УДК 532.517.2

Устойчивость трехмерного течения пленки вязкой жидкости, обтекаемой турбулентным потоком газа

С.П. Актершев, С.В. Алексеенко

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: sergey-aktershev@mail.ru

Теоретически исследуется устойчивость совместного течения пленки жидкости и турбулентного потока газа для произвольного угла между направлением газового потока и силой гравитации. Трехмерное волновое течение пленки описывается на основе интегрального подхода и квазиламинарной модели турбулентного потока газа. Для случая вертикальной пленки и горизонтального потока газа проведены расчеты инкремента и фазовой скорости волн в зависимости от направления их распространения. Расчеты показывают, что наличие поперечного газового потока существенно увеличивает область неустойчивости, а также диапазон направлений, в которых на поверхности пленки распространяются быстро растущие возмущения.

Ключевые слова: пленка жидкости, трехмерное течение, турбулентный поток газа, устойчивость, волны на межфазной поверхности.

Введение

Волны на поверхности раздела фаз оказывают сильное влияние на тепломассообмен, поэтому изучение условий волнообразования на поверхности пленки имеет большое практическое значение для энергетики и химической технологии. Анализу линейной и нелинейной устойчивости свободно стекающей пленки жидкости посвящены многие работы, основные результаты этих исследований приведены в работе [1]. Значительно меньше успехов достигнуто в изучении волн при совместном движении газа и пленки жидкости. Наличие потока газа над поверхностью жидкости приводит к появлению касательных напряжений на межфазной поверхности, которые кардинально влияют на устойчивость пленки и характеристики возникающих волн. Для встречающихся на практике режимов течений поток газа, как правило, турбулентный, и это сильно усложняет теоретическое исследование. В большинстве теоретических работ рассматривается двумерное течение, когда скорость газового потока и проекция силы гравитации на поверхность жидкости направлены вдоль одной прямой (спутное или противоточное движение фаз). В двумерном случае задача устойчивости может быть существенно упрощена, если использовать подход, развитый в работах [2, 3]. При таком подходе поверхность пленки для газового потока считается жесткой и неподвижной, а движение газа вдоль волнистой поверхности рассчитывается независимо от движения жидкости. Влияние газа на устойчивость пленки проявляется через пульсации

© Актершев С.П., Алексеенко С.В., 2012

напряжений на межфазной поверхности. Задача о течении газа над волнистой поверхностью рассмотрена в работе [3] на основе квазиламинарной модели турбулентного потока газа [4]: рассчитаны амплитуды пульсаций касательного и нормального напряжений на поверхности пленки и представлены результаты расчетов в виде функций одного параметра — модифицированного числа Рейнольдса газового потока R_o . В работах [5–8] эти результаты применены к исследованию устойчивости газопленочных течений на основе интегральной модели, а также с использованием уравнения Орра–Зоммерфельда. Расчеты [6, 8] показывают, что противоточное течение фаз оказывается более устойчивым, чем спутное, а область неустойчивости более узкая, чем для гравитационной пленки. Этот вывод подтверждают результаты работы [9], в которой теоретически рассматривалась устойчивость вертикальной пленки в случае противоточного движения газа. В работе [10] проведены измерения инкремента и фазовой скорости возбужденных волн в случае спутного и противоточного течений. Сопоставление экспериментальных данных с расчетами по квазиламинарной модели показало хорошее соответствие для умеренных значений числа Рейнольдса.

Если проекция силы гравитации на поверхность жидкости и скорость газового потока не направлены вдоль одной прямой, течение пленки становится трехмерным, и это еще более усложняет задачу. Волнообразование при косом обтекании жидкой пленки турбулентным потоком газа представляет собой важную проблему устойчивости межфазной поверхности в геометрически сложной трехмерной постановке. Кроме научного аспекта, эта задача имеет огромное прикладное значение. Трехмерное совместное течение жидкой пленки и газа реализуется в целом ряде технологических устройств. Так, например, в жалюзийных сепараторах пленка воды стекает вниз и обдувается горизонтальным потоком воздуха (перекрестный ток). В пленочных массообменных аппаратах с целью интенсификации массообмена стекающая по внутренней стенке вертикальной трубы пленка обдувается закрученным потоком газа. Трехмерное течение имеет место в вихревых контактных устройствах для очистки газа от примесей, например, в золоуловителе скрубберного типа для очистки дымовых газов мощных пылеугольных котлов. В кольцевом пространстве скруббера движется восходящий закрученный поток газа, содержащий частицы пыли, а по стенкам стекает пленка воды. За счет центробежного эффекта и турбулентной диффузии пылевые частицы поглощаются пленкой и удаляются в виде пульпы. Эффективность улавливания частиц в значительной степени зависит от скорости газа. Однако при некоторой критической скорости газа происходит срыв капель с поверхности пленки и вынос их из аппарата. Это недопустимо из-за коррозионного воздействия влаги на расположенное за скруббером оборудование, поэтому необходимо прогнозировать эволюцию волн на поверхности пленки в закрученном потоке газа.

Постановка задачи

Задача об устойчивости течения пленки в вихревом скруббере допускает следующие очевидные упрощения. Вследствие большого диаметра аппарата по сравнению с толщиной пленки течение можно считать плоским, а в силу замкнутости контура поперечного сечения градиент давления вдоль периметра можно полагать равным нулю. Рассмотрим течение пленки жидкости на пластине, наклоненной под углом θ к горизонту под действием гравитации, и произвольно направленного турбулентного потока газа. Введем декартову систему координат *Oxyz* так, что проекция силы тяжести на пластину будет направлена вдоль оси *Ox*, а ось *Oy* перпендикулярна пластине. Касательное напряжение на поверхности пленки τ_0 (здесь τ_0 — это абсолютная величина трения) образует произвольный угол δ с осью Ox. В этом случае скорость жидкости по направлению не совпадает ни с силой гравитации, ни с потоком газа, т. е. течение трехмерное. Волны на поверхности пленки могут распространяться в произвольном направлении, поэтому в плоскости пластины введем вспомогательную систему координат $O\xi\eta$ с осью $O\xi$ в направлении распространения волны (см. рис. 1, *a*). Угол α между осями $O\xi$ и Ox будем считать произвольным и рассмотрим линейные волны, сделав следующие упрощающие предположения: 1 — возмущение поверхности пленки зависит только от координаты ξ ; 2 — компонента касательного напряжения по оси $O\eta$ остается невозмущенной, а по оси $O\xi$ пульсирует; 3 — для невозмущенного течения градиент давления по оси Oz равен нулю.

