УДК 532.546:536.421

Особенности разложения газовых гидратов в пористых средах при нагнетании теплого газа

В.Ш. Шагапов, М.К. Хасанов, И.К. Гималтдинов, М.В. Столповский

Стерлитамакский филиал Башкирского государственного университета

E-mail: hasanovmk@mail.ru

Приведены результаты численного моделирования инжекции теплого газа в пористую среду, изначально насыщенную газом и газогидратом, сопровождающейся разложением газогидрата. Показано, что в зависимости от параметров на внешней границе среды (проницаемая или непроницаемая для потока газа) разложение гидрата может происходить как лишь на фронтальной границе, так и в протяженной области.

Ключевые слова: фильтрация, газовый гидрат, фронтальная граница диссоциации, протяженная область диссоциации.

Введение

В последнее время резко возрос интерес к изучению газовых гидратов — твердых кристаллических соединений, образующихся из газа и воды при определенных давлениях и температурах. В первую очередь это обусловлено тем, что значительные ресурсы природного газа, находящегося в земной коре, сосредоточены в виде газовых гидратов. Благодаря высокой удельной концентрации газа в составе гидратов, величина этих запасов значительно превосходит разведанные запасы газа в свободном состоянии. С учетом их неглубокого залегания газовые гидраты можно рассматривать как один из перспективных источников углеводородного сырья.

В настоящей работе рассматриваются особенности диссоциации газогидрата при инжекции теплого газа в пористый пласт конечной протяженности, изначально насыщенный газом и гидратом. Автомодельное решение задачи об инжекции холодного газа в полубесконечный пористый пласт, изначально насыщенный газом и водой, было получено в работах [1–3]. В работе [4] данная задача была решена численно для пласта конечной протяженности. Настоящая работа является продолжением исследования [5] разложения газового гидрата при нагреве и отборе газа из пористого пласта конечной протяженности, изначально насыщенного газом и гидратом.

Основные уравнения

Рассмотрим горизонтальный пористый пласт протяженности L ($0 \le x \le L$), насыщенный в начальный момент времени газом и гидратом (с объемным содержанием $S_h = v$), давление p_0 и температура T_0 которых соответствует условию их совместного существования. Пусть через левую границу пористого пласта (x = 0) начинает закачиваться теплый газ (метан) с температурой T_e ($T_e > T_0$) и давлением p_e . Данные параметры

© Шагапов В.Ш., Хасанов М.К., Гималтдинов И.К., Столповский М.В., 2013

соответствуют условиям стабильного существования газа и воды и поддерживаются постоянными в ходе всего процесса диссоциации гидрата. Рассматривая мгновенное изменение температуры на левой границе x = 0 до значения T_e , будем полагать, что в пласте образуются три области, в которых газ, гидрат и вода находятся в различных состояниях. Так, поры ближней области насыщены газом и водой, а поры дальней области — газом и гидратом. Промежуточная (протяженная) область содержит гидрат и продукты его разложения в состоянии термодинамического равновесия. При этом возникают две подвижные границы $x = x_{(i)}$ (i = n, d), разделяющие между собой указанные области, причем граница $x = x_{(n)}$ разделяет между собой ближнюю и промежуточную, а граница $x = x_{(d)}$ — дальнюю и промежуточную области.

При теоретическом описании процессов тепло- массопереноса при закачке газа в пласт, сопровождающейся диссоциацией гидрата, примем однотемпературную модель пористой среды, т. е. модель, при которой температура самой среды и насыщающего ее вещества (газа, гидрата и воды) в каждой точке совпадают, поскольку фильтрационные процессы протекают достаточно долго (часы, сутки) по сравнению со временем выравнивания температур. Будем также считать, что пористость среды постоянна; ее скелет, гидрат и вода несжимаемы, а газ является калорически совершенным:

$$m, \rho_{sk}, \rho_h, \rho_l = \text{const}, \quad p = \rho_g R_g T.$$
 (1)

