УДК 536.46

ВЛИЯНИЕ ПОРИСТОСТИ И ДИСПЕРСНОСТИ МАТЕРИАЛОВ НА СКОРОСТЬ РАСПРОСТРАНЕНИЯ ЗВУКОВЫХ ВОЛН

- С. С. Секоян^{*}, В. Р. Шлегель^{*}, С. С. Бацанов^{*,**}, С. М. Гаврилкин^{*,**}, К. Б. Поярков^{***}, А. А. Гурков^{***}, А. А. Дуров^{***}
- * Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, 141570 Менделеево Московской области
- ** Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка Московской области
- *** Московский государственный институт электронной техники (технический университет), 124498 Москва, Зеленоград E-mails: batsanov@gol.ru, poyarkov@list.ru

Разработаны методики измерения продольных и поперечных скоростей звука в пористых материалах — различных смесях Zn–S и образцах KBr. Показано, что при использовании ультразвука с длиной волны, существенно превышающей размеры пор в спрессованных образцах, пористое тело ведет себя как сплошная среда. Обнаружена зависимость скорости звука в пористом материале от количественного соотношения в порах вакуума, воздуха, толуола. Оценки объемных скоростей звука, рассчитанные аддитивным методом, согласуются с экспериментальными данными с погрешностью не более 10 %. Выявлено существенное поглощение звуковых волн при удалении следов влаги из пористого образца.

Ключевые слова: продольная, сдвиговая и объемная скорости звука, пористое тело, модуль упругости.

Введение. Измерение скорости звука C в твердых телах позволяет получить важную информацию о физических и механических свойствах материалов, а именно определить их модули упругости (жесткость), характеристические температуры Дебая, возникновение ударных волн в результате сверхбыстрых химических реакций. Вместе с тем измерение Cв пористых материалах существенно затруднено, что обусловлено необходимостью изготовления пресс-таблеток (в идеале без пор) либо проведения серии измерений для образцов с различной пористостью и экстраполяции полученных данных на плотность монолитного образца. В случае очень жестких материалов, например алмазных порошков, изготовление пресс-таблеток без использования связующих добавок вообще невозможно. Кроме того, механизм перемещения волновых возмущений в пористых телах достаточно сложен, поэтому измеряемые величины лишь условно можно называть скоростями звука.

Полученная к настоящему времени информация об упругих свойствах пористых тел весьма ограниченна, что не позволяет использовать их при решении новых технологических задач, например применительно к нанокристаллическим материалам. Вместе с тем, как показывают результаты измерения модулей упругости B_0 монолитных тел с кристаллическими зернами различной дисперсности, измельчение твердых тел (физическими или химическими методами) оказывает влияние на упругие свойства пористых материалов. В соответствии с имеющимися экспериментальными данными в зависимости от значений B_0 при переходе от макрочастиц (m) к наночастицам (n) материалы можно разделить на три группы: 1) Mo, Ni, W, Fe₂O₃, CeO₂, TiO₂, AlN, Si₃N₄, где $B_m < B_n$; 2) CuO, MgO, ε -Fe, где $B_m \approx B_n$; 3) ZnS, PbS, CdSe, W₂N, Al₂O₃, ReO₃, MgO, где $B_m > B_n$ [1, 2]. Удовлетворительное объяснение такого распределения веществ пока отсутствует, поэтому целесообразно дальнейшее накопление экспериментальных данных. При этом удобно использовать измеренные скорости звука, так как $B_0 = \rho_0 C_0^2 (\rho_0 - плотность материа$ ла; C_0 — объемная скорость звука). Установлено, что диапазоны, в которых изменяется скорость звука при переходе от макрокристаллических образцов к нанокристаллическим, различаются в зависимости от структуры и состава веществ. Так, для вольфрама переход $m \to n$ сопровождается увеличением значения B_0 с 297 до 318 ГПа, а скорости звука – с 3,92 до 4,06 км/с вследствие увеличения плотности при диспергировании кристалла [3]. В AlN при переходе от макрочастиц к наночастицам вюртцитной модификации значение скорости звука растет с 8,0 до 9,7 км/с, а в модификации структурного типа В1 — с 8,62 до 8,90 км/с [4]. Для MgO скорость звука в макроматериале равна 6,62, а в нанофазе -6,22 км/с [4]. Выяснить причины столь существенных изменений при переходе от макроматериалов к нанокристаллическим материалам пока не удается. В настоящей работе проводится измерение скоростей волновых возмущений в пористых телах с целью изучения их зависимости от дисперсности кристаллических зерен.

