этим значениям α_{cp} была определена зависимость числа Нуссельта Nu от числа

Рейнольдса Re. Числа Nu и Re рассчитывались по внешнему радиусу дисков:

Nu =
$$\frac{\alpha_{cp}R_2}{\lambda}$$
, Re = $\frac{\omega R_2^2}{v}$.

На рис. 7 представлены результаты экспериментов в виде зависимости lg Nu ot lg Re для различных температур нагрева внутренней кромки диска относительно первого датчика.

3. Сравнение теплообменных характеристик ДДВ и ЦДВ

Теплообменные характеристики ДДВ исследовались в работе [5]. Параметры установки были следующие: толщина диска $\delta = 1,5$ мм, $R_2 = 180$ мм, $R_1 = 60$ мм, b = 8 мм, скорость вращения диска N = 1830 мин⁻¹. На рис. 8 тёмными символами представлены распределения температуры по радиусу дисков для ДДВ (рис. 8, *a*) и ЦДВ (рис. 8, *b*). Сплошными линиями показано аналитическое решение задачи о теплопроводности диска без теплосъема. Видно, что эксперимент регистрирует отсутствие теплосъема с диска в ДДВ на участке ОА (рис. 8, *a*). Изменение температуры происходит только за счет тепло-

Экспериментальные данные для ДДВ из работы [5] (а), и для ЦДВ из настоящей работы (b).

проводности по диску. Отсутствие заметной теплоотдачи объясняется наличием застойной зоны, в которой у воздуха нет существенной радиальной составляющей скорости и, следовательно, заметного конвективного переноса тепла. Вне застойной зоны, в зоне теплообмена, экспериментальные значения температуры отклоняются вниз от аналитического решения задачи о теплопроводности диска без теплосъема, что свидетельствует о наличии теплообмена в зоне АБ.

По характеру распределения тепла по диску ЦДВ (рис. 8, *b*) можно сделать вывод об отсутствии застойной зоны в междисковом пространстве ЦДВ, т.е. вся поверхность дисков ЦДВ участвует в процессе теплообмена.

Различие теплообменных характеристик этих двух типов вентиляторов особенно заметно проявляется при переходе к безразмерным параметрам. На рис. 9 представлены

зависимости lg Nu oт lg Re. Видно, что график для ЦДВ лежит значительно выше графика для ДДВ и начинается с меньших значений числа Рейнольдса. Это говорит о более высокой эффективности теплообмена в ЦДВ. Кроме того, для ДДВ характерно наличие максимума, после чего эффективность теплообмена заметно падает. Для ЦДВ подобного эффекта не наблюдалось.

Заключение

Получены экспериментальные данные о теплообменных характеристиках дисков в ЦДВ. Построены зависимости lg Nu от lg Re для различных условий работы ЦДВ. Произведено сравнение теплообменных характеристик ЦДВ и ДДВ в схожих условиях. Результаты сравнения позволяют сделать вывод о более высокой эффективности теплообмена ротора в центробежных дисковых вентиляторах по сравнению с диаметральными дисковыми вентиляторами.

Список литературы

- Фомичев В.П., Хайдаров С.В. Экспериментальное исследование массообменных характеристик диаметрального дискового насоса трения // Теплофизика и аэромеханика. 1999. Т. 6, № 4. С. 549–554.
- 2. Капинос В.М. Теплообмен свободно вращающегося неравномерно нагретого диска // Инж.-физ. журн. 1963. Т. 6, № 3. С. 12–20.
- **3.** Дорфман Л.А. Гидродинамическое сопротивление и теплоотдача вращающихся тел. М.: Физматгиз, 1960. 260 с.
- 4. Дорфман Л.А. Ламинарная тепловая конвекция во вращающейся полости между двумя дисками // Изв. АН СССР. МЖГ. 1968. № 1. С. 40–46.
- 5. Жаркова Г.М., Коврижина В.Н., Правдин С.С., Фомичев В.П., Хайдаров С.В. Об особенностях теплообмена в диаметральных дисковых насосах // Теплофизика и аэромеханика. 1998. Т. 5, № 4. С. 499–504.
- **6. Михайлов А.К., Малюшенко В.В.** Лопастные насосы. Теория, расчет и конструирование. М.: Машиностроение, 1977. 288 с.

Статья поступила в редакцию 1 апреля 2013 г., после переработки — 20 ноября 2013 г.