Здесь *m* — пористость, ρ_j (*j* = *sk*, *h*, *l*) — истинные плотности фаз (индексы *sk*, *h*, *l* относятся к параметрам скелета, гидрата и воды соответственно), *p* — давление, *T* — температура, R_g — приведенная газовая постоянная. Гидрат является двухкомпонентной системой с массовой концентрацией газа *G*. Примем предельную схему фильтрации, согласно которой подвижной считается газовая фаза, а вода является неподвижной. Допущение о неподвижности жидкости обосновано тем, что, как показывают оценки [1-3], скорость фильтрации газа, как правило, всегда много больше скорости фильтрации воды (за исключением случаев, когда исходная гидратонасыщенность $v \ge 0,5$).

Уравнения сохранения масс газа и воды для плоскоодномерного случая с учетом принятых допущений можно представить в следующем виде [1–3]:

$$\frac{\partial}{\partial t} \left(m S_g \rho_g \right) + \frac{\partial}{\partial x} \left(m S_g \upsilon_g \rho_g \right) = -m G \rho_h \frac{\partial S_h}{\partial t}, \tag{2}$$

$$\frac{\partial}{\partial t} (mS_l) = -m(1-G) \frac{\rho_h}{\rho_l} \frac{\partial S_h}{\partial t}, \qquad (3)$$

 $S_g + S_h + S_l = 1,$

где t — время, S_j — насыщенности пор j-ой фазой, υ_g — скорость газовой фазы.

Для фильтрации газа примем закон Дарси:

$$mS_g \upsilon_g = -\frac{k_g}{\mu_\sigma} \frac{\partial p}{\partial x}.$$
 (4)

где μ_g и k_g — соответственно динамическая вязкость и проницаемость газовой фазы, которая определяется на основе формулы Козени [4]:

$$k_{g} = k_{*} \frac{\left(mS_{g}\right)^{3}}{\left(1 - mS_{g}\right)^{2}} \approx k_{0}S_{g}^{3}, \ \left(k_{0} = k_{*}m^{3}\right).$$
(5)

Здесь k_0 — абсолютная проницаемость пласта.

348

Уравнение притока тепла, пренебрегая баротермическим эффектом, можно записать в виде:

$$\rho c \frac{\partial T}{\partial t} + c_g \rho_g m S_g \upsilon_g \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + m \rho_h L_h \frac{\partial S_h}{\partial t}, \tag{6}$$

$$\rho c = (1-m) \rho_{sk} c_{sk} + m \sum_{j=g,l,h} S_j \rho_j c_j, \quad \lambda = (1-m) \lambda_{sk} + m \sum_{j=g,l,h} S_j \lambda_j,$$

где T — температура, c_j (j = g, h, l) и λ_j — удельная теплоемкость и коэффициент теплопроводности фаз, величины ρc и λ представляют собой удельную объемную теплоемкость и коэффициент теплопроводности системы «пористая среда–газогидрат», L_h — удельная теплота гидратообразования.

При разложении гидрата в пористом пласте возникают зоны, в которых газ, гидрат и вода могут находиться в различных состояниях. На границах между этими зонами, где терпят скачки насыщенности фаз, а также потоки массы и тепла, выполняются соотношения, следующие из условий баланса массы и энергии:

$$\begin{bmatrix} m(\rho_l S_l + \rho_h S_h (1 - G)) \dot{x}_{(i)} \end{bmatrix} = 0, \quad \begin{bmatrix} m(\rho_g S_g (\upsilon_g - \dot{x}_{(i)}) - \rho_h S_h G \dot{x}_{(i)}) \end{bmatrix} = 0, \tag{7}$$

$$\begin{bmatrix} \lambda \frac{\partial T}{\partial x} \end{bmatrix} = \begin{bmatrix} m \rho_h L_h S_h \dot{x}_{(i)} \end{bmatrix}.$$

Здесь $[\psi] = \psi^+ - \psi^-$ — скачок параметра ψ на границе $x = x_{(i)}$, $\dot{x}_{(i)}$ — скорость движения данной границы, индексы i = n, d соответствуют параметрам на ближней и дальней границах. Температура и давление на обеих границах считаются непрерывными.