Методика измерения скорости звука в пористых образцах. Измерения скорости распространения продольных звуковых волн C_L проводились с использованием двух ультразвуковых методов на пресс-таблетках с различными диаметром и пористостью. Сначала исследовалась смесь Zn–S. Ранее в ударно-волновых экспериментах изучалось возникновение в этой смеси твердофазной детонации [5].

В первом, классическом методе скорость звука в образцах определялась с использованием двух буферных стержней диаметром 38 мм и длиной 250 и 60 мм, изготовленных из закаленной стали марки 60C2H2A, с тщательно отполированными и притертыми плоскостями торцов. С помощью этих стержней формировалась стационарная акустическая волна, которая затем входила в измеряемый образец. На нижнем торце длинного стержня, закрепленного в вертикальном положении, устанавливался излучатель ультразвукового импульса с частотой заполнения, приближенно равной 5 МГц (пьезопреобразователь диаметром 28 мм и толщиной 0,5 мм). Второй (короткий) стержень с идентичным пьезопреобразователем, установленным на его верхнем торце, принимал ультразвуковой импульс, прошедший через оба буферных стержня. Исследуемый образец в виде диска диаметром 50 мм и толщиной 5 мм с отшлифованными поверхностями помещался между торцами стержней, что приводило к увеличению времени пробега ультразвукового импульса за счет его прохождения через исследуемый образец. Импульс измерялся с использованием высокоточного генератора временных сдвигов И1-8 (разрешающая способность составляет 10^{-7} с).

С использованием второго метода скорость распространения скачка продольной деформации ΔC_L измерялась непосредственно на пресс-таблетках исследуемого вещества двумя пьезодатчиками, прижатыми через тонкий слой "акустической" жидкости к плоскостям образца, которые поочередно являлись излучателями и приемниками ультразвукового сигнала. На излучатель подавался короткий (125 нс) импульс с амплитудой, равной 80 В. Измерительная схема предусматривала многократное прохождение скачка упругой деформации через образец, что позволило существенно (в несколько раз) повысить точность результатов. Установлено, что данные измерений ΔC_L на металлических пластинах (Cu, Al, Fe) и монокристаллах (NaCl, KBr), вырезанных по разным кристаллографическим направлениям, совпадают со значениями C_L , которые приводятся в литературе [6]. Отличие результатов измерений ΔC_L на образцах смеси Zn–S различной пористости в виде таблеток диаметром 17 мм и толщиной 4 мм от значений C_L , полученных классическим

1	•	5 1	•
$ ho_{00}/ ho_0$	C_L , км/с	$C_{\rm ad},{ m Km/c}$	$C_L/C_{ m ad}$
0,708	0,975	0,856	1,139
0,755	1,300	0,957	1,358
0,795	1,560	1,064	1,466
0,847	1,790	1,243	1,440
0,860	1,890	1,298	1,456
0,892	2,040	1,456	1,401
0,900	2,185	1,501	1,456
0,911	2,270	1,569	1,447
0,926	2,430	$1,\!672$	1,453

Значения продольной скорости звука в пористых образцах Zn-S

Таблица 1

методом на образцах в три раза большего диаметра, составляет в среднем 20 м/с. Значения продольных скоростей звука в спрессованных до различной относительной плотности ρ_{00}/ρ_0 (ρ_{00} — плотность пористого тела) образцах стехиометрической смеси Zn–S приведены в табл. 1.

Представляет интерес сравнение измеренных скоростей звука с результатами расчетов. В проведенных экспериментах использовались тщательно перемешанные порошки из микрочастиц Zn и S, спрессованные до различных значений пористости. Поскольку при частоте, равной 5 МГц, длина акустической волны составляет сотни микрометров (для скоростей порядка километра в секунду), т. е. превышает размер пор (который составляет доли микрометра) более чем на три порядка, такую среду с равномерно распределенными включениями в первом приближении можно рассматривать как однородную по отношению к распространению звука.

