УДК 66.097.5/084.2 DOI: 10.15372/KhUR20150611

Формирование неорганических носителей и компонентов катализаторов с применением механической активации

О. Н. БАКЛАНОВА, А. В. ЛАВРЕНОВ, Е. Н. БОГДАНЕЦ

Институт проблем переработки углеводородов Сибирского отделения РАН, ул. Нефтезаводская, 54, Омск 644040 (Россия)

E-mail: baklanova@ihcp.ru

Аннотация

Рассмотрены вопросы влияния состава механоактивируемой смеси и режимов механической активации на изменение состава и строения пористых неорганических материалов – носителей катализаторов нефтеперерабатывающих процессов.

Представлены результаты исследований по повышению эффективности работы катализаторов нефтепереработки, носители которых синтезированы в условиях интенсивного механического воздействия.

Ключевые слова: носитель, катализатор, механическая активация

Оглавление

Введение	711
Общие сведения о механической и механохимической активации	712
Физико-химические процессы, протекающие при механической активации	712
Механическая активация многокомпонентных смесей	713
Аппараты для проведения механической активации	714
Механическая активация при синтезе пористых неорганических носителей	714
Оксид алюминия	714
Оксид циркония	716
Цеолиты	717
Глины	719
Оксид кремния	720
Заключение	723

введение

Механическая обработка твердых веществ с целью диспергирования – одна из важнейших технологических операций. Благодаря созданию и использованию высоконапряженной измельчительной техники достигнуты существенные изменения химического и фазового составов, а следовательно, и свойств обрабатываемых веществ. Подобные изменения, происходящие в веществах при интенсивных механических воздействиях, получили название "механохимические процессы", а их исследование стало объектом механохимии. Одно из направлений механохимии – исследование влияния механической обработки на физикохимические свойства и реакционную способность твердых тел, называемое механической активацией (МА). Второе направление – исследование реакций, протекающих в условиях МА – механохимический синтез (МС) [1].

Механическая активация и механохимический синтез в настоящее время широко применяются в различных технологических процессах. Так же велик интерес к изучению явлений, сопровождающих процесс механического диспергирования и разрушения твердой фазы, к МС твердых соединений и получению сплавов в энергонапряженных мельницах. По данным реферативных сборников, составленных Институтом химии тведого тела и механохимии СО РАН (Новосибирск), в мире ежегодно публикуется более 1200 работ, связанных с МС и процессами МА твердой фазы.

В последние десятилетия отмечен рост исследований, связанных с применением МА в процессах синтеза катализаторов.

По мнению авторов [1], основными преимуществами синтеза катализаторов с использованием МА являются безотходность процесса и снижение потребления энергии. Помимо упрощения технологии синтеза катализаторов и возможности его осуществления непосредственно в активаторах, к преимуществам метода МА относится приготовление катализаторов в метастабильном состоянии, которое характеризуется повышенной активностью [2]. Процесс релаксации подобных метастабильных состояний требует преодоления активационного барьера, поэтому, как правило, при невысоких температурах катализаторы в таком состоянии сохраняют повышенную активность на протяжении длительного времени.

Известно, что процесс МА твердых смесей сопровождается измельчением и пластической деформацией веществ [3]. При этом увеличивается число точечных контактов, осуществляется их постоянное обновление, реализуются процессы размножения и миграции дефектов в объеме твердых тел. При этом подвижность частиц может быть достаточной для перемешивания вещества на молекулярном уровне и для интенсификации диффузионно-контролируемых реакций.

Е. Г. Аввакумов в 1990-х годах предложил разновидность МА, используемой для синтеза новых соединений, и назвал его мягким механохимическим синтезом [4]. Этот метод предполагает использование для МС высокореакционных соединений, таких как гидроксиды, твердые кислоты, основные и кислые соли, их кристаллогидраты, т. е. соединения, при участии которых протекают реакции с выделением воды. Выделившаяся вода далее участвует во взаимодействии. Как правило, твердость этих соединений в 3-4 раза ниже по сравнению с твердостью безводных оксидов, что позволяет снизить уровень механических нагрузок и перейти к более мягким условиям МА. Сочетание механически активированного процесса с кислотно-основным взаимодействием сильно повышает эффективность подобных процессов синтеза.

ОБЩИЕ СВЕДЕНИЯ О МЕХАНИЧЕСКОЙ (МЕХАНОХИМИЧЕСКОЙ) АКТИВАЦИИ

Физико-химические процессы, протекающие при МА

Химические реакции с участием твердых тел протекают в основном на поверхности [5]. Если нагревание тела приводит к возбуждению всех узлов кристаллической решетки, то механическая обработка позволяет перевести в возбужденное состояние только их часть. При термическом разложении имеет место медленный подъем температуры, а механическая обработка характеризуется быстрым импульсным подъемом в местах контактов трущихся тел и быстрым дальнейшим охлаждением. Как следствие, при механической обработке, в отличие от термического распада, не успевают протекать вторичные процессы и происходит закалка первичных продуктов, образующихся на начальных стадиях процесса. Это может быть одной из причин специфики химизма механохимических реакций.

