УДК 539.4

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОТКОЛЬНОГО РАЗРУШЕНИЯ И КОМПАКТИРОВАНИЯ АЛЮМИНИЯ

В. А. Брагунец¹, И. Н. Кондрохина¹, А. М. Подурец^{1,2}, В. Г. Симаков¹, И. А. Терешкина^{1,2}, М. И. Ткаченко¹, И. Р. Трунин^{1,2}

¹РФЯЦ, ВНИИ экспериментальной физики, 607190 Саров

²Саровский физико-технический институт — филиал Национального исследовательского ядерного университета «МИФИ», 607186 Саров, TIRSarov@yandex.ru

На примере алюминия рассмотрены варианты постановки экспериментов, в которых предварительно разрушенные образцы (в опытах на откольное разрушение) в дальнейшем компактируются при повторном ударном нагружении. По результатам экспериментально-расчетного исследования и металлографического анализа сохраненных в опытах образцов определено давление компактирования алюминия ≈ 2 ГПа.

Ключевые слова: откольное разрушение, компактирование, металлографический анализ.

ВВЕДЕНИЕ

В настоящее время всё большую актуальность приобретает изучение движения раздробленных сред. При этом раздробленность может быть разной природы, например, заданной заранее (изначально пористая среда) либо возникающей в процессе движения первоначально сплошной среды. В последнем случае особенно важен вопрос о восстановлении сплошности (компактировании) в процессе повторного нагружения разрушенного образца.

Изучение механизмов разрушения и компактирования и их математическое моделирование являются сложной задачей, для решения которой требуются большой объем экспериментальной информации и разработка численных моделей. Следует отметить, что исследованию откольного разрушения различных материалов посвящено множество публикаций (см., например, работу [1] и библиографию в ней), тогда как информация о процессе компактирования носит ограниченный несистематизированный характер.

В данной работе на примере алюминия марки АД-1 рассмотрены варианты постановки экспериментов, в которых предварительно разрушенные образцы (опыты на откольное разрушение) в дальнейшем компактируются («залечиваются») при повторном ударном нагружении.

При выборе вариантов постановки экспериментов, на взгляд авторов, необходимо выполнение следующих требований:

1) во всех экспериментах должно быть использовано одинаковое нагружающее устройство;

2) в опытах на откольное разрушение поврежденность образцов должна быть незначительной (внутренней), т. е. образец не должен разрушаться на отдельные фрагменты;

 образцы должны быть сохранены для дальнейшего металлографического анализа и последующего использования при исследовании процесса компактирования.

Согласно этим требованиям эксперименты проходили в два этапа. На первом этапе в образцах из алюминия создавали внутреннюю откольную поврежденность. На втором этапе сохраненные образцы с внутренней поврежденностью повторно нагружали ударной волной, чтобы скомпактировать их («залечить» внутренние повреждения).

Численное моделирование постановки данных экспериментов проводилось по одномерным и двумерным программам с использованием кинетической модели откольного разрушения [2], применяемой авторами для описания разрушения различных материалов [3, 4], и модели компактирования [5].

[©] Брагунец В. А., Кондрохина И. Н., Подурец А. М., Симаков В. Г., Терешкина И. А., Ткаченко М. И., Трунин И. Р., 2014.

ИССЛЕДОВАНИЕ ОТКОЛЬНОГО РАЗРУШЕНИЯ АЛЮМИНИЯ

Схема постановки первого этапа опытов приведена на рис. 1 (материал ударника, экрана и кольца — алюминий, подложка — фторопласт; все размеры сборки указаны на рисунке).

Схему эксперимента выбирали на основании результатов численного двумерного моделирования (рис. 2), согласно которым образец в процессе нагружения не изменяет своей первоначальной формы и в срединном сечении образца возникают растягивающие напряжения, что может привести к его откольному разрушению.

Разгон ударника осуществлялся в стволе легкогазовой пушки калибра 37 мм. Скорость

Рис. 1. Схема эксперимента

Рис. 2. Результаты двумерного расчета: распространение ударной волны (УВ) и волн разрежения (ВР), образование области растягивающих напряжений в сборке, приведенной на рис. 1

подлета ударника к мишени определялась с помощью специального лазерного устройства с относительной погрешностью $\approx 1~\%$ в диапазоне 200 ÷ 500 м/с.

Скорость ударника W варьировалась от 250 до 350 м/с. В этом интервале скоростей нагружения, согласно предварительным расчетам, возникает незначительное откольное разрушение образца: это либо отдельные дефекты — поры, либо цепочка пор, объединенных во внутреннюю магистральную трещину. При таком уровне нагружения образец сохраняет внешнюю целостность и может быть использован при повторном нагружении.