Интегральная модель трехмерного течения пленки

Возмущение поверхности пленки считаем длинноволновым (толщина пленки *h* много меньше длины волны *l*) и используем погранслойное приближение, полагая $\partial^2 / \partial x^2 \ll \partial^2 / \partial y^2$, $\partial^2 / \partial z^2 \ll \partial^2 / \partial y^2$, $\partial h / \partial x \ll 1$, $\partial h / \partial z \ll 1$. В принятом приближении запишем для жидкости уравнения движения

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = g \sin \theta - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 u}{\partial y^2},$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + v \frac{\partial^2 w}{\partial y^2},$$

$$0 = -\frac{1}{\rho} \frac{\partial p}{\partial y} - g \cos \theta$$
(1)

и уравнение неразрывности

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
 (2)

Здесь *u*, *v*, *w* — компоненты скорости по осям *Ox*, *Oy*, *Oz* соответственно. Левая часть третьего уравнения (1) записана в пренебрежении компонентой *v*, поскольку $v/u \sim h/l \ll 1$. На пластине выполняются условия u = v = w = 0. На поверхности пленки выполняется кинематическое условие

$$\frac{\partial h}{\partial t} + u_s \frac{\partial h}{\partial x} + w_s \frac{\partial h}{\partial z} = v_s \tag{3}$$

Рис. 1. Схемы течения: a — газового потока и пленки; b — пленки в скруббере ($\delta = \pi/2$).

и динамические условия

$$p = p_s - \sigma \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2} \right), \quad \mu \partial u / \partial y = \tau_{sx}, \quad \mu \partial w / \partial y = \tau_{sz}.$$
(4)

Здесь p_s — давление газа, u_s , v_s , w_s — компоненты скорости, τ_{sx} , τ_{sz} — компоненты касательного напряжения на поверхности пленки.

Интегрируя третье уравнение (1) с учетом (4), находим давление

$$p = p_s + \rho g \cos \theta (h - y) - \sigma \Big(\partial^2 h / \partial x^2 + \partial^2 h / \partial z^2 \Big).$$

Первые два уравнения (1) так же, как и в двумерном случае, проинтегрируем по толщине пленки. Интегралы в левой части преобразуем известным образом [1] с помощью уравнения неразрывности (2), кинематического условия (3) и граничных условий на пластине. В результате левые части первого и второго уравнений (1) преобразуются соответственно в

$$\frac{\partial}{\partial t}\int_{0}^{h} u dy + \frac{\partial}{\partial x}\int_{0}^{h} u^{2} dy + \frac{\partial}{\partial z}\int_{0}^{h} u w dy \quad \mathbf{H} \quad \frac{\partial}{\partial t}\int_{0}^{h} w dy + \frac{\partial}{\partial z}\int_{0}^{h} w^{2} dy + \frac{\partial}{\partial x}\int_{0}^{h} u w dy$$

а сами уравнения примут вид

$$\frac{\partial q}{\partial t} + \frac{\partial J_1}{\partial x} + \frac{\partial J_{12}}{\partial z} = \frac{\tau_{sx} - \tau_{Wx}}{\rho} - \frac{h}{\rho} \frac{\partial p_s}{\partial x} + gh \left(\sin \theta - \cos \theta \frac{\partial h}{\partial x} \right) + \frac{\sigma h}{\rho} \frac{\partial}{\partial x} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2} \right),$$

$$\frac{\partial m}{\partial t} + \frac{\partial J_2}{\partial z} + \frac{\partial J_{12}}{\partial x} = \frac{\tau_{sz} - \tau_{Wz}}{\rho} - \frac{h}{\rho} \frac{\partial p_s}{\partial z} + \frac{\sigma h}{\rho} \frac{\partial}{\partial z} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2} \right),$$
(5)

где $q = \int_{0}^{h} u dy$ и $m = \int_{0}^{h} w dy$ — расходы жидкости по осям Ox и Oz соответственно, $\tau_{Wx} = \mu \partial u / \partial y \Big|_{y=0}$, $\tau_{Wz} = \mu \partial w / \partial y \Big|_{y=0}$ — компоненты касательного напряжения на пластине, $J_1 = \int_{0}^{h} u^2 dy$, $J_2 = \int_{0}^{h} w^2 dy$, $J_{12} = \int_{0}^{h} u w dy$ — потоки количества движения.

Кинематическое условие (3) с помощью (2) преобразуем к виду

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} + \frac{\partial m}{\partial z} = 0.$$
(6)

Чтобы получить систему уравнений замкнутую относительно q, m, h, необходимо задать профиль скорости в пленке и исключить напряжения на поверхности пленки и на стенке. В двумерном случае для описания длинноволновых возмущений в гравитационной пленке В.Я. Шкадов разработал интегральную модель [11], основанную на автомодельном профиле скорости в пленке $u/u_s = 2\eta - \eta^2$.

Для трехмерных волн профиль скорости так же, как и в двумерном случае, зададим в виде полинома 2 степени, удовлетворяющего граничным условиям на пластине и на поверхности пленки:

$$u/u_{s} = (2-T_{x})\eta + (T_{x}-1)\eta^{2}, \quad w/w_{s} = (2-T_{z})\eta + (T_{z}-1)\eta^{2}.$$
(7)

Здесь $\eta = y/h$, $T_x = \tau_{sx}h/\mu u_s$, $T_z = \tau_{sz}h/\mu w_s$.