Различают два случая МА [6]. В первом случае время механического воздействия и формирования поля напряжений и его релаксации больше, нежели время химической реакции. Такие процессы обычно называют механохимическими, а сам процесс обработки – механохимической активацией (МХА). Во втором случае время механического воздействия и формирования поля напряжений, наоборот, меньше скорости химической реакции. В этом случае процесс механической обработки называется механической активацией.

Независимо от типа измельчающего аппарата (при условии, что аппарат эффективен и работает в течение длительного времени) изменение размера частиц при измельчении идет в три этапа. Первый этап характеризуется прогрессивным уменьшением размера частиц со временем; второй – началом процесса агрегации частиц, третий этап – установлением равновесия, при котором размер частиц не изменяется со временем. Аналогичным образом в процессе МА изменяется и удельная поверхность. Очень мелкие частицы, обладающие повышенной энергией, отвечают за возникновение метастабильных состояний и фаз при измельчении. Под влиянием длительного измельчения устанавливается равновесное состояние между различными модификациями вещества.

При истирании смеси веществ между ними идут также реакции синтеза и реакции обмена. По данным [7, 8], при истирании металлов с серой образуются сульфиды Hg, Ag, Mg, Cd, Zn, Sn, Pb, Sb, Bi с выходом от 25 до 100 %.

Установлено, что наиболее важную роль в механохимических реакциях играют физические процессы, происходящие на границе трущихся тел: выделение тепла [9], появление высоких давлений [10], электризация [11], экзоэмиссия и механоэмиссия электронов [11].

Механохимическая активация многокомпонентных смесей

Известно [12], что химические реакция между твердыми веществами осуществляются не по всему объему твердых веществ, вступающих в химическое взаимодействие между собой, и даже не по всей их поверхности, а на контактах реагирующих частиц.

Показано [13], что число контактов между реагирующими веществами и их площадь имеют решающее значение для начальной стадии твердофазного химического процесса. Следовательно, предварительное измельчение компонентов и их смешивание необходимо проводить таким образом, чтобы предотвратить агрегацию частиц одного и того же компонента, поскольку это существенно снижает скорость твердофазной реакции.

В последнее время активно исследуется вопрос о возможном участии флюидной (жидкой или газовой) фазы на промежуточных стадиях процесса. Процесс, который считается твердофазным, на самом деле может представлять собой комбинацию из реакций: твердое тело + газ или твердое тело + жидкость. В [14] описываются результаты МХА Мо порошка в среде Ar, N_2 и O_2 . Показано, что при МХА в N_2 фиксируется появление фазы γ -Mo₂N. Механохимическая активация в среде Ar и O_2 приводит к увеличению содержания O при возрастании времени MA до 120 ч.

В статье [15] рассмотрена принципиальная возможность реализации гидротермального режима при механической обработке влажных смесей. Экспериментальные результаты показали, что гидротермальный синтез реализуется в ходе механохимической реакции гидроксида кальция с гидратированным оксидом кремния.

Помимо влияния состава газовой среды и присутствия влаги на процессы MC, многие авторы отмечают влияние материала мелющих тел на протекание MXA. В статьях [16, 17] показана возможность загрязнения продуктов MXA материалом мелющих тел.

В работах [18, 19] перечислены условия, необходимые для химического взаимодействия в процессе МХА компонентов порошковой смеси сложного состава. По мнению авторов, в некоторый начальный период МХА имеет место следующее:

1) самофутеровка мелющих тел слоем толщиной δ и пористостью ρ [19];

2) гомогенизация: в пределах некоторого объема $\Delta V = abc$, взятого в любой произвольной точке футерованного слоя, химический состав механоактивируемой смеси одинаков [20];

3) максимальный линейный размер ΔV должен быть меньше минимального линейного размера объема $\pi r^2 \delta$ [21], где r – радиус площади ударного контакта мелющего тела (шар) с футерованным слоем обрабатываемых частиц;

4) динамическое равновесие [22] по средним размерам частиц R_i (i = 1, 2, 3) << $a \sim b \sim c <<\delta$ с радиусами R_i , распределенными в пределах одного порядка величины в слое δ ;

5) реакция (степень протекания реакции <<1) с образованием наночастиц продуктов со средними радиусами $R_3 = R_4 << R_i$, которые адсорбируются или поглощаются значительно более крупными частицами.

Образование и эволюция футерованного слоя, как и самого процесса МХА, – понятие динамическое, а не статическое. Массоперенос в пределах футерованного слоя происходит в процессе ударно-фрикционных взаимодействий подвижными мелющими телами (шаровой загрузкой), при этом изменяются его химические (состав), гранулометрические (R_i) и геометрические (δ) характеристики.

