УДК 674.038.1

ДЕМПФИРУЮЩИЕ СВОЙСТВА СЕКВОЙИ, БЕРЕЗЫ, СОСНЫ И ОСИНЫ ПРИ УДАРНОМ НАГРУЖЕНИИ

А. П. Большаков, М. А. Балакшина, Н. Н. Гердюков, Е. В. Зотов, А. К. Музыря^{*}, А. Ф. Плотников^{*}, С. А. Новиков, В. А. Синицын, Д. И. Шестаков^{*}, Ю. И. Щербак

Всероссийский научно-исследовательский институт экспериментальной физики, 607190 Саров

* Всероссийский научно-исследовательский институт технической физики, 456770 Снежинск

Представлены результаты экспериментального исследования деформационно-прочностных свойств древесины секвойи, осины, сосны и березы при различных скоростях нагружения, температурах, влажности и углах ориентации волокон относительно нагрузки. Представлены диаграммы напряжение — деформация и аналитическая зависимость прочности от влажности, температуры и скорости нагружения.

В последние годы такой широко распространенный природный материал, как древесина благодаря ряду специфических свойств (относительно низкая плотность, относительно высокая прочность, низкая теплопроводность, технологичность) получил распространение не только в строительстве, но и в некоторых областях техники. Свойство древесины деформироваться при поперечном сжатии в широком диапазоне деформаций (30–40%) при практически постоянном напряжении позволяет отнести ее к материалам, способным амортизировать ударные нагрузки [1–4]. Как амортизатор древесина ограничивает передаваемую через нее нагрузку величиной предела прочности. В сочетании со сравнительно низкой стоимостью, простотой технологических операций это позволяет использовать указанный материал в качестве ограничителя аварийных ударных нагрузок (демпфера) при транспортировании грузов, разрушение которых при аварии может повлечь тяжелые экологические последствия. При конструировании защитных систем с использованием демпферов из древесины необходимы сведения о деформационно-прочностных свойствах древесины используемых пород.

В настоящей работе приводятся некоторые результаты статических и динамических и испытаний на одноосное сжатие образцов из древесины четырех пород — березы, секвойи, сосны и осины.

Изготовление образцов для испытаний в основном соответствовало российским государственным стандартам. Различие в размерах (длине продольных или поперечных ребер) в каждом призматическом образце не превышало 0,1 мм. То же относится к высоте и диаметру цилиндрического образца. Прямые углы между смежными гранями проверялись контрольным угольником. Шероховатость рабочих поверхностей образцов в соответствии с ГОСТ 16 483.0-89 "Древесина. Общие требования к физико-механическим испытаниям" не превышала 100 мкм и контролировалась индикатором часового типа.

Исследования проведены по контрактам N^o AJ-286 и AJ-3224, заключенным с Сандийскими национальными лабораториями (Альбукерк, США). Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 97-01-00344).

ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ СВОЙСТВА СЕКВОЙИ И БЕРЕЗЫ

Условия эксперимента и экспериментальное оборудование. Проведены исследования прочностных и деформационных свойств секвойи (США) и березы (Волго-Вятский район России) при динамической (10 м/с) и квазистатической (примерно 10⁻⁴ м/с) скоростях нагружения. Прочностные и деформационные характеристики березы приведены в работах [5, 6]. В настоящей работе приводятся некоторые данные по березе для сравнения с другими породами древесины. Цилиндрические образцы диаметром и высотой 25 мм, вырезанные под углами 0, 5, 10, 15, 30, 45 и 90° относительно направления волокон, испытывались на одноосное сжатие при температурах -30, 20 и 65 °C при фиксированной влажности $\omega = 6 \div 7 \%$. Динамические испытания проводились по методу Кольского на установке с составным стержнем Гопкинсона [7, 8]. Нагружение образцов, осуществляемое с помощью взрывного устройства, и схема измерений представлены в работах [5, 6]. Нагрев и охлаждение образцов проводились в специальных термостатах. Для охлаждения использовался жидкий азот. Для исключения потери влажности образцы упаковывались в герметичные пакеты из полиэтилена толщиной 0,02 мм, в которых они и испытывались. Нагружение образцов осуществлялось трапецеидальным импульсом давления с амплитудой примерно 0,2 МПа и длительностью примерно 200 мкс. Испытания образцов проводились в лабораторных условиях.