Нетрудно видеть, что профиль (7) неавтомодельный, поскольку T_x и T_z зависят от координат и времени. Исходя из профиля (7), получаем

$$q = \int_{0}^{h} u dy = u_{s} h \int_{0}^{1} \left((2 - T_{x})\eta + (T_{x} - 1)\eta^{2} \right) d\eta = 2u_{s} h / 3 - \tau_{sx} h^{2} / 6\mu,$$

$$m = \int_{0}^{h} w dy = w_{s} h \int_{0}^{1} \left((2 - T_{z})\eta + (T_{z} - 1)\eta^{2} \right) d\eta = 2w_{s} h / 3 - \tau_{sz} h^{2} / 6\mu,$$

отсюда следует: $u_s = 3q/h + \tau_{sx}h/4\mu, \ w_s = 3m/h + \tau_{sz}h/4\mu.$ (8)

Из (7), (8) находим также компоненты касательного напряжения на пластине

$$\tau_{Wx} = (2 - T_x) \mu u_s / h = 3 \mu q / h^2 - \tau_{sx} / 2,$$

$$\tau_{Wz} = (2 - T_z) \mu w_s / h = 3 \mu m / h^2 - \tau_{sz} / 2.$$
 (9)

Используя (9), запишем (5) и (6) в виде системы уравнений относительно $h, q, m, \tau_{sx}, \tau_{sz}, p_s$:

$$\frac{\partial q}{\partial t} + \frac{\partial J_1}{\partial x} + \frac{\partial J_{12}}{\partial z} = \frac{3\tau_{sx}}{2\rho} - \frac{3\nu q}{h^2} + gh\left(\sin\theta - \cos\theta\frac{\partial h}{\partial x}\right) - \frac{h}{\rho}\frac{\partial p_s}{\partial x} + \frac{\sigma h}{\rho}\frac{\partial}{\partial x}\left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2}\right),$$

$$\frac{\partial m}{\partial t} + \frac{\partial J_2}{\partial z} + \frac{\partial J_{12}}{\partial x} = \frac{3\tau_{sz}}{2\rho} - \frac{3\nu m}{h^2} - \frac{h}{\rho}\frac{\partial p_s}{\partial z} + \frac{\sigma h}{\rho}\frac{\partial}{\partial z}\left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2}\right),$$

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} + \frac{\partial m}{\partial z} = 0.$$
(10)

С помощью (7), (8) вычислим интегралы J_1, J_2, J_{12} : $J_1 = 6q^2 / 5h + q\tau_{sx}h / 20\mu + \tau_{sx}^2h^3 / 120\mu^2$, $J_2 = 6m^2 / 5h + m\tau_{sz}h / 20\mu + \tau_{sz}^2h^3 / 120\mu^2$, $J_{12} = 6qm / 5h + h(m\tau_{sx} + q\tau_{sz}) / 40\mu + \tau_{sx}\tau_{sz}h^3 / 120\mu^2$.

Выберем в качестве масштаба расстояния толщину невозмущенной пленки h_m и введем масштабы скорости — $u_m = gh_m^2/3v$, времени — $t_m = h_m/u_m$, расхода $q_m = h_m u_m$, напряжения — $\tau_m = \rho g h_m/3$. Перейдем к безразмерным переменным x/h_m , z/h_m , t/t_m , h/h_m , q/q_m , m/q_m , p_s/τ_m , τ_{sx}/τ_m , τ_{sz}/τ_m , оставив для всех величин прежние буквенные обозначения. В безразмерных переменных система уравнений (10) примет вид

$$\frac{\partial q}{\partial t} + \frac{\partial J_1}{\partial x} + \frac{\partial J_{12}}{\partial z} = \frac{3}{\operatorname{Re}_m} \left(\frac{\tau_{sx}}{2} - \frac{h}{3} \frac{\partial p_s}{\partial x} + h \left(\sin \theta - \cos \theta \frac{\partial h}{\partial x} \right) - \frac{q}{h^2} \right) + \operatorname{Weh} \frac{\partial}{\partial x} \Delta h,$$

$$\frac{\partial m}{\partial t} + \frac{\partial J_2}{\partial z} + \frac{\partial J_{12}}{\partial x} = \frac{3}{\operatorname{Re}_m} \left(\frac{\tau_{sz}}{2} - \frac{h}{3} \frac{\partial p_s}{\partial z} - \frac{m}{h^2} \right) + \operatorname{Weh} \frac{\partial}{\partial z} \Delta h,$$

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} + \frac{\partial m}{\partial z} = 0.$$
 (11)

Здесь $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial z^2$, We = $(3Fi/Re_m^5)^{1/3}$ — число Вебера, Fi = $\sigma^3 / \rho^3 g v^4$ — пленочное число, Re_m = $gh_m^3 / 3v^2$ — критерий Рейнольдса, характеризующий толщину невозмущенной пленки.

В случае невозмущенного течения пленки h = 1, а все производные равны нулю. Невозмущенные компоненты касательного напряжения на поверхности пленки и расхода по осям Ox, Oz запишутся как $\tau_{sx0} = r \cos \delta$, $\tau_{sz0} = r \sin \delta$, $q_0 = \sin \theta + 0.5r \cos \delta$, $m_0 = 0.5r \sin \delta$. Здесь $r = 3\tau_0 / \rho g h_m$ — безразмерное невозмущенное касательное напряжение на поверхности пленки.

Чтобы получить замкнутую систему уравнений, рассмотрим возмущения поверхностных напряжений при волновом течении пленки.