Авторы [23] отмечают, что один из основных вопросов при МХА смесей твердых веществ – это вопрос о соотношении между скоростью химической реакции и затраченной при этом механической энергией. Энергия мелющих шаров $E = mv^2/2$, где m – масса шара; v – его скорость.

Обобщая изложенное, можно сказать, что для синтеза неорганических соединений, в частности носителей катализаторов, все чаще используется метод МХА, заключающийся в проведении твердофазных реакций в измельчительных аппаратах. С его помощью осуществляется синтез самых разнообразных соединений: сложных оксидов, гидридов, фосфатов, комплексных соединений, интерметаллидов и др. [24].

Аппараты для проведения МА

Механическую активацию отдельных соединений и поликомпонентных смесей проводят на диспергаторах различного типа. Это мельницы с низкой скоростью нагружения, в которых воздействие проводится преимущественно сжатием, - шаровые барабанные мельницы [25]. Кроме того, используются мельницы со средней скоростью нагружения, разрушающие в основном стесненным ударом: вибрационные, вихревые, центробежные и др. [26]. К третьей группе мельниц относятся мельницы с высокой скоростью нагружения, где материалы измельчаются преимущественно свободным ударом [27]. К ним можно отнести дезинтеграторы, дисмембраторы, молотковые, роторные и планетарные мельницы.

Второй фактор, оказывающий существенное влияние на интенсивность механической активации, – это подводимая к измельчаемому материалу мощность. Для шаровых мельниц характерные мощности составляет от 30 до 50 Вт/г, для вибрационных 250– 4500 Вт/г, для центробежных 1000–5000 Вт/г, для планетарных 9000–36 000 Вт/г [28]. В планетарных мельницах реализуется высокая скорость измельчения и активации, которая обеспечивается центробежными силами, возникающими при вращении барабанов вокруг своей и общей оси. Они в десятки раз превышают силу тяжести, что позволяет во столько же раз уменьшить размеры мелющих тел без снижения их кинетической энергии. Установлено [29], что в течение 2 мин работы планетарной мельницы достигается такая же дисперсность, как после 10-12 ч работы обычной шаровой мельницы. Известные планетарные мельницы Pulverisette фирм Fritsch и Retsch обеспечивают ускорение мелющих тел 12g и интенсивность энергетического воздействия 0.3 Вт/г.

В Институте химии твердого тела и механохимии СО РАН создана серия высокоэнергетических планетарных мельниц, которые позволяют развивать ускорение мелющих тел до 100g и интенсивность энергетического воздействия до 10 Вт/г [27].

МЕХАНИЧЕСКАЯ АКТИВАЦИЯ ПРИ СИНТЕЗЕ НЕОРГАНИЧЕСКИХ НОСИТЕЛЕЙ КАТАЛИЗАТОРОВ НЕФТЕПЕРЕРАБОТКИ

Оксид алюминия

Процесс МА глинозема можно условно разделить на две стадии [30, 31]: диспергирование и МХА. На первой стадии МА происходит увеличение удельной поверхности и уменьшение размера области когерентного рассеяния (до 48 нм). На второй – размер кристаллитов остается постоянным, а подводимая механическая энергия аккумулируется в энергию кристаллической решетки, способствуя увеличению микродеформаций с 0.35 до 0.8 %.

Накопление микродеформаций обуславливает снижение температур фазовых переходов на 200–250 °С [32] и повышение химической активности Al_2O_3 , за счет чего получаются гранулы с более высокой пористостью при сохранении прочности [33–36].

Механохимическая активация гидроксида алюминия приводит к накоплению энергии, сдвигу гидроксильных пакетов и расщеплению кристаллов на тонкие пластины [37–43]; при этом имеет место дегидроксилирование гидроксида алюминия, в результате которого образуется мостиковый O²⁻ и молекулярная вода, которая остается в первой координационной сфере Al(III). В [44-47] отмечается, что при механохимическом активировании гидроксида алюминия в промышленных мельницах (шаровой, вибрационной, ударно-центробежной) разрушение кристаллов на блоки сопровождается дегидроксидированием и накоплением микродеформаций. Основной вклад в запасание энергии вносят процессы разрушения кристалла на блоки, приводящие к росту удельной поверхности, деформированию кристаллической решетки и синтезу новых фаз. В результате активированные образцы Al(OH)₃ характеризуются повышенной реакционной способностью.

Оксид алюминия, полученный после прокаливания гидроксида, предварительно подвергнутого МХА в шаровой или вибрационной мельнице, как правило, приобретает повышенную механическую прочность [48].