Результаты экспериментов. В каждом эксперименте с тензорезисторов, расположенных на мерных стержнях (нагружающем и опорном), получены значения упругих деформаций в нагружающей $\varepsilon_{\rm H}$ и проходящей $\varepsilon_{\rm n}$ волнах напряжения (рис. 1). По измеряемым в эксперименте деформациям $\varepsilon_{\rm H}(t)$ и $\varepsilon_{\rm n}(t)$ определялись осредненные значения одноосного напряжения сжатия σ_s и деформации ε_s образца в направлении распространения волны из выражений [8]

$$\sigma_s(t) = \frac{\varepsilon_{\rm II}(t)EF_{\rm c}}{F_{\rm o}}, \qquad \varepsilon_s(t) = \frac{2a}{l} \int_0^t [\varepsilon_{\rm II}(t) - \varepsilon_{\rm II}(t)] dt,$$

где E — модуль упругости материала стержня; $F_{\rm c}$ и $F_{\rm o}$ — площади поперечного сечения стержня и образца соответственно; a — скорость распространения упругих волн в стержне; l — длина образца. Погрешность определения напряжения и деформации не превышала ± 10 %.

Скорость нагружения образца v определялась по максимальной величине напряжения σ_{\max} в нагружающей волне сжатия по формуле $v = \sigma_{\max}/(\rho a)$, где ρ — плотность материала стержня.

Рис. 1. Зависимость упругих деформаций от времени в нагружающей (1) и проходящей (2) волнах напряжения (береза, $\alpha = 10^{\circ}$, $T = 20 {}^{\circ}$ C)

Рис. 2. Динамические диаграммы σ - ε древесины секвойи при различных углах ориентации волокон относительно нагрузки (T = -30 °C): 1 — $\alpha = 0, 2 - \alpha = 5^{\circ}, 3 - \alpha = 10^{\circ}, 4 - \alpha = 15^{\circ}, 5 - \alpha = 30^{\circ}, 6 - \alpha = 45^{\circ}, 7 - \alpha = 90^{\circ}$

С помощью точной дозировки жидкого взрывчатого вещества в нагружающей установке максимальная нагрузка σ_{max} в экспериментах поддерживалась практически постоянной и составляла (225 ± 5) МПа. Поэтому скорость нагружения v образцов также сохранялась постоянной и равной примерно 10 м/с. Испытания образцов проводились при квазистатическом нагружении со скоростью v, равной примерно 10^{-4} м/с, на разрывной машине P-5 с использованием термостатов для обеспечения необходимой температуры.