Определение поверхностных напряжений для трехмерного течения пленки

Течение газа представим в виде суммы двух движений — в направлении распространения волны и в поперечном направлении. Согласно сделанным предположениям, волновая поверхность пленки является источником возмущений для движения газа по оси $O\xi$ и никак не сказывается на движении вдоль оси $O\eta$. Таким образом, при определении напряжений на поверхности пленки поток газа мы считаем двумерным, поверхность пленки, следуя работам [2, 3], считаем неподвижной твердой стенкой и рассматриваем турбулентный поток газа, движущийся вдоль оси $O\xi$ над волнистой поверхностью, заданной уравнением $H(\xi) = a \cos k\xi$. Здесь *k* — волновое число, *a* — амплитуда волнистости. Предполагается, что амплитуда а много меньше длины волны, а толщина пленки много меньше характерного размера канала. В этом случае, как показано в работах [2, 3], уравнения движения газовой фазы можно линеаризовать относительно возмущений межфазной поверхности. Для определения напряжений на поверхности пленки будем использовать квазиламинарную модель турбулентного потока газа [4]. В этой модели предполагается, что возмущения газового потока локализованы в ламинарном подслое. Профиль скорости газа задается турбулентным, но влияние возмущений от волнистой стенки на турбулентные пульсации не учитывается.

Все переменные в этом разделе приведены к безразмерному виду с помощью масштаба скорости $u_* = \sqrt{|\tau_{0\xi}|/\rho_g}$, масштаба длины $l_* = v_g/u_*$ и масштаба напряжения $\tau_{0\xi}$. Здесь v_g , ρ_g — кинематическая вязкость и плотность газа, $\tau_{0\xi} = \tau_0 \cos(\delta - \alpha)$ — невозмущенное касательное напряжение на стенке. Представим поверхность стенки в комплексной форме $\hat{H} = ae^{ik\xi}$, которую можно также записать в виде $\hat{H} = H - (i/k)\partial H/\partial\xi$. Возмущения в газовом потоке, обусловленные кривизной стенки, линейно зависят от \hat{H} : $\hat{p}' = \hat{p}_s \hat{H}$, $\hat{\tau}' = \hat{\tau}_s \hat{H}$. Здесь $\hat{p}_s = p_R + ip_I$ и $\hat{\tau}_s = \tau_R + i\tau_I$ — комплексные возмущения давления и касательного напряжения на межфазной поверхности. Физически реальные возмущения дает вещественная часть выражений \hat{p}' и $\hat{\tau}'$:

$$p' = p_R H + (p_I/k)(\partial H/\partial \xi), \quad \tau' = \tau_R H + (\tau_I/k)(\partial H/\partial \xi). \tag{12}$$

Отсюда касательное напряжение и давление газа на волнистой стенке принимают вид

$$\tau_{\xi} = 1 + \tau', \quad p_s = p_0 + p'. \tag{13}$$

Комплексные возмущения \hat{p}_s и $\hat{\tau}_s$ являются функциями только одного параметра — модифицированного числа Рейнольдса для газа R_g . В рассматриваемом случае параметр R_g определяется как

$$\mathbf{R}_{g} = \frac{1}{\tilde{k}v_{g}} \sqrt{\left|\tau_{0\xi}\right| / \rho_{g}} = \frac{1}{\tilde{k}v_{g}} \sqrt{\left|\tau_{0}\left|\cos\left(\delta - \alpha\right)\right| / \rho_{g}}.$$

Здесь $\tilde{k} = 2\pi/l$ — размерное волновое число. Результаты расчетов вещественных T_R , F_R и мнимых T_I , F_I частей пульсации напряжений представлены в работе [3] в зависимости от R_g . Компоненты p_R , p_I , τ_R , τ_I связаны с T_R , T_I , F_R , F_I соотношениями:

$$\tau_{R} = T_{R}k, \quad \tau_{I} = T_{I}k \left|\cos(\delta - \alpha)\right| / \cos(\delta - \alpha),$$

$$p_{R} = F_{R}k \left|\cos(\delta - \alpha)\right| / \cos(\delta - \alpha), \quad p_{I} = F_{I}k.$$
(14)

Таким образом, используя результаты расчетов [3], находим возмущения поверхностных напряжений p', τ' .

Линейный анализ устойчивости трехмерного течения

Линеаризуем уравнения (11) относительно малых возмущений, полагая $h = 1 + H(x, z, t), q = q_0 + Q(x, z, t), m = m_0 + M(x, z, t).$ Здесь Q и M — возмущения расхода по осям Ox и Oz. Формулы (13) при переходе к масштабу $\tau_m = \rho g h_m / 3$ имеют вид

$$p_s = p_0 + r\cos(\delta - \alpha)p', \quad \tau_{\xi} = r\cos(\delta - \alpha)(1 + \tau'). \tag{15}$$

Компонента τ_{η} остается невозмущенной: $\tau_{\eta} = r \sin(\delta - \alpha)$, а компоненты τ_{sx} , τ_{sz} вычисляются из геометрических соотношений

$$\tau_{sx} = \tau_{\xi} \cos \alpha - \tau_{\eta} \sin \alpha = r \left(\cos \delta + \tau' \cos \left(\delta - \alpha \right) \cos \alpha \right),$$

$$\tau_{sz} = \tau_{\xi} \sin \alpha + \tau_{\eta} \cos \alpha = r \left(\sin \delta + \tau' \cos \left(\delta - \alpha \right) \sin \alpha \right).$$
(16)

Линеаризуя J_1 , J_2 , J_{12} , представим их в виде суммы невозмущенной части и малого возмущения J'. После громоздких выкладок получаем

$$J'_{1} = -a_{1}H + 2a_{2}Q + a_{3}r\tau', \quad J'_{2} = -b_{1}H + 2b_{2}M + b_{3}r\tau',$$

$$J'_{12} = -e_{1}H + a_{2}M + b_{2}Q + e_{3}r\tau'.$$
 (17)

Здесь

$$a_{1} = \frac{\left(r\cos\delta + 3\sin\theta\right)\left(r\cos\delta + 1, 6\sin\theta\right)}{4}, \quad a_{2} = \frac{48\sin\theta + 25r\cos\delta}{40}, \quad b_{1} = \frac{r^{2}\sin^{2}\delta}{4},$$
$$b_{2} = \frac{5r\sin\delta}{8}, \quad a_{3} = \frac{\cos(\delta - \alpha)\cos\alpha}{20}\left(\sin\theta + \frac{5r\cos\delta}{6}\right), \quad b_{3} = \frac{r\cos(\delta - \alpha)\sin\alpha\sin\delta}{24},$$
$$e_{1} = \frac{r\sin\delta\left(r\cos\delta + 2, 3\sin\theta\right)}{4}, \quad e_{3} = \frac{\cos(\delta - \alpha)}{40}\left(\sin\theta\sin\alpha + \frac{5r\sin(\alpha + \delta)}{6}\right).$$

