2009. Tom 50. № 6

Ноябрь – декабрь

C. 1063 - 1069

УДК 571.9

## СООТНОШЕНИЕ МЕЖДУ ДЛИНАМИ СВЯЗЕЙ В ВОДОРОДНЫХ МОСТИКАХ N—H...N, О—H...O, F—H...F И CI—H...Cl

© 2009 Е.Г. Тараканова\*, Г.В. Юхневич

Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва

Статья поступила 30 октября 2008 г.

С доработки — 19 января 2009 г.

Исследована применимость формулы  $e^{-((r_1-r_0)/b)^{5/3}} + e^{-((r_2-r_0)/b)^{5/3}} = 1$ , характеризующей соотношение между экспериментальными значениями длин ковалентной  $(r_1)$  и водородной  $(r_2)$  связей в мостиках О—Н...О, для описания зависимости между измеренными межатомными расстояниями в мостиках N—H...N, а также между рассчитанными методом функционала плотности (B3LYP/6-31++G(d,p)) параметрами фрагментов X—H...X (X = O, N, F, Cl) нейтральных, положительно и отрицательно заряженных молекулярных комплексов. Здесь  $r_0$  — среднее значение длины связи X—H в свободных молекулах;  $r_{\text{sym}}$  — расстояние X...H в симметричном мостике; b — коэффициент, определяемый из уравнения  $b = (r_{\text{sym}} - r_0)/(\ln 2)^{3/5}$ . Установлено, что данная формула позволяет с хорошей точностью описывать соотношение между длинами связей в близких к линейным водородных мостиках, образованных атомами кислорода, азота, фтора и хлора. Таким образом, она носит универсальный характер и может быть использована при изучении широкого круга объектов.

Ключевые слова: водородный мостик, длина Н-связи, квантово-химический рас-

## введение

Теоретическое описание соотношения между длинами ковалентной  $(r_1)$  и водородной  $(r_2)$  связей в мостиках О—Н...О стало возможным после появления экспериментальных значений  $r_1$  и  $r_2$ , полученных методом нейтронографии. Результаты первых двух десятков исследований, в которых были измерены параметры фрагментов О—Н...О, реализующихся в разных кристаллических структурах, были проанализированы в работе [1]. Из них следовало, что длина ковалентной связи увеличивается примерно пропорционально прочности водородной связи, в образовании которой она участвует. Дальнейшее обобщение постоянно пополняющихся данных нейтронографических измерений проводили, исходя из двух предположений. Согласно первому из них, кратность связи выражается через ее удлинение в форме обратной экспоненты, а согласно второму — сумма порядков связей  $r_1$  и  $r_2$  на всех этапах переноса протона равна единице (подробнее см. [2]).

Эти предположения легли в основу формулы

$$e^{-(r_1-r_0)/b} + e^{-(r_2-r_0)/b} = 1,$$
(1)

традиционно используемой для описания зависимости между длинами связей мостиков О—Н...О (см., например, [3, 4]). В ней  $r_1$  и  $r_2$  находятся в эквивалентных положениях. Что же касается параметров  $r_0$  (который, очевидно, должен быть равен длине связи ОН в свободных молекулах) и b, то их изначально пытались определить как константы, правда, подогнанные под ограниченный набор экспериментальных данных [5]. Однако для достижения в каждом конкретном

<sup>\*</sup> E-mail: egtar@igic.ras.ru

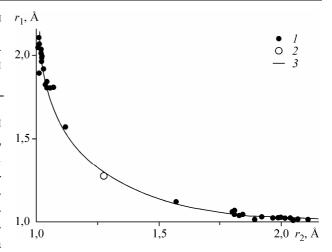
исследовании лучшего согласия теоретической кривой с результатами анализируемых измерений его авторы находили эти параметры путем аппроксимации экспериментальных данных по методу наименьших квадратов. При этом считалось вполне естественным изменение величин  $r_0$  и b при переходе от одной совокупности кристаллов к другой и сильное отличие  $r_0$  от длины связи ОН в свободных молекулах. Так, например, для неорганических кристаллов в работе [ 3 ] получены значения  $r_0$  и b, равные 0,914 и 0,404 Å, а для органических кристаллов в работе [ 4 ] — 0,928 и 0,393 Å. Таким образом, следует признать, что оба входящих в формулу (1) параметра носят подгоночный характер и, строго говоря, не имеют физического смысла.