В работе [7] описан аддитивный метод расчета скоростей звука в пористых телах в виде двух пластин — монолитного тела и воздуха, толщины которых определяются объемными долями x и 1 - x соответственно; доли, отнесенные к единичной площади, численно равны объемам V монолитного тела и воздуха в данном образце. По известным скоростям звука в монолитном теле ($C_{\rm M}$) и в воздухе ($C_{\rm B} = 0.3315$ км/с) можно определить время прохождения звука через эти пластины:

$$\tau = x \frac{V_{\rm M}}{C_{\rm M}} + (1-x) \frac{V_{\rm B}}{C_{\rm B}}$$

При этом отношение $V_{\rm M} + V_{\rm B}$ к времени прохождения звука через обе пластины, равно скорости звука в пористом теле:

$$C = (V_{\rm M} + V_{\rm B})/\tau.$$

Объемную скорость звука C_0 в монолитной смеси можно вычислить следующим способом. Молярные объемы Zn и S равны 9,16 и 15,52 см³/моль, объемные скорости звука — 2,80 и 2,13 км/с соответственно [7]. Следовательно, времена прохождения звука через слои Zn и S, объемы которых отнесены к единице площади, равны 9,16/2,8 = 3,271 · 10⁻⁵ с и 15,52/2,13 = 7,286 · 10⁻⁵ с соответственно, а отношение суммарной длины пути 24,68 см к суммарному времени прохождения звука 10,557 · 10⁻⁵ с равно 2,34 км/с (это значение является аддитивной скоростью звука $C_{\rm ag}$ в монолитной смеси Zn–S). Скорость звука в монолитной смеси можно вычислить также по другой аддитивной схеме:

$$(C_0^2)_{\mathrm{Zn-S}} = 0.671(C_0^2)_{\mathrm{Zn}} + 0.329(C_0^2)_{\mathrm{S}}.$$

Здесь значения 0,671 и 0,329 — соответственно массовые доли Zn и S. Тогда $C_0 = 2,6$ км/с. Разброс значений, полученных двумя описанными выше методами, характеризует степень

близости описанных подходов. Далее для монолитной смеси будем использовать среднее значение $(C_0)_{\rm Zn-S} = 2,47$ км/с.

Для вычисления объемной скорости звука в пористых смесях Zn–S отношение ρ_{00}/ρ_0 , где $\rho_0 = 3.95 \,\mathrm{r/cm^3}$ (плотность монолитной смеси), нужно разделить на значение 2,47 км/с, а величину $1 - \rho_{00}/\rho_0$ — на скорость звука в воздухе, равную 0,3315 км/с. Полученные времена прохождения звука через монолитный слой Zn–S и слой воздуха необходимо суммировать, величина, обратная этой сумме, равна аддитивной скорости звука в данном пористом теле. Эти значения $C_{\rm ad}$ приведены в табл. 1. Там же приведены отношения $C_L/C_{\rm ad}$, среднее значение которых при относительной плотности смеси более 0,755 равно 1,43 ± 2,40 %. Среднее значение $C_L/C_{\rm ad}$ близко к значению, получаемому известным инженерным способом вычисления объемной скорости звука путем деления C_L на коэффициент, равный 1,4. Значение плотности $\rho_{00}/\rho_0 = 0,755$ близко к плотности упаковки шаров ($\rho_{00}/\rho_0 = 0,74$), что означает установление жесткого каркаса твердых частиц, обеспечивающего сопротивление сдвигу в данном теле.

В настоящей работе методом, основанным на возбуждении в образцах в виде дисков тангенциальных резонансных колебаний с частотой f_i , измерена поперечная скорость C_T в образце Zn–S при $\rho_{00}/\rho_0 = 0.9$:

$$C_T = \pi D f_i / a_i. \tag{1}$$

Здесь i — номер гармоники (число узловых окружностей); D — диаметр диска; a_i — корни уравнения $J_2(a) = 0$; J_2 — функция Бесселя первого рода второго порядка. Для первых пяти гармоник $a_1 = 5,135\,62, a_2 = 8,417\,24, a_3 = 11,619\,84, a_4 = 14,795\,95, a_5 = 17,959\,82.$

В эксперименте использовались два щупа в виде заостренных металлических стержней длиной 200 мм, на плоских торцах которых были установлены пьезопреобразователи из материала ЦТС-19 (диаметр 25 мм, толщина 16 мм) для возбуждения и приема тангенциальных резонансных колебаний диска, изготовленного из спрессованного порошка смеси Zn–S и закрепленного в узловых точках. Заостренные концы щупов устанавливались под небольшим углом к плоскости диска. Для исключения влияния щупов на резонансную частоту диска их острия размещались на узловых окружностях. В табл. 2 для первых пяти гармоник приведены значения отношения диаметров *d* узловых окружностей к диаметру образца *D*.