В трехфазной области, где содержатся газ, гидрат и вода и происходит процесс диссоциации гидрата, принимается условие равновесия фаз:

$$T = T_0 + T_* \ln\left(\frac{p}{p_{s0}}\right),$$
(8)

где T_0 — исходная температура системы, p_{s0} — равновесное давление, соответствующее исходной температуре, T_* — эмпирический параметр, зависящий от вида газогидрата.

Пусть пласт в начальный момент времени насыщен газом и гидратом, давление p_0 и температура T_0 которых соответствуют термодинамическим условиям их совместного существования и одинаковы во всем пласте:

$$p = p_0, T = T_0, S_h = v \ (0 \le x \le L, t = 0).$$
 (9)

Через левую границу пласта закачивается газ (одноименный исходному) под давлением p_e с температурой T_e , параметры которого соответствуют условиям стабильного существования газа и воды:

$$p = p_e, \quad T = T_e \quad (x = 0, t > 0).$$
 (10)

На правой границе пласта (x = L) поставим условия, моделирующие отсутствие через нее потока тепла в сочетании с условиями либо отсутствия потока газа через нее либо постоянное, равное начальному, значение давления:

$$\frac{\partial p}{\partial x} = 0, \qquad \frac{\partial T}{\partial x} = 0 \quad (x = L, t > 0),$$
(11)

349

Шагапов В.Ш., Хасанов М.К., Гималтдинов И.К., Столповский М.В.

$$p = p_0, \qquad \frac{\partial T}{\partial x} = 0 \quad (x = L, t > 0).$$
 (12)

Границу, на которой поддерживаются условия (11), будем называть непроницаемой или закрытой, а границу, для которой справедливы условия (12), — открытой для потока газа.

Применив к уравнениям (2) и (6) закон Дарси (4) и уравнение состояния газа и полагая, что характерные перепады температуры в области фильтрации незначительны, можно получить общие для всех зон пласта уравнения пьезо- и теплопроводности:

$$\frac{\partial p}{\partial t} = \frac{k_g}{m\mu_g S_g} \frac{\partial}{\partial x} \left(p \frac{\partial p}{\partial x} \right) - \Re T \frac{\partial S_h}{\partial t},\tag{13}$$

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa^{(T)} \frac{\partial T}{\partial x} \right) + \frac{c_g k_g}{\mu_g \rho c} \frac{p}{R_g T} \frac{\partial p}{\partial x} \frac{\partial T}{\partial x} + \Delta T \frac{\partial S_h}{\partial t}, \tag{14}$$

где $\Re = \frac{G\rho_h R_g}{1 - S_{l0}}, \quad \Delta T = \frac{m\rho_h L_h}{\rho c}, \quad \kappa^{(T)} = \lambda/\rho c.$ Поскольку в ближней и дальней областях

фазовые переходы отсутствуют (т. е. $\partial S_h / \partial t = 0$), то уравнения пьезо- и теплопроводности для них записываются в виде (13) и (14) без последнего слагаемого в правой части. В промежуточной области, где давление и температура связаны условием фазового равновесия, из (8) следует:

$$\frac{\partial T}{\partial x} = \frac{T_*}{p} \frac{\partial p}{\partial x}, \quad \frac{\partial^2 T}{\partial x^2} = \frac{T_*}{p} \frac{\partial^2 p}{\partial x^2} - \frac{T_*}{p^2} \left(\frac{\partial p}{\partial x}\right)^2$$