Результаты теоретического описания эксперимента в исследованиях [ 3, 4 ] позволяют также заключить, что соответствующая формуле (1) аналитическая кривая имеет в окрестностях точки перегиба  $(r_1 = r_2)$  недостаточную кривизну. Этот факт был отмечен в работе [ 2 ], в которой на основании анализа параметров 465 мостиков О—Н...О в более чем 200 кристаллах показано, что наилучшее согласие с экспериментом получается при возведении величины  $(r_i - r_0)$  в степень 5/3. Предложенная в [ 2 ] формула

$$e^{-((r_1-r_0)/b)^{5/3}} + e^{-((r_2-r_0)/b)^{5/3}} = 1,$$
(2)

характеризующая соотношение между экспериментальными значениями длин ковалентной и водородной связей в близких к линейным (с углом, равным 170—180°) мостиках О—Н...О, принципиально отличается от выражения (1) тем, что в ней нет ни одного подгоночного параметра. Она основана на знании двух величин, известных из эксперимента и имеющих четкий физический смысл. Первая из них,  $r_0 = 0.95$  Å, это среднее значение длины О—Н-связи в свободных молекулах (см., например, [6—8]), а вторая,  $r_{\rm sym} = 1.215$  Å, расстояние О...Н в симметричном водородном мостике, оцененное в работе [2] на основании результатов многочисленных нейтронографических исследований и являющееся практически постоянным для широкого круга дисольватов протона [9—14]. При этом коэффициент b, являющийся по сути коэффициентом размерности, однозначно находится из уравнения  $b = (r_{\rm sym} - r_0)/(\ln 2)^{3/5}$ , получающегося из формулы (2) при  $r_1 = r_2 = r_{\rm sym}$ . Таким образом, функция (2) является физически обоснованной.

Из приведенных в работе [ 2 ] данных следует, что теоретическая кривая, задаваемая формулой (2), хорошо согласуется с результатами практически всех известных на сегодняшний день нейтронографических измерений межатомных расстояний во фрагментах О—Н...О. Поскольку эта формула имеет достаточно общий характер, естественно было предположить, что она позволит адекватно описывать и взаимосвязь между параметрами водородных мостиков, образованных другими атомами. Задача настоящей работы заключалась в проверке такого предположения. С этой целью были сформированы пять независимых наборов данных, каждый из которых включает в себя длины связей Х—Н и Н...Х в фрагментах Х—Н...Х (X = O, N, F, Cl), принадлежащих широкому кругу молекулярных систем. Один набор состоит из экспериментальных значений параметров мостиков N—Н...N, а остальные четыре получены при расчете методом функционала плотности нейтральных и заряженных молекулярных комплексов разной топологии, содержащих фрагменты О—Н...О, N—Н...N, F—Н...F и Cl—Н...Cl.


## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экспериментальные значения длин связей в близких к линейным (с углом, равным 170—180°) водородных мостиках N—H...N (рис. 1) были взяты из работ, имеющих в банке данных CSD следующие Rev коды: AMBACO<sub>07</sub>, AMCLPY<sub>11</sub>, AMXBMP<sub>10</sub>, CBOATZ<sub>02</sub>, CYGUAN<sub>01</sub>, HARMID<sub>03</sub>, IMAZOL<sub>04</sub>, IMAZOL<sub>06</sub>, IMAZOL<sub>13</sub>, MEADEN<sub>02</sub>, MELAMI<sub>04</sub>, MELAMI<sub>06</sub>, PYRZOL<sub>02</sub> и XUNCUE. При изображении этих результатов на графике по оси абсцисс откладывали значения длин и ковалентных (N—H), и водородных (H...N) связей. Такой способ представления данных отражает эквивалентность входящих в уравнение (2) величин  $r_1$  и  $r_2$ .