Механохимическая активация исходного продукта (гидраргиллит, байерит, аморфный гидроксид или их смесь) в центробежно-планетарной мельнице (ускорение вращения ротора 100g) в течение 0.08–3 ч и последующий нагрев до 100–600 °С [49] позволяют получить более активный оксид алюминия, используемый в качестве носителя катализатора. Так, в реакции получения углерода разложением углеводородов (закоксовывание при 500 °С на весах Мак-Бена в потоке смеси дивинила с аргоном) скорость закоксовывания в 3–5 раз выше по сравнению с традиционным γ-Al₂O₃.

Известен катализатор ИКА-27-25, который в течение четырех лет работы имел более высокую степень гидролиза COS по сравнению с катализатором CR фирмы AXENS [50]. Высокую активность и стабильность работы российского катализатора можно объяснить тем, что он многофазен: в нем содержится до 50 % χ -Al₂O₃, обладающего повышенной концентрацией поверхностных OH-групп, взамен γ -Al₂O₃, на котором базируются все известные алюмооксидные катализаторы [51].

Высокая эффективность работы катализатора [52] для очистки газов от серосодержащих соединений объясняется тем, что в его рецептуре в качестве носителя используется механоактивированная смесь гидроксида алюминия с доломитом. В процессе МХА формируется пористая структура носителя, причем диаметр пор уменьшается в направлении от внешней поверхности в глубину материала. Это обеспечивает поглотительную емкость по сере на 30 – 40% больше, чем у других промышленных аналогов и более высокую (в 5 – 20 раз) механическую прочность.

В [52] описан процесс МХА γ-Al₂O₃, которая проводилась в течение 1-30 мин в центробежной планетарной мельнице типа АГО-2 при частоте вращения барабанов 10 с⁻¹, в качестве мелющих тел использовались стальные шары диаметром 5 мм. Масса мелющих тел составляла 0.2 кг, масса образца ү-Al₂O₃ -0.005 кг. Установлено, что при проведении МХА в течение 1-5 мин фазовый состав оксида алюминия не изменяется. При увеличении времени MXA до 10-15 мин начинается трансформация γ-фазы в α-фазу (корунд). В образцах вследствие истирания барабанов и мелющих тел в значительных количествах (0.2-0.8 мас. %) появляется металлическое железо и снижается концентрация поверхностных координационно-ненасыщенных ионов алюминия, уменьшаются удельная поверхность и концентрация сильных акцепторных (льюисовских) центров. Удельная поверхность при увеличении времени активации до 20 мин снижается более чем в четыре раза. Концентрация сильных льюисовских кислотных центров при времени MXA 20 мин снижается на два порядка, а концентрация менее сильных льюисовских центров - в несколько раз, в то время как количество октаэдрически и тетраэдрически координированных ионов алюминия не изменяется.

Влияние МХА в энергонапряженной планетарной мельнице на механизм фазовых переходов гидраргиллита, гиббсита, байерита и бемита изучено в работах [53–65]. Показано, что в результате механического воздействия более чем на 200 °С снижаются температуры фазовых переходов и температуры образования α -Al₂O₃.

При термообработке продуктов МХА тригидроксидов алюминия (байерит) обнаружена новая модификация оксида алюминия – π -Al₂O₃ [66-69], существующая при температурах до 700 °C. Отличительной особенностью этой модификации является наличие в структуре ионов алюминия в координации 5 по кислороду наряду с ионами алюминия в координации 4 и 6. Оксид алюминия π -Al₂O₃ и механоактивированный γ -Al₂O₃ (активация в планетарной мельнице AГO-2 в течение 5 мин) использовались в качестве носителей для никелевого катализатора и показали повышенную активность в реакции гидрирования этилена [70]. При этом активность в случае π -Al₂O₃ выше (скорость гидрирования $5.8 \cdot 10^3$ против $4.7 \cdot 10^3$ моль C₂H₆/(с · г) для γ -Al₂O₃), несмотря на существенно меньшее количество сорбированного никеля (0.47 и 3.76 % соответственно).

Автор [71] показал, что при механической обработке и последующей прокалке при температуре 350 °С смеси $AlCl_3$ и CaO образуется γ - Al_2O_3 с размером частиц 10–20 нм, а после термообработки при 1250 °С появляется фаза α - Al_2O_3 .

Таким образом, практически во всех публикациях, посвященных МА гидроксида алюминия, сообщается о том, что в результате механического воздействия на Al(OH)₃ и последующей термообработке механоактивированного материала снижаются температуры фазовых переходов на 200–250 °C, возрастает пористость и повышается химическая активность Al₂O₃ при сохранении высоких значений механической прочности гранул.

Оксид циркония

Оксид циркония широко используется в качестве катализатора или носителя катализаторов для различных процессов. В последние годы особое внимание получил сульфатированный оксид циркония $SO_4^{2^-}/ZrO_2$ (SZ), который высокоэффективен в кислотных реакциях (изомеризация алканов, алкилирование и др.). Для максимальной активности такого катализатора оксид циркония должен присутствовать в тетрагональной (T) модификации.