Динамические диаграммы $\sigma - \varepsilon$ древесины секвойи, полученные при испытании образцов с углами ориентации волокон α относительно направления нагружения от 0 до 90°, представлены на рис. 2 (для температуры, равной -30 °C). Динамические диаграммы деформирования древесины секвойи и березы при температурах 20 и 65 °C, а также квазистатические диаграммы имеют сходный по форме куполообразный вид (кроме диаграмм для $\alpha = 90^{\circ}$). Основным отличием динамических диаграмм от квазистатических является меньшая (в 1,5 \div 2 раза) величина деформации разрушения ε_* (при максимальном значении напряжения сжатия σ_*). Для всех диаграмм $\sigma_{-\varepsilon}$ характерным является заметное уменьшение пика напряжения (от нескольких процентов до 6 ÷ 8 раз) при увеличении угла ориентации волокон от 0 до 45°. При поперечном сжатии ($\alpha = 90^{\circ}$) деформирование образцов обеих пород древесины происходит при практически постоянном напряжении (для секвойи — 2 \div 4 МПа, для березы — 8 \div 12 МПа) вплоть до $\varepsilon = 30 \div 40 \%$ (при квазистатическом нагружении). При дальнейшем сжатии происходит уплотнение слоев, напряжение увеличивается. При динамическом поперечном сжатии диаграммы $\sigma - \varepsilon$ построены до деформаций, равных $10 \div 12\%$. Для разрушения образцов из секвойи и березы с углами ориентации $\alpha = 0, 5, 10, 15^{\circ}$ характерным является образование трещин при достижении пика напряжения (напряжения разрушения σ_*) и дальнейшее развитие трещин по всему объему образца при уменьшении напряжения. Дальнейшее деформирование образцов сопровождается продольным расщеплением и изломом волокон. Для разрушения образцов с углами ориентации $\alpha = 30, 45^{\circ}$ характерным является образование сколов под такими же углами. Разрушение образцов из березы и секвойи с углами ориентации от 0 до 45° начинается при $\varepsilon = 1 \div 3 \%$. При поперечном сжатии древесины примерно до 50 %происходит уплотнение слоев без разрушения.

Данные по секвойе и березе приведены в табл. 1. Зависимость предела прочности σ_* секвойи от угла ориентации волокон $\alpha = 0, 5, 10, 15, 30, 45, 90^{\circ}$ для T = -30, 20, 65°C показана на рис. 3.

Таблица 1

		σ, ΜΠα					$\varepsilon_*, \%$						
α ,	ρ ,	−30 °C		20 °C		65 °C		−30 °C		20 °C		65 °C	
град	$\kappa \Gamma / m^3$	Дин.	Стат.	Дин.	Стат.	Дин.	Стат.	Дин.	Стат.	Дин.	Стат.	Дин.	Стат.
Секвойя													
0	418	68,0	51	40,2	48	55,3	56	1,1	2,6	1,4	3,3	1,4	3,3
5	405	54,5	53	37,1	50	47,4	49	1,0	2,4	1,2	2,7	1,4	3,2
10	408	63,0	43	43,3	48	48,7	45	1,6	2,0	1,6	3,0	1,2	2,9
15	417	47,7	40	45,3	36	27,0	38	1,3	2,0	$1,\!6$	$1,\!6$	0,5	1,8
30	412	25,7	16	26,8	21	17,7	18	1,6	1,7	1,0	1,7	1,1	2,2
45	370	10,1	8	11,4	9	13,1	8	1,4	2,2	1,4	2,2	0,6	1,0
90	420	2,0	3,8	4,0	3,7	3,0	3,7		33,0		36,0		31,0
Береза													
0	624	128	88	105	81	104	86	$1,\!5$	2,7	1,3	2,1	$1,\!6$	2,4
5	600	119	85	108	81	94	78	1,1	1,4	1,4	$1,\!6$	1,8	1,9
10	603	57	65	77	65	61	58	1,1	1,7	1,1	2,8	1,6	2,9
15	627	65	71	81	66	68	74	1,5	1,6	1,4	3,4	1,2	2,0
30	633	34	38	35	35	32	35	1,5	3,3	1,7	4,2	1,5	3,6
45	609	17	24	19	23	18	16	2,6	2,8	2,0	4,6	1,7	2,7
90	590	8	12	12	11	10	10		32,0		41,0		38,0

Динамическая и статическая прочность образцов из секвойи и березы в зависимости от угла ориентации волокон и температуры

Значения практически постоянных напряжений деформирования при поперечном сжатии для испытанных образцов древесины на порядок меньше разрушающих напряжений при продольном сжатии. Прочность древесины секвойи при влажности $6\div7\%$ практически не зависит от температуры и скорости нагружения. Значительное увеличение прочности древесины секвойи наблюдается лишь при скорости 10 м/с и температуре $-30 \,^{\circ}$ С. В испытаниях образцов березы с углами $\alpha = 0, 5^{\circ}$ при $T = -30, 20, 65 \,^{\circ}$ С динамическая прочность оказалась выше, чем в опытах с другими углами ориентации. Так, для указанных температур испытания и углов ориентации образцов из березы коэффициент динамичности составил 1,4, 1,3 и 1,2 соответственно. Из полученных результатов также следует, что прочность образца древесины березы с углами вырезки ориентации $\alpha = 0, 5^{\circ}$ при повыше-