Используя последние соотношения, из (13) и (14) получим уравнения, описывающие распределения основных параметров системы в промежуточной области:

$$\frac{\partial p}{\partial t} = \frac{k_g}{m\mu_g S_g} \frac{\partial}{\partial x} \left(p \frac{\partial p}{\partial x} \right) - \frac{\Re T}{\Delta T} \frac{\partial^2 T}{\partial x^2} + \frac{c_g k_g \Re}{\mu_g \rho c} \frac{p}{\Delta T \cdot R_g} \frac{\partial p}{\partial x} \frac{\partial T}{\partial x}, \tag{15}$$

$$\frac{\partial S_h}{\partial t} = \frac{1}{\Delta T} \left[\frac{\partial T}{\partial t} - \frac{\partial}{\partial x} \left(\kappa^{(T)} \frac{\partial T}{\partial x} \right) - \frac{c_g k_g}{\mu_g \rho c} \frac{p}{R_g T} \frac{\partial p}{\partial x} \frac{\partial T}{\partial x} \right].$$
(16)

Поскольку, согласно постановке рассматриваемой задачи, диссоциация гидрата происходит в протяженной области, будем полагать, что на ближней границе фазового перехода $x = x_{(n)}$ происходит скачок гидратонасыщенности от $S_{h(n)}^- = 0$ до $S_{h(n)}^+ > 0$. Поэтому условия баланса массы газа и тепла, следующие из соотношений (7), с учетом закона Дарси (4) можно представить в виде:

$$\frac{k_{g(n)}^{+}}{\mu_{g}} \left(\frac{\partial p}{\partial x}\right)_{(n)}^{+} - \frac{k_{g(n)}^{+}}{\mu_{g}} \left(\frac{\partial p}{\partial x}\right)_{(n)}^{-} = m\dot{x}_{(n)} \left[S_{g(n)}^{-} - S_{g(n)}^{+} - \frac{\rho_{h}GS_{h(n)}^{+}}{\rho_{g(n)}}\right],$$
(17)
$$\lambda \left(\frac{\partial T}{\partial x}\right)_{(n)}^{+} - \lambda \left(\frac{\partial T}{\partial x}\right)_{(n)}^{-} = m\rho_{h}L_{h}S_{h(n)}^{+}\dot{x}_{(n)}.$$

Здесь и далее верхние индексы «+» и «-» относятся к параметрам перед и за фронтом соответственно. Значение водонасыщенности в ближней области определяется из условия сохранения массы гидрата на этой границе с учетом его полного разложения:

$$S_{l(n)}^{-} = \frac{\rho_h \left(1 - G\right) \nu}{\rho_l}$$

На дальней границе фазового перехода $x = x_{(d)}$ значение гидратонасыщенности будем полагать непрерывным и равным исходной гидратонасыщенности системы. Тогда на основе соотношений (7) условия баланса массы газа и тепла на ней имеют вид:

$$\left(\frac{\partial p}{\partial x}\right)_{(d)}^{-} = \left(\frac{\partial p}{\partial x}\right)_{(d)}^{+}, \quad \left(\frac{\partial T}{\partial x}\right)_{(d)}^{-} = \left(\frac{\partial T}{\partial x}\right)_{(d)}^{+}.$$
(18)

Для численного решения задачи (13)–(16) с начальными и граничными условиями (9)–(12) и условиями на подвижных границах фазовых переходов (17) и (18) использовался метод ловли фронтов в узлы пространственной сетки [6]. Суть данного метода заключается в том, что за определенный временной шаг ближний фронт диссоциации гидрата перемещается по координатной сетки ровно на один шаг, т. е. $x_{(n)}(t_{j+1}) - x_{(n)}(t_j) = h$, где h — шаг пространственной сетки. При этом положение дальней границы $x = x_{(d)}$ находится в ходе решения задачи. Данный метод был протестирован в работах [4, 5] путем сравнения численных расчетов и аналитического решения задачи в автомодельной постановке, которая соответствует начальному этапу процесса, когда влияние границ несущественно.