Параметр  $r_0 = 1,01$  Å, необходимый для построения кривой, характеризующей соотношение между длинами ковалентной и водородной связей в фрагментах N—H...N, был найден, исходя

Рис. 1. Зависимость между экспериментальными значениями длин связей в мостиках N—H...N:
 1 — результаты нейтронографических измерений, 2 — данные работы [ 15 ], 3 — теоретическая кривая, заданная формулой (2)

из экспериментальных значений длин связей N—H в свободных молекулах NH<sub>3</sub> (1,015 Å), CH<sub>3</sub>NH<sub>2</sub> (1,010 Å) и (CH<sub>3</sub>)<sub>2</sub>NH (1,010 Å) [8]. При оценке величины  $r_{\rm sym} = 1,29$  Å были использованы интерполяция результатов нейтронографических измерений и данные работы [15]. Путем сопоставления спектров высокого разрешения ионного комплекса



 $N_2$ ... $H^+$ ... $N_2$  и результатов *ab initio* расчета в ней показано, что этот комплекс содержит симметричный мостик, в котором расстояние  $r_{H...N}$  равно 1,277 Å (точка 2 на рис. 1).

В силу объективных причин, подробно рассмотренных в работе [ 2 ], точность воспроизведения формулой (2) зависимости между измеренными методом нейтронографии длинами ковалентной и водородной связей, образующихся в кристаллических структурах, не может превышать 0,005  $\mathring{\rm A}$ . Поэтому при задании параметров  $r_0$  и  $r_{\rm sym}$  в формуле (2), описывающей результаты таких измерений, как правило, достаточно приводить два знака после запятой (табл. 1).

Из представленных на рис. 1 данных видно, что предложенное в работе [2] аналитическое выражение применимо и для водородных мостиков, образованных атомами азота. При этом следует отметить, что во всем изученном диапазоне изменения длин связей N—H и H...N точность воспроизведения теоретической кривой хода экспериментальной зависимости не хуже, чем в случае мостиков О—H...О.

Расчет оптимальных конфигураций всех молекулярных комплексов и самоассоциатов, чьи параметры водородных мостиков были использованы при решении поставленной задачи, был выполнен с применением одного и того же метода и набора базисных функций (B3LYP/6-31++G(d,p)) по программе GAUSSIAN-98 [16]. Большинство этих систем было изучено ранее в ряде независимых работ [17—22], посвященных вопросам, не имеющим отношения к предмету настоящего исследования. Полные энергии дополнительно рассчитанных устойчивых молекулярных комплексов и длины связей входящих в их состав фрагментов X—H...X (X = O, N, F, Cl) приведены в табл. 2.

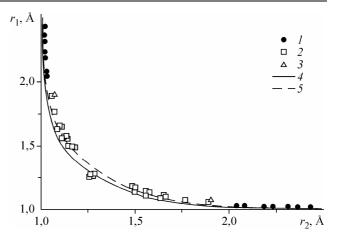
Полученные в итоге наборы данных для 22 водородных мостиков N—Н...N, 66 — О—Н...О, 51 — F—Н...F и 11 — СІ—Н...СІ представлены на рис. 2, 3, 4 и 5 соответственно. В первый из этих наборов наряду с мостиками, входящими в состав перечисленных в табл. 2 молекулярных комплексов, включены параметры фрагментов N—Н...N в 10 дисольватах протона, рассмотренных в работе [17]. Второй набор данных состоит из длин связей в 7 водородных мостиках О—Н...О, приведенных в табл. 1, 16 мостиках в дисольватах протона [17], 30 мостиках в сис-

Таблица 1 Значения параметров  $r_0$  (Å) и  $r_{\text{sym}}$  (Å), используемые при получении формулы (2) для описания взаимосвязи между длинами ковалентной и водородной связей в водородных мостиках О—Н...О, N—Н...N, F—H...F и Cl—H...Cl

| Водородный мостик  | $r_0$ | $r_{\rm sym}$ | Водородный мостик | $r_0$ | $r_{ m sym}$  |  |  |  |  |  |
|--------------------|-------|---------------|-------------------|-------|---------------|--|--|--|--|--|
|                    |       |               |                   |       |               |  |  |  |  |  |
| О—НО (эксперимент) | 0,950 | 1,215         | N—HN (расчет)     | 1,010 | 1,280 и 1,300 |  |  |  |  |  |
| О—НО (расчет)      | 0,965 | 1,200         | F—HF (расчет)     | 0,928 | 1,143         |  |  |  |  |  |
| N—HN (эксперимент) | 1,010 | 1,290         | Cl—HCl (расчет)   | 1,287 | 1,582         |  |  |  |  |  |