Рис. 3. Зависимость динамической прочности σ_* секвойи от угла приложения нагрузки α относительно волокон:

1 - T = -30 °C; 2 - T = 20 °C; 3 - T = 60 °C

нии температуры существенно уменьшается. Например, при динамическом нагружении по мере возрастания температуры испытания (T = -30, 20, 65 °C) прочность образцов из березы с $\alpha = 0, 5^{\circ}$ уменьшается соответственно со 128 до 104 МПа для $\alpha = 0$ и со 119 до 94 МПа для $\alpha = 5^{\circ}$. При квазистатическом нагружении при таких же условиях испытания прочность древесины березы с увеличением температуры уменьшается с 88 до 81 МПа и с 85 до 78 МПа. Сравнивая прочность σ_* древесины березы и секвойи при сжатии, можно отметить, что прочность секвойи в $1,5 \div 2$ раза меньше для всех углов ориентации волокон относительно направления нагрузки.

ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ СВОЙСТВА СОСНЫ И ОСИНЫ

Условия эксперимента и экспериментальное оборудование. В открытой печати отсутствуют данные по механическому поведению древесины сосны и осины при различных скоростях нагружения и отрицательных температурах [9–14]. В настоящей работе приведены экспериментальные данные по деформационно-прочностным характеристикам сосны и осины, полученные при следующих условиях:

— скорость нагружения примерно $2 \cdot 10^{-5}$ м/с (квазистатические испытания), 7 м/с и 13 м/с (динамические испытания);

- три уровня влажности древесины (5, 20 и более 30%);
- три значения температуры (-40, 20, 50 °C);
- деформирование вдоль волокон, в радиальном и тангенциальном направлениях.

Образцы для испытаний на сжатие древесины сосны и осины имели стандартные размеры $(20 \times 20 \times 30 \text{ мм})$ и были ориентированы в трех различных направлениях относительно волокон (продольном, радиальном и тангенциальном). Влажность древесины определялась по разности масс образца до и после его высушивания. (В соответствии с действующим стандартом влажность определяется как отношение массы воды в образце к массе абсолютно сухой древесины. Для так называемой мокрой древесины она может превышать 100%). Заданную температуру испытаний 20 и 50 °C получали, помещая образцы в термошкаф и выдерживая их там в течение 1 ч. Для исключения потери влажности образцы упаковывались в герметичные полиэтиленовые пакеты. Температуру -40 °C обеспечивали, помещая образцы в термостат. Для охлаждения использовался жидкий азот.

Определение квазистатических механических свойств древесины при сжатии проводилось на универсальной испытательной машине "Инстрон-1185" (Англия), оснащенной климатической камерой. Скорость деформирования была равной 1 мм/мин, при этом записывались диаграммы нагрузка — деформация. Погрешность измерения нагрузки составляла ±1 %, деформации — 3÷8 %. Средние значения механических показателей древесины определялись по результатам испытаний 4 ÷ 10 образцов.

Динамические испытания проводились на ударном стенде копрового типа, имеющем следующие характеристики: скорость удара до 13 м/с, масса падающего груза (молота) 2,37 кг. Скорость удара V измерялась с помощью электроконтактов по времени прохождения грузом конечного участка пути. Ударное усилие определялось по измеренным с помощью пьезоакселерометров перегрузкам молота N(t). Погрешность этих измерений составляет $\pm (6 \div 13)$ %. Развитие деформаций во времени определялось интегрированием экспериментальной зависимости N(t) перегрузок. После первого интегрирования определялась дает скорость перемещения границы молот — образец, после второго — положение границы, т. е. укорочение образца и, следовательно, деформация. Эта процедура проверена в специальных опытах, где проводилось непосредственное измерение деформаций с помощью электроконтактов. Статистика динамических экспериментов определялась по трем образцам, испытанным в одинаковых условиях.