Результаты

Расчеты были проведены для модельного пласта длины L = 1 м с исходной гидратонасыщенностью v = 0,2 и абсолютной проницаемостью $k_0 = 10^{-14}$ м². Давление и температура нагнетаемого газа полагалась равными $p_e = 7$ МПа и $T_e = 290$ К. Для остальных параметров, характеризующих систему, приняты следующие значения: G = 0,12, $S_{l0} = 0,2$, $p_0 = 4$ МПа, $T_0 = 280$ К, $T_* = 10$ К, $p_{s0} = 5,5$ МПа, $R_g = 520$ Дж/(К·кг), $\rho_{sk} = 2 \cdot 10^3$ кг/м³, $\rho_h = 900$ кг/м³, $\rho_l = 1000$ кг/м³, $c_{sk} = 1000$ Дж/(К·кг), $c_h = 2500$ Дж/(К·кг), $c_l = 4200$ Дж/(К·кг), $c_g = 1560$ Дж/(К·кг), $\rho c = 2,5 \cdot 10^6$ Дж/(К·м³), $\lambda_s = 2$ BT/(м·К), $\lambda_h = 2,11$ BT/(м·К), $\lambda_l = 0,58$ BT/(м·К), $\lambda = 2$ BT/(м·К), $\mu_g = 10^{-5}$ кг/(м·с), $L_h = 5 \cdot 10^5$ Дж/кг.

На рис. 1 представлены распределения температуры при диссоциации гидрата (сплошные линии) и гидратонасыщенности при нагнетании в пласт теплого газа для случая непроницаемой правой границы в различные моменты времени. Штриховая линия соответствует равновесной температуре, соответствующей вычисленному давлению. Как следует из рисунка, температура пласта в любой момент времени перед фронтом диссоциации гидрата ниже, а за фронтом — выше равновесной температуры. Таким образом, диссоциация гидрата при данных параметрах нагнетаемого газа в случае непроницаемой правой границы происходит на фронтальной границе, которая является частным случаем протяженной области, когда ее длина равна нулю, т. е. $x_{(n)} = x_{(d)}$.

На рис. 2 представлены распределения температуры (сплошные линии) и гидратонасыщенности при продувке, т. е. когда на правой границе пористой среды принимаются граничные условия (12), соответствующие открытой правой границе. Исходное значение давления полагалось равным $p_0 = 6$ МПа. Штриховая линия соответствуют равновесной температуре. Как следует из рисунка, при вышеперечисленных параметрах нагнетаемого газа диссоциация гидрата до момента времени $t \approx 10$ ч происходит на фронтальной

Рис. 1. Распределения температуры и гидратонасыщенности пласта при диссоциации гидрата. Плоскоодномерная задача: $p_e = 7$ МПа, $T_e = 290$ К (числа на кривых — время в часах).

Рис. 2. Распределения температуры и гидратонасыщенности при диссоциации гидрата в режиме продувки пласта. Плоскоодномерная задача: $p_e = 7$ МПа, $T_e = 290$ К (числа на кривых время в часах).

поверхности. Однако затем наблюдается возникновение протяженной области диссоциации гидрата. Это связано с тем, что при продувке имеется непрерывный поток тепла от левой границы вглубь пласта, приводящий к повышению температуры в области, насыщенной газом и гидратом, и появлению протяженной зоны. При этом появляются две подвижные границы, одна из которых (дальняя) к моменту времени $t \approx 13,6$ ч достигает правой границы пласта. В дальнейшем в пласте существуют две области: ближняя, насыщенная газом и водой, и дальняя, содержащая гидрат и продукты его разложения, и единственная подвижная граница, разделяющая их. Таким образом, при продувке пластов теплым газом диссоциация гидрата происходит сначала на фронтальной поверхности, а затем — и в протяженной области.

На рис. 3, *а* представлены зависимости значений координаты возникновения протяженной области диссоциации гидрата от давления нагнетаемого газа при продувке пласта. Линии *1* и *2* соответствуют значениям абсолютной проницаемости $k_0 = 10^{-13}$ и 10^{-14} м². Как следует из рисунка, с увеличением давления нагнетаемого газа и абсолютной

a — при различных значениях абсолютной проницаемости пласта: $k_0 = 10^{-13}$ (*I*), 10^{-14} (*2*) м²; *b* — при различных значениях исходного давления системы: $p_0 = 6$ (*I*), 5 (*2*) МПа.