В Институте химии и химической технологии СО РАН разработан скоростной механохимический синтез наноразмерного тетрагонального оксида циркония, так называемой Т-формы [72–75]. Установлено, что продолжительность химического синтеза Т-формы превышает 10 ч, включая высокотемпературную активацию, а при механохимическом способе продолжительность синтеза при комнатной температуре составляет 10–15 мин.

При МХА гидроксида циркония с $S_{\rm yg}$ = 19 м²/г и размерами кристаллитов 14–16 нм обнару-

жено [72], что синтез Т-формы происходит в несколько стадий: в течение первых нескольких минут начинает формироваться оксид в двух модификациях – стабильной (М) и метастабильной Т-формах, затем М-фаза переходит в Т-фазу, и через 15 мин МА содержание тетрагонального оксида циркония в прокаленном продукте достигает 95–97 %.

Изучено применение метода МХА для приготовления оксида циркония, промотированного катионами или анионами. Показано, что промотирование аморфного гидроксида циркония катионами Fe³⁺, Y³⁺ или Al³⁺ (соосаждение гидроксидов с последующей механохимической обработкой) ускоряет процесс механохимической кристаллизации [76] и ускоряет процесс образования T-формы ZrO₂.

Установлено, что при введении 1.5-10 ат. % Y^{3+} или 5-10 ат. % Fe^{3+} , или 1.5-15 ат. % Al^{3+} после МХА смеси гидроксидов получается Т-форма ZrO_2 в количестве 100 % [77, 78].

Показано, что при добавлении к гидроксиду циркония 5 мас. % оксида молибдена или оксида вольфрама и проведении МХА [79, 80] формируется наноструктурированная метастабильная Т-модификация ZrO_2 с размерами кристаллитов 8–10 нм. Однако добавление к гидроксиду циркония молибдат-анионов (MoO_4^{2-}) и МА этой смеси приводят к тому, что молибдат-анионы подавляют образование Т-фазы ZrO_2 в ходе МА,поскольку уже через 15 мин МХА содержание T-ZrO₂ в прокаленном продукте снижается до 12 % при использовании молибденовой кислоты и до 6 % при использовании парамолибдата аммония в качестве источника молибдат-ионов.

В работах [81-84] изучены фазовые переходы для кристаллического моноклинного ZrO₂, наблюдаемые в процессе его интенсивной МХА. В работах [85, 86] рассмотрено влияние материала мелющих тел (агатовые, корундовые, стальные) на состав механоактивируемой композиции.

Показано, что в результате МХА смеси ZrO_2 с добавкой 10 мол. % In_2O_3 , CaO или Y_2O_3 [87] образуются дисперсные твердые растворы на основе оксида циркония кубической структуры (только в случае CaO отмечено присутствие небольшого количества моноклинной фазы). Сила взаимодействия компонентов в процессе МХА возрастает в

ряду оксидов: $In_2O_3 < CaO < Y_2O_3$. Механохимическая активация проводилась в планетарной мельнице (ускорение 40*g*, мелющие тела – стальные шары диаметром 5 мм и массой 200 г, время МХА 15 мин). Образование кубического ZrO₂, стабилизированного добавками различных оксидов, отмечено при "механическом сплавлении" смеси моноклинного ZrO₂ с MgO, CaO или Y₂O₃ [88] или α -Fe₂O₃ в энергонапряженной шаровой мельнице [89].

В работе [1] показано, что при МА оксихлорида циркония $ZrOCl_2 \cdot H_2O$ уже в течение 5 мин происходит разрушение кристаллической структуры и удаление двух молекул воды. Дальнейшее увеличение времени МХА приводит к полной разупорядоченности структуры. После термообработки механоактивированного образца при 450 °C образуется тетрагональная фаза T-ZrO₂ (размер кристаллитов 16–17 нм).

Р. G. McCormick описал синтез нанокристаллических порошков ZrO₂, осущствляемый методом MXA смеси хлорида циркония ZrCl₄ с гидроксидами или оксидами щелочных или щелочноземельных металлов: LiOH, CaO, MgO; ZrCl₄+YCl₃ + LiOH [90-94]. Показано, что взаимодействие исходных веществ происходит постепенно и приводит к образованию геля аморфного ZrO₂, равномерно распределенного в матрице из хлорида металла. Далее механоактивированный продукт прокаливали, частицы ZrO2 отделялись от матрицы при ее растворении в воде, этаноле и др. Анализ фазового состава механоактивированного и прокаленного продукта показал, что в результате прокаливания в течение 1 ч при температуре выше 300 °C аморфный ZrO₂ кристаллизуется в кубическую структуру [93], а при прокаливании при 500 °С – в тетрагональную структуру [92].