Таблица 2

Рассчитанные значения полной энергии (E, ат. ед.) молекулярных комплексов, содержащих мостики X—H...X (X = O, N, F, Cl), длин ковалентной  $(r_1, \mathring{\mathbb{A}})$  и водородной  $(r_2, \mathring{\mathbb{A}})$  связей в этих мостиках, длин мостиков  $(R_{XX}, \mathring{\mathbb{A}})$  и углов XHX  $(\alpha, \Gamma pag.)$ 

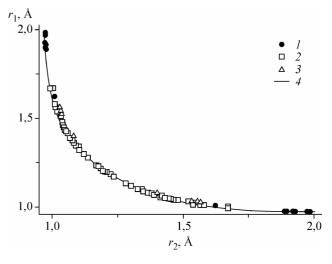

| Молекулярный комплекс                              |                                          | E        | $r_1$ | $r_2$ | R     | α   |
|----------------------------------------------------|------------------------------------------|----------|-------|-------|-------|-----|
| PNH <sup>+</sup> NP                                |                                          | -792,49  | 1,265 | 1,276 | 2,541 | 180 |
| $F_3N-H^+NF_3$                                     |                                          | -708,44  | 1,179 | 1,490 | 2,669 | 180 |
| $Cl_3N-H^+NCl_3$                                   |                                          | -2870,74 | 1,146 | 1,500 | 2,646 | 180 |
| HSN—H <sup>+</sup> NSH                             |                                          | -907,30  | 1,088 | 1,635 | 2,723 | 178 |
| $(H_2N)^ H^+ (NH_2)^-$                             |                                          | -112,50  | 1,073 | 1,903 | 2,874 | 175 |
| [N—HNH]*                                           | $(NH_3)_2(H_2O)_3$ cycle                 | -342,49  | 1,034 | 2,043 | 3,075 | 176 |
| [N—HNH]                                            | (NH <sub>3</sub> ) <sub>5</sub> branched |          | 1,031 | 2,086 | 3,073 | 160 |
| [N—HNH]                                            | $(NH_3)_5$ branched                      | -282,86  | 1,026 | 2,189 | 3,171 | 160 |
| $H_2N$ — $HNH_3$                                   |                                          | -113,14  | 1,022 | 2,231 | 3,230 | 166 |
| CH <sub>3</sub> HN—HNH <sub>3</sub>                |                                          | -152,44  | 1,021 | 2,239 | 3,252 | 171 |
| [N—HNH]                                            | (NH <sub>3</sub> ) <sub>5</sub> branched | -282,86  | 1,021 | 2,318 | 3,333 | 173 |
| H <sub>2</sub> N—HNCCH <sub>3</sub>                |                                          | -189,34  | 1,018 | 2,367 | 3,379 | 172 |
| OCOH <sup>+</sup> OCO                              |                                          | -377,43  | 1,195 | 1,197 | 2,392 | 180 |
| HO—HOHCH <sub>3</sub>                              |                                          | -192,18  | 0,975 | 1,886 | 2,856 | 172 |
| H <sub>3</sub> CO—HOHCH                            | 3                                        | -231,48  | 0,974 | 1,896 | 2,867 | 175 |
| HO—HOH <sub>2</sub>                                |                                          | -152,88  | 0,974 | 1,917 | 2,886 | 173 |
| $CH_3O$ — $HOH_2$                                  |                                          | -192,18  | 0,972 | 1,927 | 2,897 | 176 |
| $[HO—HOH_2]_1$                                     | $(H_2O)_3$ chain                         |          | 0,972 | 1,972 | 2,921 | 165 |
| $[HO-HOH_2]_2$                                     | $(H_2O)_3$ chain                         | -229,32  | 0,971 | 1,982 | 2,917 | 161 |
| HFH <sup>+</sup> FH                                |                                          | -201,15  | 1,155 | 1,155 | 2,310 | 180 |
| $F^{-}H^{+}F^{-}$                                  |                                          | -200,39  | 1,146 | 1,157 | 2,303 | 180 |
| F—HFH                                              |                                          | -200,91  | 0,935 | 1,799 | 2,734 | 178 |
| [F—HFH]                                            | (HF) <sub>4</sub> branched               | -401,84  | 0,935 | 1,808 | 2,730 | 168 |
| [F—HFH]                                            | (HF) <sub>8</sub> branched               | -803,70  | 0,934 | 1,822 | 2,756 | 180 |
| [F—HFH]                                            | (HF) <sub>8</sub> branched               | -803,69  | 0,933 | 1,847 | 2,779 | 177 |
| [F—HFH]                                            | (HF) <sub>7</sub> branched               | -703,24  | 0,933 | 1,855 | 2,788 | 179 |
| [F—HFH]                                            | (HF) <sub>5</sub> branched               | -502,31  | 0,932 | 1,879 | 2,811 | 179 |
| [F—HFH]                                            | (HF) <sub>8</sub> branched               | -803,69  | 0,931 | 1,895 | 2,823 | 174 |
| F—HFCF <sub>3</sub>                                |                                          | -537,96  | 0,929 | 2,078 | 2,997 | 170 |
| $Cl_2H^+Cl_2$                                      |                                          | -1840,94 | 1,584 | 1,589 | 3,173 | 180 |
| Cl <sup>-</sup> H <sup>+</sup> Cl <sup>-</sup>     |                                          | -921,12  | 1,577 | 1,577 | 3,154 | 180 |
| HClH <sup>+</sup> ClH                              |                                          | -921,85  | 1,586 | 1,587 | 3,171 | 176 |
| Cl—HClH                                            |                                          | -921,61  | 1,292 | 2,583 | 3,867 | 172 |
| H <sub>3</sub> CClH <sup>+</sup> ClCH <sub>3</sub> |                                          | -1000,51 | 1,579 | 1,579 | 3,158 | 180 |