проницаемости пласта координата возникновения протяженной области уменьшается, что связано с усилением потока теплого газа вглубь пласта и его быстрым прогревом.

На рис. 3, *b* представлены аналогичные зависимости, причем линии *l* и *2* соответствуют исходному давлению системы $p_0 = 5$ и 6 МПа. Как следует из рисунка, с уменьшением величины исходного давления p_0 значения координаты возникновения протяженной области уменьшаются, т. к. увеличивается перепад давления и, следовательно, усиливается поток теплого газа.

На рис. 4, *а* представлены зависимости координаты границы $x = x_{(n)}$ от времени при нагнетании газа под давлением $p_e = 7$ МПа. Начальные параметры системы аналогичны рис. 2. Кривые *1* и *2* соответствуют открытой и закрытой правой границе. Из рисунка следует, что интенсивность разложения гидрата в режиме продувки выше, чем в случае

а — при различных условиях на правой границе пласта: открытая (*I*) и непроницаемая (2) граница для потока газа; *b* — при различных значениях абсолютной проницаемости пласта: $k_0 = 10^{-14} (I)$, $10^{-15} (2)$ м².

непроницаемой правой границы. Данное обстоятельство объясняется тем, что при продувке, наряду с кондукцией, имеется еще и конвективный перенос тепла от левой границы вглубь пласта, который и увеличивает скорость диссоциации гидрата. На рис. 4, b представлены зависимости времени полной диссоциации всего гидрата в пласте длины L = 1 м при его продувке от давления нагнетаемого газа. Как следует из рисунка, с ростом давления нагнетаемого газа (или увеличением градиента давления в пласте) время диссоциации гидрата уменьшается. При этом уменьшение проницаемости системы приводит к увеличению времени диссоциации. Это объясняется тем, что с уменьшением проницаемости уменьшается и скорость конвективного потока тепла вглубь пласта.

Выводы

В работе численно исследован процесс диссоциации газогидрата в пористом пласте, изначально насыщенным газом и гидратом, для случая с непроницаемой для потока газа правой границей и случая продувки пласта. Показано, что диссоциация гидрата в режиме с закрытой границей протекает на фронтальной поверхности. В режиме продувки пласта разложение гидрата происходит сначала на фронтальной поверхности, а затем и в протяженной области.

Список литературы

- 1. Шагапов В.Ш., Мусакаев Н.Г., Хасанов М.К. Нагнетание газа в пористый резервуар, насыщенный газом и водой // Теплофизика и аэромеханика. 2005. Т. 12, № 4. С. 645–656.
- 2. Шагапов В.Ш., Хасанов М.К. Мусакаев Н.Г. Образование газогидрата в пористом резервуаре, частично насыщенном водой, при инжекции холодного газа // Прикладная механика и техническая физика. 2008. Т. 49, № 3. С. 137–150.
- 3. Хасанов М.К. Гималтдинов И.К., Столповский М.В. Особенности образования газогидратов при нагнетании холодного газа в пористую среду, насыщенную газом и водой // Теоретические основы химической технологии. 2010. Т. 44, № 4. С. 442–449.
- 4. Шагапов В.Ш., Хасанов М.К., Гималтдинов И.К., Столповский М.В. Численное моделирование образования газогидрата в пористой среде конечной протяженности при продувке газом // Прикладная механика и техническая физика. 2011. Т. 52, № 4. С. 116–126.
- 5. Гималтдинов И.К., Мусакаев Н.Г., Хасанов М.К., Столповский М.В. Особенности разложения газовых гидратов при тепловом и депрессионном воздействиях в пластах конечной протяженности // Вестник Тюменского государственного университета. 2011. № 7. С. 6–13.
- **6.** Васильев В.И., Попов В.В., Тимофеева Т.С. Вычислительные методы в разработке месторождений нефти и газа. Новосибирск, 2000. 127 с.

Статья поступила в редакцию 29 ноября 2012 г.