Подставляя (15)–(17) в (11), получаем систему линейных уравнений для малых возмущений *H*, *Q*, *M*, *τ*', *p*':

$$\frac{\partial Q}{\partial t} - a_1 \frac{\partial H}{\partial x} + 2a_2 \frac{\partial Q}{\partial x} + r \left(a_3 \frac{\partial \tau'}{\partial x} + e_3 \frac{\partial \tau'}{\partial z} \right) - e_1 \frac{\partial H}{\partial z} + a_2 \frac{\partial M}{\partial z} + b_2 \frac{\partial Q}{\partial z} =$$

$$= \frac{3}{\operatorname{Re}_m} \left(A_1 H + B_1 r \tau' \cos(\delta - \alpha) - \frac{r}{3} \cos(\delta - \alpha) \frac{\partial p'}{\partial x} - Q - \cos\theta \frac{\partial H}{\partial x} \right) + \operatorname{We} \frac{\partial}{\partial x} \Delta H,$$

$$\frac{\partial M}{\partial t} - b_1 \frac{\partial H}{\partial z} + 2b_2 \frac{\partial M}{\partial z} + r \left(b_3 \frac{\partial \tau'}{\partial z} + e_3 \frac{\partial \tau'}{\partial x} \right) - e_1 \frac{\partial H}{\partial x} + a_2 \frac{\partial M}{\partial x} + b_2 \frac{\partial Q}{\partial x} =$$

$$= \frac{3}{\operatorname{Re}_m} \left(A_2 H + B_2 r \tau' \cos(\delta - \alpha) - \frac{r}{3} \cos(\delta - \alpha) \frac{\partial p'}{\partial x} - M \right) + \operatorname{We} \frac{\partial}{\partial z} \Delta H,$$

$$\frac{\partial H}{\partial t} + \frac{\partial Q}{\partial x} + \frac{\partial M}{\partial z} = 0.$$
(18)

Здесь $A_1 = 3\sin\theta + r\cos\delta$, $A_2 = r\sin\delta$, $B_1 = 0,5\cos\alpha$, $B_2 = 0,5\sin\alpha$.

Двухволновое уравнение и дисперсионные соотношения

Продифференцируем первое уравнение (18) по *x*, второе по *z*. Сложим оба уравнения и получим:

$$\begin{split} \left(\frac{\partial}{\partial t} + a_2 \frac{\partial}{\partial x} + b_2 \frac{\partial}{\partial z}\right) &\left(\frac{\partial Q}{\partial x} + \frac{\partial M}{\partial z}\right) - \left(a_1 \frac{\partial^2 H}{\partial x^2} + 2e_1 \frac{\partial^2 H}{\partial x \partial z} + b_1 \frac{\partial^2 H}{\partial z^2}\right) + \\ &+ r \left(a_3 \frac{\partial^2 \tau'}{\partial x^2} + 2e_3 \frac{\partial^2 \tau'}{\partial x \partial z} + b_3 \frac{\partial^2 \tau'}{\partial z^2}\right) = \\ &= \frac{3}{\operatorname{Re}_m} \left(A_1 \frac{\partial H}{\partial x} + A_2 \frac{\partial H}{\partial z} + r \cos(\delta - \alpha) \left(B_1 \frac{\partial \tau'}{\partial x} + B_2 \frac{\partial \tau'}{\partial z} - \frac{1}{3} \Delta p'\right) - \\ &- \left(\frac{\partial Q}{\partial x} + \frac{\partial M}{\partial z} + \cos\theta \frac{\partial^2 H}{\partial x^2}\right)\right) + \operatorname{We}\Delta^2 H. \end{split}$$

Исключим из этого уравнения $(\partial Q / \partial x + \partial M / \partial z)$ с помощью третьего уравнения (18). В результате получим уравнение для возмущений толщины пленки и напряжений:

$$\left(2a_2\frac{\partial}{\partial x}+2b_2\frac{\partial}{\partial z}+\frac{3}{\operatorname{Re}_m}\right)\frac{\partial H}{\partial t}+\left(a_1-\frac{3\cos\theta}{\operatorname{Re}_m}\right)\frac{\partial^2 H}{\partial x^2}+\right.$$
$$\left.+2e_1\frac{\partial^2 H}{\partial x\partial z}+b_1\frac{\partial^2 H}{\partial z^2}+\frac{3}{\operatorname{Re}_m}\left(A_1\frac{\partial H}{\partial x}+A_2\frac{\partial H}{\partial z}\right)+\frac{\partial^2 H}{\partial t^2}+\operatorname{We}\Delta^2 H=\right.$$
$$\left.=r\left(a_3\frac{\partial^2 \tau'}{\partial x^2}+2e_3\frac{\partial^2 \tau'}{\partial x\partial z}+b_3\frac{\partial^2 \tau'}{\partial z^2}+\frac{\cos(\delta-\alpha)}{\operatorname{Re}_m}\left(\Delta p'-3\left(B_1\frac{\partial \tau'}{\partial x}+B_2\frac{\partial \tau'}{\partial z}\right)\right)\right).$$

В этом уравнении перейдем к координатам ξ , η по формулам

$$\frac{\partial}{\partial x} = \cos \alpha \frac{\partial}{\partial \xi} - \sin \alpha \frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial z} = \sin \alpha \frac{\partial}{\partial \xi} + \cos \alpha \frac{\partial}{\partial \eta}$$