После каждого ударно-волнового эксперимента с зарегистрированной скоростью нагружения сохраненный образец разрезали по диаметру и исследовали шлиф его поперечного среза, определяли степень и характер поврежденности. На рис. 3 приведены фотографии шлифов сохраненных алюминиевых образцов из трех опытов. Как видно из рис. 3, с увеличением скорости нагружения W возрастает степень поврежденности алюминиевого образца. При этом во всех опытах образцы сохранили свою первоначальную форму, поэтому практически без доработки могли быть использованы при повторном нагружении.

Характер разрушения образцов — вязкий, с характерным дефектом, имеющим форму поры (см. рис. 4, где показан фрагмент структуры образца 3).

Расчетное сопровождение экспериментов проводилось по одномерной программе. Шаровая составляющая тензора нормальных напряжений $\sigma_x = -P + S_x$ задавалась уравнением состояния Ми — Грюнайзена

Рис. 3. Картина шлифов алюминиевых образцов (увеличение ×50):

а — образец 1, W=279м/с, б — образец 2, W=316м/с,
 6 — образец 3, W=340м/с

Рис. 4. Поврежденность образца 3 (увеличение ×200)

$$P = \rho_0 c_0^2 (\delta^n - 1) / n + \Gamma \rho c_v (T - T_0),$$

девиаторная составляющая [6, 7] — уравнением

•

$$S_x = \frac{4}{3} \mu \left[\dot{e}^T - 2bc_t N_0 \left(1 + \frac{M}{N_0} \gamma^P \right) \exp \frac{-B - H\gamma^P}{\tau} \right]$$

Здесь ρ — плотность вещества, ρ_0 — начальная плотность вещества (алюминий), $\delta = \rho/\rho_0$ — сжимаемость, n — подгоночный параметр, Γ — параметр Грюнайзена, T, T_0 — текущая и начальная температура, c_0 — объемная скорость звука при нормальных условиях, c_t — поперечная скорость звука, c_v — теплоемкость, μ — модуль сдвига, b — вектор Бюргерса, N_0 — начальная плотность подвижных дислокаций, M — коэффициент размножения подвижных дислокаций, H — коэффициент деформационного упрочнения, B — характеристическое напряжение торможения, τ — сдвиговое напряжение.

Моделирование откольного разрушения алюминия проводилось по кинетической модели вязкого разрушения [2, 3]:

$$\dot{\omega} = 8\pi R_0^3 \dot{N}_0 \exp\left(\frac{\sigma_x - \sigma_{n0}}{\sigma_1}\right) \Theta(\sigma_x - \sigma_{n0}) + 3\omega \left(\frac{\sigma_x - \sigma_{g0}}{4\eta}\right) \Theta(\sigma_x - \sigma_{g0}),$$

где R_0 — начальный радиус дефекта (поры), \dot{N}_0 — параметр модели разрушения (начальная скорость образования дефектов), \dot{N}_0 = const, $\Theta(\sigma_x - \sigma_{n0})$ — единичная функция Хевисайда, η — параметр модели разрушения, характеризующий вязкость материала, η = const, σ_{n0} — пороговое напряжение образования дефектов, σ_{g0} — пороговое напряжение роста дефектов, σ_1 — параметр модели разрушения, $\sigma_1 = \text{const.}$

На рис. 5 представлены расчетные распределения поврежденности ω по толщине образца x и сравнение результатов расчетов с результатами металлографического анализа сохраненных после опытов образцов. Как видно из приведенных рисунков, с увеличением скоро-

Рис. 5. Распределение поврежденности по толщине образца и результат металлографического анализа:

a— образец 1, W=279м/с, δ — образец 2, W=316м/с, ϵ — образец 3, W=340м/с

ет $\delta \approx 2$ мм.

сти соударения максимальная поврежденность образцов незначительно растет и колеблется в пределах $0.05 \div 0.08$, что соответствует уровню начальной поврежденности материала. Зона разрушения находится в срединной области образцов (ее ширина, например, для образца 3 (W = 340 м/c) равна $250 \div 500 \text{ мкм}$), и толцина откольных слоев во всех образцах, полученная как в расчетах, так и при измерениях по фотографиям поперечных срезов, составля-

ИССЛЕДОВАНИЕ КОМПАКТИРОВАНИЯ АЛЮМИНИЯ

В опытах на откольное разрушение при нагружении ударником со скоростью W = 340 ± 5 м/с было подготовлено четыре образца, имеющих внутреннюю поврежденность, как у образца 3 (см. рис. 4). Эти сохраненные образцы нагружали алюминиевым ударником, как и в постановке опытов первого этапа, с одним лишь отличием: фторопластовая подложка на втором этапе опытов была заменена на алюминиевую толщиной 10 мм, что позволило исключить образование волны разрежения на границе раздела образец — подложка и, следовательно, повторное образование откольного разрушения. Таким образом, предварительно разрушенный образец должен компактироваться проходящей ударной волной.