В [95] порошок ZrO_2 тетрагональной структуры с добавлением 3–20 % Y_2O_3 получен МХА водной суспензии смеси основного карбоната циркония и соли иттрия (оксалат или карбонат) в течение 16 ч и последующим фильтрованием, сушкой и прокаливанием при 800 °С.

Цеолиты

В процессе МА цеолитов в шаровой [96–100] или планетарной мельницах [101], как правило, происходит аморфизация цеолита, уменьшается степень кристалличности [102], снижается удельная поверхность и кислотность, при этом сеточная структура каналов деформируется и частично разрушается. В работе [103] в результате МА цеолитов отмечается изменение соотношения кислотных центров. Например, при МА H-ZSM-5 в шаровой мельнице в течение 10 ч [104] удельная поверхность снижается на 40 %, а объем пор - на 50 %. "Влажное" измельчение HZSM-5 [105] в течение 30 мин приводит к снижению $S_{\rm vg}$ с 322 до 273 м²/г, объем микропор $V_{_{\rm M/\Pi}}$ при этом снижается с 0.14 до 0.11 см³/г. Увеличение времени МА до 180 мин приводит к уменьшению $V_{\rm m/n}$ до 0.08 см $^3/$ г и снижению кристалличности со 100 до 89 %.

Кроме уменьшения степени кристалличности и снижения уровня текстурных показателей (V_y , $V_{M/n}$, S_{BET}), МА способствует улучшению некоторых эксплуатационных характеристик цеолитных катализаторов. Так, диспергирование суспензии цеолита в бисерной мельнице в присутствии поверхностно-активных веществ приводит к повышению прочности цеолита [106], увеличению активности и селективности в реакциях алкилирования толуола метанолом [107] и в реакции парофазного алкилирования фенола метанолом [103, 108]. В результате МА повышается активность цеолитного катализатора ZSM-5 в реакции крекинга кумола до бензола и пропилена [109].

В [110] изучено влияние присутствия Al₂O₃, вводимого методом MA, на каталитические свойства цеолита типа ZSM-5 в реакции ароматизации смеси низших алканов C3–C4. Катализаторы приготовлены методом сухого смешения высококремнеземного цеолита типа ZSM-5 и псевдобемитной матрицы в шаровой вибромельнице. В результате MA в данной системе зафиксировано уменьшение концентрации льюисовских кислотных центров и увеличение концентрации бренстедовских кислотных центров по сравнению с исходным цеолитом.

Изменения структуры и кислотности цеолита после МХА в планетарной мельнице отражаются на его каталитических свойствах. Например, в процессе облагораживания низкооктановой бензиновой фракции при 400 °C, $W = 2 \text{ч}^{-1}$ содержание ароматических углеводородов в составе продуктов снижается до 48 %, содержание изоалканов C₅₊ повышается до 32.5 %, выход бензина увеличивается до 75 % и возрастает октановое число бензина [102].

Изменения, аналогичные вышеописанным при механохимической активации ZSM-5, зафиксированы для СВК-цеолитов после МА в шаровой вибрационной мельнице. В [111] показано, что после МА в течение 25 ч нарушается правильная геометрическая форма кристаллов (они становятся округлыми), степень кристалличности снижается с 92 до 73 %: максимум распределения переходных пор по размерам сдвигается с 40 до 50 Å; появляются новые слабые бренстедовские кислотные центры и одновременно увеличивается концентрация сильных бренстедовских центров. Повышаются каталитические свойства СВКцеолита в конверсии метанола при 400 °C: степень превращения в жидкие углеводороды увеличивается с 43 до 56 %, срок службы катализатора возрастает с 50 до 66 ч, при этом состав продуктов реакции не изменяется. В статьях [103, 108] показано, что каталитические свойства механоактивированных цеолитов в реакции парофазного алкилирования фенола метанолом повышаются, а авторы [107] сообщают о повышении активности и селективности механоактивированного фожазита KNaX в реакции алкилирования толуола метанолом.

Установлено, что физико-химические свойства цеолитов NaA, CaA, KL, H-ZSM-5, HY [110] и силикалита титана TS-1 [112] зависят от длительности MA, каталитические свойства цеолитов также изменяются в зависимости от времени MA и коррелируют с соответствующими изменениями объема микропор и удельной поверхности.

В многочисленных публикациях [113–116] показано, что MA смеси цеолита с оксидом металла приводит к уменьшению числа кислотных центров поверхности цеолитов. Это явление авторы назвали механохимическим способом селективной нейтрализации кислотности. В результате подобной обработки зафиксировано повышение селективности и снижение коксообразования на галлийсиликате с CeO₂ в реакции ароматизации октана, на цеолите Y с CaO, MgO. в реакции изомеризации *м*-ксилола, на цеолите H-ZSM-5 с ВаО в реакции метилирования метилнафталина, на цеолите Ni-SAPO-34 с BaO при конверсии метанола в этилен.