Рис. 4. Статические диаграммы σ - ε для сосны при различных направлениях сжатия относительно волокон $(T = 20 \text{ °C}, \omega = 4 \%)$:

1 — тангенциальное, 2 — вдоль волокон, 3 — радиальное

Результаты экспериментов. Примеры диаграмм напряжение — деформация в статических испытаниях, а также кривые ускорений при динамическом нагружении показаны на рис. 4, 5. Результаты их обработки содержатся в табл. 2, 3.

Значительная часть полученных результатов приближенно описывается простым трехчленным соотношением

$$\sigma(\omega, TV) = \sigma_{\omega} + (\sigma_0 - \sigma_{\omega}) \exp\left[-(\omega/C)^2\right] - k_1 T + k_2 V, \tag{1}$$

где ω — влажность древесины; σ_{ω} — прочность при $\omega > 30\%$, T = 0, V = 0; σ_0 — прочность абсолютно сухой древесины ($\omega = 0$, T = 0, V = 0); C — эмпирический коэффициент; k_1 , k_2 — температурный и скоростной коэффициенты. При выборе соотношения авторы пользовались предложенной в [15] экспоненциальной зависимостью прочности от влажности и линейной зависимостью прочности от температуры. При этом учитывалось линейное возрастание прочности, пропорциональное скорости удара. Значения констант в соотношении (1) приведены в табл. 4. В экспериментах при любом направлении сжатия и для сосны, и для осины C = 16%.

Для радиального и тангенциального направлений деформирования зависимостью (1) не описывается особая область — отрицательные температуры образцов с влажностью более 30 %. Материал в этой области из-за промерзания приобретает повышенную жесткость. Замороженный образец сырой древесины в радиальном и тангенциальном направлении оказывает жесткое сопротивление деформированию. Скорость нарастания нагрузки

Рис. 5. Экспериментальная зависимость перегрузки N(t) (a) и расчетная диаграмма $\sigma(\varepsilon)$ (b) для трех направлений сжатия древесины сосны (T = 20 °C, $\omega = 18 \div 20$ %, $V = 6.7 \div 6.8$ м/с): 1 — вдоль волокон, 2 — радиальное, 3 — тангенциальное

Таблица 4

Направление	$\sigma_{\omega}, 1$	МПа	$\sigma_0, 1$	МПа	k_1, M	Па/°С	$k_2, M\Pi a \cdot c/M$		
сжатия	Сосна	Осина	Сосна	Осина	Сосна	Осина	Сосна	Осина	
Вдоль волокон	30,0	33,0	80,0	77,0	$0,\!350$	0,400	$2,\!10$	$2,\!00$	
Радиальное	$_{3,0}$	2,2	5,0	7,3	0,020	0,020	$0,\!16$	$0,\!20$	
Тангенциальное	4,4	2,9	8,0	2,7	$0,\!055$	0,026	$0,\!28$	$0,\!22$	

Константы аналитической зависимости (1)

и прочность увеличиваются по сравнению с испытаниями при положительных температурах и становятся сравнимы со скоростью и прочностью при нагружении образца в наиболее прочном направлении (вдоль волокон). Следствием этого и является скачкообразное изменение прочности при температуре -40 °C (при $\omega > 30$ %).

Таким образом, показано, что анизотропия структуры древесины сосны и осины приводит к анизотропии прочностных свойств при квазистатическом и динамическом сжатии.

При сжатии в радиальном и тангенциальном направлениях наблюдается типичная картина упругопластического деформирования с последующей жесткой разгрузкой.