<sup>\*</sup> В квадратных скобках приведены фрагменты циклического гетеротетрамера  $(NH_3)_2(H_2O)_3$ , цепочечного тримера воды и разветвленных молекулярных комплексов  $(NH_3)_5$ ,  $(HF)_n$  (n = 4, 5, 7, 8).

Примечание. Cycle — циклический, branched — разветвленный, chain — цепочечный.

Puc.~2. Зависимость между рассчитанными значениями длин связей в мостиках N—H...N: I — результаты, полученные для нейтральных, 2 — для положительно заряженных, 3 — для отрицательно заряженных молекулярных систем. Теоретическая кривая, заданная формулой (2): 4 — значение  $r_{\rm sym} = 1,280$  Å, 5 — значение  $r_{\rm sym} = 1,300$  Å

темах (ДМФА)<sub>m</sub>H<sup>+</sup>(H<sub>2</sub>O)<sub>n</sub> (m = 0—2, n = 0—6) [18], а также в 13 мостиках в гетероассоциатах (ДМФА)<sub>m</sub>·(МСК)<sub>n</sub> (m = 1—2, n = 1—2) и заряженных комплексах, образованных при сольватации протона моле-




кулами МСК и ионами ( $H_3$ CSO<sub>3</sub>)<sup>-</sup> [ 19 ]. Третий набор данных содержит параметры 41 фрагмента F—H...F, входящего в состав молекулярных комплексов (HF)<sub>n</sub>·ДМФА (n = 4—6) [ 20 ], и 10 водородных мостиков, представленных в табл. 2. Межатомные расстояния в фрагментах Cl—H...Cl взяты из димера (HCl)<sub>2</sub>, одного отрицательно заряженного и трех положительно заряженных дисольватов протона (см. табл. 2) и шести гетерокомплексов (ДМФА)<sub>m</sub>·(HCl)<sub>n</sub> (m = 1—2, n = 2—4) [ 21, 22 ].

Величины  $r_0$  и  $r_{\rm sym}$ , входящие в выражение (2) для всех исследуемых близких к линейным\* фрагментов X—Н...Х (см. табл. 1), были определены путем детального анализа расчетных данных. При этом параметры  $r_0$  для всех четырех мостиков были найдены однозначно. Значения  $r_{\rm sym}$  для фрагментов О—Н...О и Cl—Н...Сl были взяты равными длине связи Н...Х в симметричных дисольватах протона. Поскольку в случае водородных мостиков F—Н...F точки, соответствующие симметричным заряженным структурам, лежат немного выше хорошо согласующихся между собой точек, отвечающих квазисимметричным фрагментам нейтральных молекулярных комплексов (см. рис. 4), величину  $r_{\rm sym}$  определяли путем интерполяции результатов расчета, полученных для этих фрагментов. На графике зависимости  $r_1(r_2)$ , построенном для мостиков N—Н...N, наблюдается наибольший разброс точек, причем точки, относящиеся к симметричным дисольватам протона, расположены заметно ниже кривой, соответствующей несим-