Варьируя скорость повторного нагружения поврежденных образцов в диапазоне 250÷450 м/с, а соответственно и амплитуду действующей на образец ударной волны, определяли уровень нагружения, при котором происходит компактирование поврежденного образца. Отсутствие или наличие внутренней поврежденности устанавливали путем металлографического исследования.

На рис. 6 приведены результаты металлографического анализа постопытных образцов после компактирования и образца-свидетеля с внутренней поврежденностью. В опытах, где поврежденные образцы нагружались ударником со скоростью $W \approx 250 \div 450$ м/с, поры схлопывались, оставляя в зоне поврежденности след в виде узкой полоски («ручеек»). Ширина полосы, согласно измерениям, в несколько раз меньше среднего размера поры. На рис. 6,6 хорошо видно, как поры «сливаются» в общую трещину. Можно предположить, что это начальная стадия компактирования и давление, соответствующее данному уровню нагру-

Рис. 6. Результаты металлографического анализа (увеличение ×200):

а — поврежденность образца после опыта на откольное разрушение, $W = 340 \text{ м/c}; \ 6-\partial$ — поврежденность после опыта на компактирование, $W = 255 \ (6), 341 \ (6), 352 \ (c), 448 \text{ м/c} \ (d)$

Номер опыта	W, м/с	P, ГПа
1	255	1.85
2	341	2.50
3	352	2.60
4	448	3.30

жения, определяет нижнее граничное значение давления компактирования.

В таблице для каждого опыта по компактированию алюминия приведены расчетные значения амплитуды ударной волны, соответствующие скоростям нагружения. Согласно полученным результатам начальная стадия компактирования алюминия наблюдается при амплитуде ≈ 1.85 ГПа. С увеличением скорости нагружения образца изменяются структура и размеры зоны его поврежденности — поры сливаются в полосу шириной меньше среднего размера поры. При W = 448 м/с в отдельных зонах образца отсутствует характерная полоса, что свидетельствует о полном «залечивании» повреждения.

ЗАКЛЮЧЕНИЕ

Методически отработаны варианты постановки экспериментов, в которых предварительно разрушенные образцы из алюминия компактируются при повторном ударном нагружении.

Предлагаемые эксперименты позволяют более детально рассмотреть процессы разрушения и компактирования ударно-нагруженных веществ и возможности моделирования этих процессов. Исследование компактирования — принципиальный момент, так как процесс «залечивания» материалов, имеющих внутреннюю поврежденность, недостаточно изучен.

Полученные в работе результаты, кроме новых экспериментальных данных, дают также информацию о применимости используемых теоретических моделей.

ЛИТЕРАТУРА

- Kanel G. I. Spall fracture: methodological aspects, mechanisms and governing factors // Intern. J. Fracture. — 2010. — V. 163. — P. 173–191.
- Seaman L., Curran D., Shockey A. Computational models for ductile and brittle fracture // J. Appl. Phys. — 1976. — V. 47, N 11. — P. 4814– 4826.
- Глушак Б. Л., Трунин И. Р. и др. Численное моделирование откольного разрушения металлов // Фракталы в прикладной физике. — Саров: ВНИИЭФ, 1995.
- 4. **Трунин И. Р., Терешкина И. А.** Некоторые вопросы теории, эксперимента и численного моделирования откольного разрушения металлов. — Саров, 2013. — (Препр./ВНИИЭФ; № 113).
- Подурец М. А. Термодинамическая модель пористого тела // Мат. моделирование. — 1996. — Т. 8, № 2. — С. 29.
- Malvern L. E. Plastic wave propogation in bar of material exhibiting a strain rate effect // Quart. Appl. Math. — 1951. — V. 8, N 4. — P. 50–54.
- 7. Гилман Д. Д. Динамика дислокаций и поведение материалов при ударном воздействии // Механика: пер. с англ. — 1970. — Т. 120, № 2. — С. 96–124.

Поступила в редакцию 22/XII 2013 г.