В [117] изучено влияние присутствия Al₂O₃, вводимого методом МХА, на каталитические свойства цеолита типа ZSM-5 в реакции ароматизации смеси низших алканов С3-С4. Показано, что в результате МХА в данной системе уменьшается концентрация льюисовских кислотных центров и увеличивается концентрация бренстедовских кислотных центров по сравнению с исходным цеолитом. При этом катализатор, содержащий 25 % Al₂O₃ и имеющий максимальное число льюисовских и бренстедовских центров, проявляет наибольшую каталитическую активность: степень конверсии – 92 %, выход ароматических углеводородов - 9.4 %, селективность по ароматическим углеводородам С6-С8 - 10.2 %.

Механическая активация цеолитов в шаровой или планетарной мельнице –популярный прием при приготовлении цеолитных катализаторов, поскольку он способствует повышению каталитической активности. Однако снижение степени кристалличности, наблюдаемое в процессе MA, в ряде случаев может приводить к снижению каталитической активности [118].

Известно несколько способов получения цеолитных катализаторов с примененением МХА. Например, при получении нанопорошков цеолитов с размером частиц 50 нм и высокой степенью кристалличности предложено [119] на примере промышленного шарикового цеолита А после МА проводить стадию рекристаллизации путем обработки порошка цеолита горячим раствором алюмосиликата в течение 60 мин.

В [120] для получения цеолитов типа А или Х каолинит подвергают МА сначала в газовой (воздух, азот), а затем в жидкой среде (вода, раствор щелочи или серной кислоты).

Для получения цеолитов типа A и X авторы [121, 122] подвергают смесь исходных компонентов (каолинит, NaOH и вода) MA в планетарной мельнице в течение 2–3 ч. Механическая активация каолина рассматривается в этом случае как альтернатива стадии прокаливания при традиционном синтезе цеолита A [123]. Сравнительный анализ [124] свойств цеолита A, синтезированного из механоактивированного или термообработанного каолина, показывает, что MA каолина способствует сильной разупорядоченности структуры каолина и большей лабильности ионов алюминия, кубическая морфология синтезированного цеолита А в этом случае менее совершенна, катионообменная способность при щелочной активации механоактивированного каолина повышается не столь существенно.

Таким образом, проведение МА при синтезе цеолитов позволяет избежать образования сточных вод и исключить стадию активации цеолитов для повышения их реакционной способности, поскольку уже в процессе синтеза изменяется его кристаллическая структура и механоактивированный цеолит имеет большое количество дефектов кристаллической структуры.

В настоящее время метод МА цеолитов с использованием мельниц различного типа активно применяется для введения в состав цеолитов катионов металлов (твердофазный ионообмен). Исследовалось твердофазное введение ионов металлов Ре, Си, Fe, V, Cr [125], Pd и Ca [126], Co [127], Mn [128], La [129– 131], ионов щелочных [132] и щелочноземельных металлов [133], V, Мо или W [134], Zn или Ga [135]. Использование твердофазного ионообмена приводит в некоторых случаях к 100 % введению катионов в цеолит [125, 130]. Такую высокую степень обмена трудно осуществить традиционными методами.

Глины

Большое количество работ посвящено исследованию МА и МХА глин, глинистых минералов и слоистых материалов: бентонита [136–138], монтмориллонита [139–142], каолинита [143–147], талька [147–153] и др.

В результате МХА глин изменяется их структура глин, наблюдаются расслаивание и разупорядоченность слоев, повышение их дефектности, уменьшение размера кристаллитов, снижение температуры дегидроксилирования, увеличение свободной поверхности глинистых частиц, повышение реакционной способности. Наибольшее влияние на изменение свойств глин в процессе МХА оказывает время обработки.

Так, при механической обработке бентонита, содержащего более 90 % Са-монтмориллонита, в планетарной шаровой мельнице Pulverisette-5 в течение 1-20 ч [137] отмечено разрушение структуры, расстояние между слоями d_{001} снижается с 1.5 до 1.4 нм после МА в течение 1 ч и до 1.3 нм после 20 ч обработки, размер кристаллитов уменьшается с 6 нм до 5.2 и 4.3 нм соответственно; происходит потеря молекул воды, индекс набухаемости снижается с 12 до 8 и 4 соответственно. Оказывает влияние и среда, в которой проводится МХА: в вакууме происходит более выраженная трансформация по сравнению с инертным газом или воздухом.

Механическая активация бентонита в вибрационной мельнице в течение 10–120 мин [138] без использования воды приводит к снижению степени кристалличности и температуры дегидроксилирования, повышению катионообменной способности.