Учитывая $\partial/\partial \eta = 0$ и исключая τ', p' с помощью (12), после некоторых преобразований приходим к уравнению для возмущения толщины пленки:

$$\left(\frac{\partial}{\partial t} + c_1 \frac{\partial}{\partial \xi}\right) \left(\frac{\partial}{\partial t} + c_2 \frac{\partial}{\partial \xi}\right) H + \frac{3}{\operatorname{Re}_m} \left(\frac{\partial H}{\partial t} + c_0 \frac{\partial H}{\partial \xi}\right) + n_0 \frac{\partial^3 H}{\partial \xi^3} + \operatorname{We} \frac{\partial^4 H}{\partial \xi^4} = 0.$$
(19)

Здесь $c_0 = 3\sin\theta\cos\alpha + r\cos(\delta - \alpha)(1 + \tau_R/2), \ c_{1,2} = a_0 \pm \sqrt{a_0^2 - b_0}, \ a_0 = a_2\cos\alpha + b_2\sin\alpha, \ n_0 = -r\left(\left(a_3\cos^2\alpha + 2e_3\sin\alpha\cos\alpha + b_3\sin^2\alpha\right)\frac{\tau_I}{k} + \cos(\delta - \alpha)\frac{p_I}{k\operatorname{Re}_m}\right), b_0 = \cos^2\alpha(a_1 - 3\cos\theta/\operatorname{Re}_m - ra_3\tau_R) + \sin^2\alpha(b_1 - rb_3\tau_R) + 2\sin\alpha\cos\alpha(e_1 - re_3\tau_R) + r\cos(\delta - \alpha)(3\tau_I/2k - p_R)/\operatorname{Re}_m.$

Линейное уравнение (19) имеет двухволновую структуру. Первый волновой оператор в (19) описывает динамические волны, движущиеся со скоростями c_1 и c_2 , он дает основной вклад при больших Re_m . Второй волновой оператор описывает кинематическую волну, движущуюся со скоростью c_0 , он дает основной вклад при малых Re_m . Для двумерного газожидкостного течения двухволновое уравнение было получено в работе [5], а в [12] аналогичное уравнение выведено с учетом фазового превращения. В отличие от двумерного случая, в (19) появились два новых параметра — углы α и δ , от которых зависят коэффициенты c_0 , c_1 , c_2 , n_0 . Для двумерного течения ($\alpha = 0$, $\sin \delta = 0$) все формулы совпадают с выведенными в [5].

Представим возмущение поверхности пленки в виде $H = H_a \exp(ik(\xi - ct) + \beta t)$, где H_a , k, c, β — вещественные амплитуда, волновое число, фазовая скорость, инкремент волны. Подставляя это в (19), получим дисперсионное уравнение

$$(\beta + ik(c_1 - c))(\beta + ik(c_2 - c)) + (3/\operatorname{Re}_m)(\beta + ik(c_0 - c)) = n_0 ik^3 - \operatorname{Wek}^4.$$

Разделяя вещественную и мнимую части, получаем дисперсионные соотношения в виде:

$$\frac{\beta \operatorname{Re}_{m}}{3} + \frac{1}{2} = \frac{A_{0}}{2(c-a_{0})}, \left(\frac{\beta \operatorname{Re}_{m}}{3} + \frac{1}{2}\right)^{2} = \left(\frac{k \operatorname{Re}_{m}}{3}\right)^{2} \left(\left(c-a_{0}\right)^{2} - B_{0}\right) + \frac{1}{4}.$$
 (20)

Здесь $A_0 = c_0 - a_0 - n_0 k^2 \operatorname{Re}_m / 3$, $B_0 = a_0^2 - b_0 + \operatorname{We} k^2$.

Исключая из (20) скорость *c*, получим для $Z \equiv (\beta \operatorname{Re}_m/3 + 1/2)^2$ квадратное уравнение:

$$Z^{2} - Z\left(0, 25 - B_{0}\left(k \operatorname{Re}_{m}/3\right)^{2}\right) - 0, 25A_{0}^{2}\left(k \operatorname{Re}_{m}/3\right)^{2} = 0.$$

Решая его, находим

$$Z = 0.5 \left(0.25 - B_0 \left(k \operatorname{Re}_m / 3 \right)^2 + \sqrt{\left(0.25 - B_0 \left(k \operatorname{Re}_m / 3 \right)^2 \right)^2 + A_0^2 \left(k \operatorname{Re}_m / 3 \right)^2} \right),$$

$$\beta = 3 \left(-0.5 \pm \sqrt{Z} \right) / \operatorname{Re}_m, \quad c = a_0 \pm 0.5 A_0 / \sqrt{Z}. \tag{21}$$

Знаки ± в формулах (21) дают две различные волновые моды. Мода, соответствующая знаку «плюс», может давать неустойчивость ($\beta > 0$), а знаку «минус» соответствует устойчивая мода.

Результаты расчетов

Для вихревых контактных устройств наиболее важен случай, когда пленка жидкости вертикальная, а поток газа горизонтальный, поэтому далее в качестве иллюстрации приведены расчеты неустойчивой моды только для указанной конфигурации течения ($\theta = \pi/2$, $\delta = \pi/2$) для системы вода-воздух (рис. 1, *b*). При заданных параметрах течения *r*, Re_{*m*} инкремент и фазовая скорость зависят от волнового числа *k* и угла α . Таким образом, для трехмерного течения имеем поверхности $\beta = \beta(k, \alpha)$, $c = c(k, \alpha)$. Если положить $\alpha = \text{const}$, получаем дисперсионные кривые $\beta(k)$, c(k) для фиксированного направления распространения волны. Угол α достаточно рассмотреть в диапазоне $-\pi/2 < \alpha < \pi/2$, т. к. угол $(\pi - \alpha)$ дает ту же самую прямую, что угол $(-\alpha)$, но с противоположным направлением оси $O\xi$.