В исследованных диапазонах параметров влажности (от 0 до 130%), температуры (от -40 до 50 °C), скорости удара (от $2 \cdot 10^{-5}$ до 13 м/с) эксперименты позволяют сделать следующие выводы:

— уменьшение прочности древесины сосны и осины с ростом влажности до 30% и стабилизация прочности при ее дальнейшем увеличении;

– уменьшение прочности древесины сосны и осины с ростом температуры;

— увеличение прочности древесины сосны и осины при переходе от статического к динамическому нагружению.

При экстремальных значениях параметров меняется поведение образца, нагружаемого в радиальном или тангенциальном направлении. При влажности более 30 % и температуре -40 °C замороженный образец оказывает жесткое сопротивление удару подобно нагружению вдоль волокон.

Экспериментальные данные для сосны и осины с точностью $\pm 25\%$ описываются простым трехчленным соотношением (1), в котором учитывается зависимость прочности от влажности (экспоненциальное убывание), температуры (линейное падение), скорости удара (линейный рост).

Авторы выражают благодарность С. В. Сеньковой за помощь в обработке экспериментальных данных и оформление документации.

ЛИТЕРАТУРА

- 1. Крысанов Ю. А., Новиков С. А. Исследование динамического сжатия пенополистирола // Пробл. прочности. 1977. № 8. С. 115–117.
- 2. Новиков С. А., Синицын В. А., Погорелов А. П. Расчет взрывного нагружающего устройства для создания импульса давления заданных параметров // Физика горения и взрыва. 1980. Т. 16, № 6. С. 111–113.
- Абакумов А. И., Квасков Г. А., Новиков С. А., Синицын В. А. Исследования упругопластического деформирования цилиндрических оболочек при осевом ударном нагружении // ПМТФ. 1988. № 3. С. 150–153.
- 4. Багрянов Б. В., Квасков Г. А., Новиков С. А., Синицын В. А. Исследование осевого динамического сжатия трубчатых металлических крешеров // ПМТФ. 1982. № 1. С. 156–159.

- 5. Большаков А. П., Гердюков Н. Н., Зотов Е. В. и др. Исследование влияния скорости нагружения, угла ориентации волокон и температуры на прочностные характеристики березы // ПМТФ. 1998. Т. 39, № 6. С. 153–158.
- Bolshakov A. P., Gerdjukov N. N., Zotov E. V., et al. Damping properties of redwood and birch at shock loading // Proc. of the 12th Intern. conf. on the packaging and transportation of radioactive materials, Paris, 10–15 May, 1998. Paris: Palais des Congres, 1998. V. 1. P. 269–274.
- Большаков А. П., Новиков С. А., Синицын В. А. Прочность конструкционных материалов при динамических нагрузках (обзор) // Вопр. атом. науки и техники. Сер. Физика и техника ядерных реакторов. 1989. Вып. 1. С. 23–46.
- 8. Зукас Дж. А., Николас Т., Свифт Х. Ф. и др. Динамика удара. М.: Мир, 1985.
- 9. Боровиков А. М., Уголев Б. Н. Справочник по древесине. М.: Лесн. пром-сть, 1989.
- 10. Справочник машиностроителя // Под ред. Э. А. Сателя. М.: Машиностроение, 1964. Т. 6.
- 11. Москалева В. Е. Строение древесины и ее изменения при физических и механических воздействиях. М.: Изд-во АН СССР, 1957.
- 12. Леонтьев Н. Л. Исследование физико-механических свойств древесины кольской сосны // Физико-механические свойства древесины: Сб. науч. тр. М.; Л.: Гослесбумиздат, 1953.
- 13. Справочник по машиностроительным материалам. Под ред. Г. И. Погодина-Алексеева. М.: Машгиз, 1960. Т. 4.
- 14. Уголев Б. Н. Испытание древесины и древесных материалов. М.: Лесн. пром-сть, 1965.
- 15. Волынский В. Н. Влияние влажности и температуры на механические показатели древесины с учетом ее плотности // Изв. вузов. Лесн. журн. 1991. № 5. С. 75–79.

Поступила в редакцию 18/XI 1999 г., в окончательном варианте — 12/IV 2000 г.