С использованием результатов измерения резонансной частоты можно рассчитать поперечную скорость звука по формуле (1). Результаты измерений резонансных частот для пяти гармоник приведены в табл. 3, откуда следует, что среднее по пяти измерениям значение C_T равно 1,233 км/с \pm 0,2 %. Подставляя это значение в известную формулу

$$C_0 = \sqrt{C_L^2 - 4C_T^2/3},$$

где $C_L = 2,185$ км/с (см. табл. 1), получаем $C_0 = 1,657$ км/с, что на 156 м/с больше значения аддитивной скорости $C_{\rm ag} = 1,501$ км/с, при этом $C_L/C_0 = 1,32$. Таким образом, результаты расчета объемных скоростей звука аддитивным методом согласуются с

Таблица 2

	0	тносительные	диаметры	узловых	окружностей	для	ряда	гармони
--	---	--------------	----------	---------	-------------	-----	------	---------

Число гармоник	d_i/D
1	0,746
2	$0,\!455,0,\!833$
3	$0,330,\ 0,604,\ 0,876$
4	$0,259,\ 0,474,\ 0,688,\ 0,900$
5	$0,213,\ 0,391,\ 0,566,\ 0,742,\ 0,917$

i	f , к Γ ц	a_i	$f_i/a_i,$ кГц	C_T , м/с
1	39641	$5,\!13562$	7718,33	1230,7
2	65400	$8,\!41724$	7769,77	1238,8
3	89841	$11,\!61984$	7731,69	1232,7
4	114312	14,79595	7725,90	1231,8
5	138956	$17,\!95982$	7737,05	$1233,\!6$

Скорости сдвиговых волн в образце смеси Zn–S при $ho_{00}/
ho_0=0.9$

экспериментальными данными с точностью до 10 %, что позволяет использовать его для выполнения оценок.

Скорость звука в образцах KBr с различной плотностью и дисперсностью. Проведены измерения скорости распространения скачка продольной деформации в образцах КВг, спрессованных из порошков различного происхождения: из реактива марки ЧДА, растертого монокристалла и осадка, выделенного из концентрированного водного раствора при добавлении спирта. Все эти порошки подверглись размолу в шаровой мельнице, где контейнеры с образцами, закрепленные на диске, вращались со скоростью 240 об/мин в одном направлении, а диск — с такой же скоростью в обратном направлении. В контейнере (глубина 40 мм, внутренний диаметр 55 мм) помещались вещество (KBr) массой 5 г и шесть шаров из сплава ВК-6 (диаметр 11,2 мм, масса 10,75 г). Длительность размола изменялась от 0 до 4 ч. Для измерения значений C_L в первой серии экспериментов таблетки диаметром 17 мм и толщиной 4 мм изготавливались при одном и том же усилии пресса (20 т). После извлечения образцов из пресс-формы измерялись их габариты, для того чтобы после взвешивания можно было определить их плотность. Измерения скорости звука проводились с использованием второго описанного выше метода. Средние значения, полученные в трех опытах для каждого образца, а также значения плотности и длительность механообработки указаны в табл. 4. Кроме того, в табл. 4 приведены результаты измерения продольной скорости звука в образце растертого монокристалла KBr, подвергнутого ударному сжатию по плоской схеме при давлении, равном 9 кбар.

Из табл. 4 следует, что дробление зерен приводит к увеличению скорости звука (жесткости) материала, причем тем большему, чем меньше значение C_L для исходного образца.

	-		
Образец KBr	au,ч	ρ , Γ/cm^3	C_L , км/с
	0	2,73	$2,\!67$
Розитир	1	2,68	2,93
I Cakinb	2	2,70	2,96
	4	2,70	2,98
	0	2,72	2,88
	1/2	2,65	2,97
Монокристоля	1	2,71	2,95
монокристалл	2	2,67	2,92
	4	2,68	2,95
	Ударное сжатие	2,72	3,03
	0	2,71	2,97
Осадок	1	2,72	2,98
	2	2,71	3,03

Механические	свойства	образцов	KBr	различного	происхождения	
		•		•	•	

Таблица 3

Таблица 4

После размола образца плотность запрессовки (при неизменном усилии пресса), как правило, несколько уменьшается из-за возросшей жесткости материала.

В ходе экспериментов выявлена особенность акустического поведения образцов, изготовленных из реактива KBr: таблетка с пористостью, равной 2 %, после высушивания при температуре 130 °C в течение 3 ч или при выдерживании в течение 12 ч в откачанном вакуум-эксикаторе не пропускает звук в используемом в данных экспериментах приборе. Образец, извлеченный из эксикатора и находящийся на воздухе в течение нескольких часов, вновь начинает пропускать звуковую волну. Этот эффект можно объяснить возникновением акустических контактов вследствие появления между частицами KBr и порами поверхностных слоев из молекул воды. Удаление "акустической" жидкости с границ пор приводит к увеличению рассеяния звуковых волн и препятствует прохождению сигнала.