Сначала проанализируем случай r = 0 (гравитационная пленка). В этом случае имеется симметрия относительно оси Ox. Поверхность $\beta(k, \alpha)$ показана на рис. 2, a при Re_m = 10. Для любого значения $\alpha \in (-\pi/2; \pi/2)$ имеется диапазон волнового числа $0 < k < k_n(\alpha)$, в котором инкремент положительный и достигает максимального значения. Абсолютный максимум поверхности $\beta(k,\alpha)$ достигается при $\alpha = 0$, т. е. для волны в направлении гравитации. На рис. 2, b показаны кривые, полученные сечением поверхности $\beta(k,\alpha)$ плоскостями $\alpha = 0$, $\alpha = \pi/4$ и $\alpha = \pi/2$. Область неустойчивости $0 < k < k_n(\alpha)$ сужается с ростом $|\alpha|$ и полностью исчезает при $|\alpha| = \pi/2$, т. е. в горизонтальном направлении возмущения не растут. На рис. 3, a показана поверхность $c = c(k,\alpha)$, а на рис. 3, b — кривые, полученные сечением плоскостями $\alpha = 0$, $\alpha = \pi/4$ и $\alpha = \pi/2$. Фазовая скорость тоже монотонно уменьшается с ростом $|\alpha|$. Как видно из рис. 3, в горизонтальном направлении при $k \rightarrow 0$ реализуются нейтральные стоячие волны, которые с увеличением k превращаются в бегущие затухающие капиллярные волны. Итак, в свободно стекающей пленке наиболее быстро растут волны в направлении гравитации,

Рис. 2. Поверхность $\beta(k, \alpha)$ при r = 0, $\operatorname{Re}_m = 10$ (*a*); кривые $\beta(k)$ при r = 0, $\operatorname{Re}_m = 10$ для различных значений угла распространения волны α (*b*).

Рис. 3. Поверхность $c(k, \alpha)$ при r = 0, $\operatorname{Re}_m = 10$ (*a*); кривые c(k) при r = 0, $\operatorname{Re}_m = 10$ для различных значений угла распространения волны α (*b*).

но возмущения могут расти также и в близких направлениях. Вследствие этого двумерные естественно развивающиеся волны становятся трехмерными.

На рис. 4, 5 показаны результаты расчетов при наличии потока газа (r = 1, $\operatorname{Re}_{m} = 10$). В отличие от гравитационной пленки, поверхности $\beta(k, \alpha)$ (рис. 4, *a*) и $c(k, \alpha)$ (рис. 5, *a*) несимметричны относительно сечения $\alpha = 0$. Абсолютный максимум поверхности $\beta(k, \alpha)$ достигается при $\alpha^* / \pi \approx 0,28$. Это означает, что быстрее всего волны растут в направлении, не совпадающем ни с гравитацией, ни с потоком газа. Волны могут расти также в горизонтальном направлении (т. е. в направлении движения газа). Угол между направлением распространения растущих волн и гравитацией может быть больше $\pi/2$. На рис. 4, b показаны кривые, полученные сечением поверхности $\beta(k,\alpha)$ плоскостями α = const. Значения $\alpha = \pm \pi/2$ дают совпадающие кривые $\beta(k)$, т. к. величина инкремента не меняется при изменении знака координаты ξ. Из рис. 5, а видно, что короткие (капиллярные) волны имеют положительные значения скорости в диапазоне $-0, 4 < \alpha / \pi < 0, 5$ и отрицательные значения в диапазоне $-0.5 < \alpha / \pi < -0.4$. Изменение знака фазовой скорости происходит при малом изменении угла α , поэтому кажется, будто поверхность $c(k, \alpha)$ имеет разрыв. Это объясняется тем, что в широком диапазоне угла α капиллярные волны распространяются вниз (по оси $O\xi$), и только для направления, близкого к горизонтальному, волны распространяются в сторону

Рис. 4. Поверхность $\beta(k, \alpha)$ при r = 1, $\text{Re}_m = 10$ (*a*); кривые $\beta(k)$ при r = 1, $\text{Re}_m = 10$ для различных значений угла распространения волны α (*b*).

Рис. 5. Поверхность $c(k, \alpha)$ при r = 1, $\text{Re}_m = 10$ (a); кривые c(k) при r = 1, $\text{Re}_m = 10$ различных значений угла распространения волны $\alpha(b)$.

движения газа. Линия нулевого значения скорости на поверхности $c(k, \alpha)$ пересекает плоскость k = 0 при $\alpha / \pi \approx -0, 4$. Это означает, что в направлении $\alpha/\pi \approx -0.4$ длинные волны являются стоячими растущими волнами. Кривые, полученные сечением поверхности $c(k,\alpha)$ плоскостями $\alpha = \text{const}$, показаны на рис. 5, b. Расчеты показывают, что асимметрия поверхностей $\beta(k,\alpha)$ и $c(k,\alpha)$ усиливается с ростом скорости газа (значения r). При увеличении r абсолютный максимум поверхности $\beta(k, \alpha)$ также растет.

На рис. 6, 7 и 8 приведены кривые: нейтральное волновое число $k_n(\alpha)$, а также волновое число $k_{\max}(\alpha)$ и инкремент $\beta_{\max}(\alpha)$ для максимально растущих волн при Re_m = 5 и различных значениях r. Максимум каждой кривой на рис. 8 представляет собой абсолютный максимум β^* поверхности $\beta(k, \alpha)$. С увеличением скорости газа (значения r) происходит резкое расширение области неустойчивости для углов α , близких к $\pm \pi/2$ (см. рис. 6). Инкремент для этих направлений также значительно возрастает с ростом r (рис. 8). Для малых углов α увеличение инкремента и расширение области неустойчивости незначительные.

На рис. 9 показаны направления распространения волн с максимальным инкрементом β^* в виде кривых $\alpha^*(r)$ при различных значениях Re_m . Видно, что

для *r* = 0 (*1*), 0,5 (*3*), 1 (*2*).

Рис. 8. Инкремент волн максимального роста при $\operatorname{Re}_m = 5$ для r = 0 (1), 0,5 (3), 1 (2).