метричным мостикам (см. рис. 2). Поэтому в данном случае результаты расчета были сопоставлены с двумя теоретическими кривыми. При задании одной из них параметр  $r_{\text{sym}}$  был взят равным длине связи Н... Е в симметричном мостике (см. рис. 2, кривая 4), а при задании другой — оценен пу-

 $Puc.\ 3.$  Зависимость между рассчитанными значениями длин связей в мостиках О—Н...О: I — результаты, полученные для нейтральных, 2 — для положительно заряженных, 3 — для отрицательно заряженных молекулярных систем; 4 — теоретическая кривая, заданная формулой (2)



<sup>\*</sup> В отличие от экспериментально изученных H-мостиков, изгиб которых не превышал  $10^{\circ}$ , при анализе результатов расчета близкими к линейным считали фрагменты X—H...X с углами 160— $180^{\circ}$ . Выбор такого критерия обусловлен тем, что точки, отвечающие фрагментам с углами, меньшими  $160^{\circ}$ , систематически отклоняются вверх от точек, соответствующих линейным мостикам.

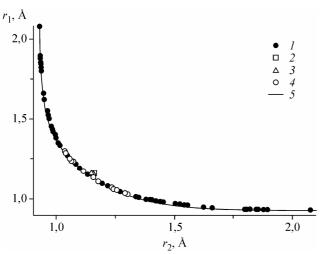
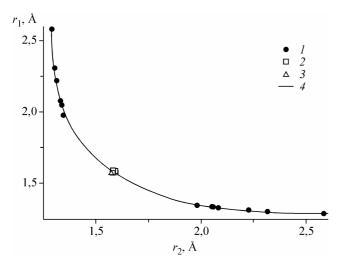



Рис. 4. Зависимость между рассчитанными значениями длин связей в мостиках F—H...F: I — результаты, полученные для нейтральных, 2 — для положительно заряженных, 3 — для отрицательно заряженных молекулярных систем, 4 — данные для мостиков, в которых произошел переход протона от одной молекулы водородосвязанного комплекса к другой, 5 — теоретическая кривая, заданная формулой (2)

тем интерполяции точек, отвечающих несимметричным структурам (см. рис. 2, кривая 5).


Обе полученные кривые, расходящиеся менее чем на 0,06 Å, удовлетворительно

описывают общий ход зависимости  $r_1(r_2)$ , однако кривая 5 лучше воспроизводит результаты квантово-химического расчета в области относительно сильных водородных связей ( $r_2 = 1,5$ — 1,8 Å). Представленные на рис. 2 результаты являются также наглядной иллюстрацией того, как небольшое отличие (на 0,02 Å) входящих в уравнение (2) параметров  $r_{\text{sym}}$  влияет на форму задаваемой им теоретической кривой. Из приведенных данных также видно, что длины связей фрагментов N—Н...N, принадлежащих нейтральным, положительно и отрицательно заряженным молекулярным комплексам, подчиняются одним и тем же (или очень близким) зависимостям.

Аналогичная ситуация имеет место и в случае водородных мостиков О—Н...О (см. рис. 3), F—H...F (см. рис. 4), Cl—H...Cl (см. рис. 5). Теоретические кривые, задаваемые формулой (2), во всей области изменения межатомных расстояний  $r_2$  хорошо ложатся на зависимости  $r_1(r_2)$ , полученные при вычислении структурных характеристик не только нейтральных, но и заряженных систем. Кроме того, из результатов расчета гетероассоциатов (HF) $_n$ ·ДМФА (n=4—6) следует, что эта формула справедлива также для мостиков, в которых произошел переход протона от одной молекулы к другой (см. рис. 4).

Выполненный в настоящей работе анализ возможности описания с помощью уравнения (2) наборов расчетных данных показал, что для адекватного воспроизведения взаимосвязи между вычисленными параметрами фрагментов X—H...X желательно, чтобы точность задания величин  $r_0$  и  $r_{\text{sym}}$  была не ниже 0,005 Å.