Для решения основного вопроса: распространяется упругое возмущение через скелет из твердых частиц или через весь материал как сплошное (по отношению к звуковой волне) тело — измерена скорость звука в пористых образцах при различном составе пор. Так, для образца, изготовленного прессованием на воздухе порошка реактива KBr, при $\rho = 2,67 \text{ г/см}^3$ $C_L = 2,67 \text{ км/с, а для образца, запрессованного до той же плотности$ под вакуумом, $C_L = 1.98$ км/с; через неделю после помещения образца в закрытый полиэтиленовый пакет скорость звука в нем увеличилась до 2,35 км/с. Этот эффект проверен на образцах с другой плотностью. В каждом эксперименте с таблетками, запрессованными под вакуумом, скорость звука была меньше, чем в образцах той же плотности, но запрессованных без удаления воздуха. Очевидно, что если звуковое возмущение распространяется только через систему соприкасающихся твердых частиц, значение C_L не должно изменяться. В другом эксперименте для образца из порошка, приготовленного путем растирания монокристалла и запрессованного до плотности 2,23 г/см³, значение $C_L = 1,999$ км/с, при последовательном нанесении на поверхность таблетки капель толуола, которые впитывались образцом, значение С_L изменялось следующим образом: $1,999 \text{ км/с} \rightarrow 2,072 \text{ км/с} \rightarrow 2,110 \text{ км/с} \rightarrow 2,132 \text{ км/с},$ что вызвано вытеснением воздуха из пор толуолом, скорость звука в котором равна 1,328 км/с.

В табл. 5 приведены механические характеристики пористых образцов КВг и результаты вычислений объемных скоростей звука аддитивным методом при значении C_L в монокристалле, равном 3,55 км/с [6], и значении $C_0 = 2,40$ км/с, полученном при $\rho_0 = 2,75$ г/см³ и $B_0 = 15,8$ ГПа [1]. Из табл. 5 следует, что отношение $C_L/C_{\rm ад}$ меняется в значительно большем диапазоне (1,67 ± 8 %), чем в случае смеси Zn–S. Это обусловлено способностью пористых таблеток поглощать "акустическую" жидкость, используемую при измерениях вторым методом в низкоплотных образцах, в результате чего увеличивается значение C_L . Тем не менее закономерное изменение измеренных и вычисленных значений скорости звука наблюдается и в данном случае.

 $T\,a\,{\tt б\,{\tt ли\,{\tt l}}\,a}\,5$ Механические характеристики пористых образцов KBr

$ ho_{00}/ ho_0$	C_L , км/с	$C_{\rm ad},{\rm Km/c}$	$C_L/C_{ m ad}$
0,81	2,00	1,10	1,82
0,83	2,03	1,16	1,75
0,88	$2,\!43$	$1,\!37$	1,77
0,96	2,97	1,92	1,55
1,00	$3,\!55$	2,40	1,48

Заключение. Таким образом, эксперименты показывают, что пористое тело, состоящее из частиц, размеры которых значительно меньше длины звуковой волны, ведет себя как сплошное ("cepoe") тело с некоторым промежуточным значением скорости звука и соответствующим модулем упругости.

ЛИТЕРАТУРА

- 1. Batsanov S. S. Experimental foundations of structural chemistry. M.: Moscow Univ. Press, 2008.
- Yeheskel O., Chaim R., Shen Z., Nygren M. Elastic moduli of grain boundaries in nanocrystalline MgO ceramics // J. Mater. Res. 2005. V. 20, N 3. P. 719–725.
- Ma Y., Cui Q., Shen L., He Zh. X-ray diffraction study of nanocrystalline tungsten nitride and tungsten to 31 GPa // J. Appl. Phys. 2007. V. 102, N 1. P. 013525.
- Shen L. H., Li X. F., Ma Y. M., et al. Pressure-induced structural transition in AlN nanowires // Appl. Phys. Lett. 2006. V. 89, N 14. P. 141903.
- Guriev D. L., Gordopolov Yu. A., Batsanov S. S., et al. Solid-state detonation in the zinc-sulfur system // Appl. Phys. Lett. 2006. V. 88, N 2. P. 024102.
- 6. Акустические кристаллы / Под ред. М. П. Шаскольской. М.: Наука, 1982.
- 7. Бацанов С. С. Аддитивный метод расчета скорости звука в пористом материале // Неорган. материалы. 2007. Т. 43, № 10. С. 1195–1197.

Поступила в редакцию 9/VII 2008 г.