Рис. 9. Направление распространения волн с максимальным инкрементом для $\operatorname{Re}_{m} = 1(1), 3(2), 5(3).$

с уменьшением Re_m значения α^* возрастают. Для тонкой пленки ($\operatorname{Re}_m < 1$) при r > 1 волны с максимальным инкрементом распространяются почти в горизонтальном направлении.

Заключение

На основе интегрального подхода впервые разработана модель, описывающая трехмерное возмущенное течение пленки жидкости, движущейся под действием гравитации и произвольно направленного турбулентного потока газа. В этой модели элементарные волны в пленке рассматриваются как двумерные, но могут распространяться в любом направлении. Продемонстрирована возможность простого вычисления касательного напряжения на межфазной поверхности в трехмерном случае через соответствующие значения для двумерной задачи. В линейной постановке система трех выведенных уравнений сводится к одному уравнению для возмущения толщины пленки, которое имеет двухволновую структуру.

Для конкретного случая вертикальной пленки и горизонтального потока газа проведены расчеты инкремента и фазовой скорости волн. Результаты расчетов позволяют сделать следующие выводы:

 движение газа приводит к расширению области неустойчивости для всех направлений распространения волн, особенно для направлений близких к направлению движения газа;

 волны с максимальным инкрементом распространяются в некотором промежуточном направлении между газовым потоком и гравитацией;

 наличие поперечного газового потока существенно расширяет диапазон направлений, в которых распространяются быстро растущие возмущения. Вследствие этого развитие трехмерных волн из двумерных возмущений должно происходить значительно быстрее, чем для свободно стекающей пленки.

Обозначения

с — фазовая скорость волны, м/с, *х*, *v*, *z* — координаты, м, g — ускорение свободного падения, м/ c^2 , - время, с, – расход жидкости по оси Ox, м²/с, - толщина пленки, м, h qu, v, w — компоненты скорости жилкости, м/с. – расход жидкости по оси Oz, м²/с, m k — волновое число, м⁻¹, – давление. Н/м². р*l* — длина волны, м, М - возмущение расхода по оси Oz, Н-возмущение толщины пленки, Q — возмущение расхода по оси Ох.

Греческие символы

- *θ* угол наклона пластины к горизонту,
- v кинематическая вязкость, м²/с,
- α угол между направлением распространения волны и гравитацией,
- δ угол между направлением газового потока и гравитацией,

Индексы

тах — волна максимального роста,

* — волны с максимальным инкрементом,

0 — невозмущенное состояние,

Безразмерные критерии

 $\operatorname{Re}_{m} = gh_{m}^{3}/3v^{2}$ — безразмерная толщина пленки, We = $\left(3\operatorname{Fi}/\operatorname{Re}_{m}^{5}\right)^{1/3}$ — число Вебера, Fi = $\sigma^3 / \rho^3 g v^4$ — пленочное число,

 $r = |\tau_0| / \rho g h_m$ — безразмерное касательное напряжение на поверхности пленки.

Список литературы

- 1. Алексеенко С.В., Накоряков В.Е., Покусаев Б.Г. Волновое течение пленок жидкости // Новосибирск: ВО «Наука», 1992. 256 с.
- 2. Гугучкин В.В., Демёхин Е.А., Калугин Г.Н., Маркович Э.Э., Пикин В.Г. О линейной и нелинейной устойчивости совместного плоскопараллельного течения пленки жидкости и газа // Изв. АН СССР. МЖГ. 1979. № 1. С. 36-42.
- 3. Демёхин Е.А. Нелинейные волны в пленке жидкости, увлекаемой турбулентным газовым потоком // Изв. АН СССР. МЖГ. 1981. № 2. С. 37-42.
- 4. Benjamin T.B. Shearing flow over a wavy boundary // J. Fluid Mech. 1959. Vol. 6, No. 2. P. 161-205.
- 5. Alekseenko S.V., Nakoryakov V.E. Instability of a liquid film moving under the effect of gravity and gas flow // Int. J. Heat Mass Transfer. 1995. Vol. 38. P. 2127-2134.
- 6. Aktershev S.P., Alekseenko S.V. Interfacial instabilities in an annular two-phase flow // Russ. J. Eng. Thermophys. 1996. Vol. 6, No. 4. P. 307-320.
- 7. Трифонов Ю.Я. Волнообразование при стекании пленки вдоль наклонной поверхности при наличии фазового перехода и касательного напряжения на свободной поверхности // ПМТФ. 1996. Т. 37, № 2. C. 109-119.
- 8. Демёхин Е.А., Токарев Г.Ю., Шкадов В.Я. Неустойчивость и нелинейные волны в вертикальной пленке жидкости, текущей в противотоке с турбулентным газовым потоком // ТОХТ. 1989. Т. 23, № 1 C 64-70
- 9. Uma V., Usha R. Weakly nonlinear stability analysis of a falling film with countercurrent gas flow // Nonlinear Dyn. 2008. Vol. 52. P. 115-128.
- 10. Alekseenko S.V., Aktershev S.P., Cherdantsev A.V., Kharlamov S.M., Markovich D.M. Primary instabilities of liquid film flow sheared by turbulent gas stream // Int. J. Multiphase Flow. 2009. Vol. 35. P. 617-627.
- 11. Шкадов В.Я. Волновые режимы течения тонкого слоя вязкой жидкости под действием силы тяжести // Изв. АН СССР. МЖГ. 1967. № 1. С. 43-51.
- 12. Aktershev S.P., Alekseenko S.V. Influence of condensation on the stability of a liquid film moving under the effect of gravity and turbulent vapor flow // Int. J. Heat Mass Transfer. 2005. Vol. 48. P. 1039-1052.

Статья поступила в редакцию 11 мая 2011 г.

 μ — динамическая вязкость, кг/мс, ξ, η — координаты, м, τ — касательное напряжение, H/M^2 .

на поверхности жидкости,

W— на пластине.

 σ — поверхностное натяжение, Н/м,

плотность жидкости, кг/м³,

— временной инкремент волны, c^{-1}