Установлено, что формула (2) с хорошей точностью описывает соотношение между длинами ковалентной и водородной связей в мостиках О—Н...О, N—Н...N, F—Н...F и Cl—Н...Cl,



образующихся в нейтральных, положительно и отрицательно заряженных молекулярных системах. Она с одинаковым успехом может применяться при анализе особенностей строения близких к линейным фрагментов X—H...X, меж-

Рис. 5. Зависимость между рассчитанными значениями длин связей в мостиках Cl— H...Cl: 1 — результаты, полученные для нейтральных, 2 — для положительно заряженных, 3 — для отрицательно заряженных молекулярных систем, 4 — теоретическая кривая, заданная формулой (2)

атомные расстояния в которых получены из эксперимента и квантово-химических расчетов. Следовательно, данная формула носит универсальный характер и может быть использована при изучении широкого круга объектов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 07-03-00329 и № 08-03-00361).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Пиментел Дж., Мак-Клеллан О. Водородная связь М.: Мир, 1964. [Pimentel G.C., McClellan A.L. The Hydrogen Bond. Ed. Pauling L. San Francisco, London: Freeman, 1960.]
- 2. Юхневич Г.В. // Кристаллография. 2009. 54, № 2. С. 212.
- 3. *Alig H., Lösel J., Trömel M.* // Z. Kristallogr. 1994. **209**, N 1. S. 18.
- 4. Steiner Th., Saenger W. // Acta Crystallogr. 1994. **B50**. P. 348.
- 5. Brown I.D. // Ibid. 1992. **B48**. P. 553.
- 6. Benedict W.S., Gailar N., Plyler E.K. // J. Chem. Phys. 1956. 24, N 6. P. 1139.
- 7. Lees R.M., Baker J.G. // Ibid. 1968. 48, N 12. P. 5299.
- 8. *Свердлов Л.А., Ковнер М.А., Крайнов Е.П.* Колебательные спектры многоатомных молекул М.: Наука, 1970.
- 9. *Либрович Н.Б., Сакун В.П., Соколов Н.Д.* В сб.: Водородная связь / Под ред. Н.Д. Соколова. М.: Наука, 1981. С. 174 211.
- 10. Юхневич Г.В., Тараканова Е.Г., Майоров В.Д. и др. // Успехи химии. 1995. 64, № 10. С. 963.
- 11. Fridgen T.D., McMahon T.B., MacAleese L. et al. // J. Phys. Chem. A. 2004. 108, N 42. P. 9008.
- 12. Solca N., Dopfer O. // J. Amer. Chem. Soc. 2004. 126, N 31. P. 9521.
- 13. Auer A.A., Helgaker T., Klopper W. // Phys. Chem. Chem. Phys. 2000. 2. P. 2235.
- 14. Xie Y., Remington R.B., Schaefer H.F. // J. Chem. Phys. 1994. 101, N 6. P. 4878.
- 15. Verdes D., Linnartz H., Maier J.P. et al. // Ibid. 1999. 111, N 18. P. 8400.
- 16. Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSSIAN 98 (Revision A.1). Gaussian, Inc., Pittsburgh PA, 1998.
- 17. Тараканова Е.Г., Цой О.Ю., Юхневич Г.В. и др. // Хим. физика. 2008. 27, № 9. С. 32.
- 18. *Кислина И.С., Либрович Н.Б., Майоров В.Д. и др.* // Там же. 2007. **26**, № 2. С. 25. [Russian J. Phys. Chem. B. 2007. **1**, N 1. P. 20 (Engl. Transl.)]
- 19. *Tarakanova E.G., Yukhnevich G.V.* // III Intern. Conf. Hydrogen Bonding and Molecular Interactions. Book of Abstracts. Kiev, Ukraine, 2006. P. 157.
- 20. *Тараканова Е.Г., Юхневич Г.В.* // Тез. докл. IV конф. "Молекулярное моделирование". М., 2005. С. 103.
- 21. *Тараканова Е.Г., Цой О.Ю., Юхневич Г.В. и др.* // Кинетика и катализ. 2004. **45**, № 3. С. 385. [Kinetics and Catalysis. 2004. **45**, N 3. P. 359 (Engl. Transl.)]
- 22. *Юхневич Г.В., Тараканова Е.Г., Цой О.Ю. и др.* // Журн. структур. химии. 2005. **46**, № 1. С. 18. [J. Struct. Chem. 2005. **46**, N 1. P. 16 22. (Engl. Transl.)]