При сухой МА в шаровой мельнице деламинирование, расслаивание Na⁺-монтмориллонита происходит через 3 ч при частоте вращения 40 мин⁻¹ и через 1 ч при частоте вращения 400 мин⁻¹ и отношении шары/порошок, равном 5 : 1 [140].

При "влажной" (10 мас. % суспензия глины в воде) МА монтмориллонита (ММТ) в планетарной мельнице в течение 1-4 ч [142] размер кристаллитов ММТ уменьшается с 6.70 до 6.65 нм через 1 ч МА и до 3.92 нм через 4 ч МА, базальное расстояние d_{001} возрастает через 1 ч МА с 1.22 до 1.52 и до 1.50 нм соответственно, катионообменная способность через 1 ч МА повышается. Как показано в работах [154, 155], в процессе МА глин разрушаются связи между алюмосиликатными слоями (Al-O, Si-O-Al). При исследовании механоактивированных алюмосиликатов методом ЯМР обнаружена значительная перестройка октаэдрического слоя AlO₆, которая сопровождается снижением координации ионов Al³⁺ вплоть до тетраэдрической.

Механическая активация глин активно используется для изменения межплоскостного расстояния, введения различных катионов и соответственно изменения эксплуатационных показателей.

Например, проведение МА бентонита в течение 1–20 мин в присутствии поверхностноактивных веществ (катионов триметиламмония с различной длиной углеродной цепи) повышает структурную стабильность бентонита [156]. В [157] описано, что при проведении МА смеси мочевины и ММТ молекулы мочевины внедряются между силикатными слоями. В результате МА смеси воды, ПАВ и ММТ в шаровой мельнице возможно введение катионов алкиламмония с длиной углеродной цепи $C_{12}-C_{18}$ в межслоевое пространство ММТ [158].

Как известно, прием интеркаляции эффективен для увеличения базального расстояния в слоистых глинах. Описана возможность механохимического проведения интеркаляции, как показано в [157], а также введением катионов алкиламмония с длиной углеродной цепи C_{12}^{-1} C_{18} вММТ [158] в результате "влажной" механообработки в шаровой мельнице (600 мин⁻¹, мелющие шары из Al_2O_3 диаметром 2 мм, время 2–6 ч, растворитель – вода, керосин).

Однако при МХА снижается способность к интеркаляции. Так, количество ионов Fe³⁺, введенных в исходный и механоактивированный монтмориллонит, составило 20 и 6 мас. % соответственно [155]. Аналогичный эффект отмечен и для каолинита [159]: разрушение структуры каолинита в результате МХА привело к снижению степени интеркаляции формамида.

Интеркаляция ионов Fe в механоактивированный монтмориллонит (обработка суспензии монтмориллонита раствором FeCl₃, последующая сушка и прокаливание) способствует формированию структуры с мезо- и макропорами, тогда как при интеркаляции в исходный монтмориллонит формируется структура с микропорами [155].

Предварительное введение интеркалятов предотвращает разрушение слоистой структуры глины при механической обработке, например, ионы алкиламмония, входящие в состав органомонтмориллонита Cloisite 30B, стабилизируют его структуру при МХА [140]. Согласно [160], при МХА интеркалированного каолинита не происходит разрушения слоистой структуры, отмечается снижение размера частиц, повышение S_{yg} с 12.57 до 27.52 м²/г. При аналогичной МХА суспензии глины без интеркалятов слоистая структура нарушается, S_{yg} повышается в меньшей степени: с 8.78 до 13.54 м²/г.

Для получения глины, обладающей высокой активностью при взаимодействии с водой и водными растворами, предложен следующий способ [161]. Глину бентонитовой или каолинитовой структуры подвергают МА в высокоскоростном дезинтеграторе с последующей термической активацией газообразным теплоносителем (путем термического удара при 150-550 °C). Способ может применяться для приготовления адсорбентов и носителей катализаторов на основе глин.

С применением МХА могут быть приготовлены катализаторы на основе глин:

- Fe/монтмориллонит [155]. Монтмориллонит активируют в планетарной мельнице в течение 15 мин, далее водную суспензию обрабатывают раствором FeCl₃ в течение 24 ч, промывают, сушат и прокаливают. Как уже отмечалось, введение ионов Fe в механоактивированный ММТ приводит к формированию структуры с мезо- и макропорами, тогда как при интеркаляции в исходный монтмориллонит - к структуре с микропорами. Это отражается на селективности Fe-модифицированного монтмориллонитного катализатора в реакции окисления α-пинена: в случае исходного ММТ реакция протекает по пути изомеризации α-пинена, а в случае механоактивированного - по пути аллильного окисления;

– СоСи/каолин [162]. Приготовлен одностадийным механосинтезом: Со $_3O_4$, Сu $_2O$ и каолин смешивают в агатовой ступке и проводят МА в вибрационной мельнице (1420 мин⁻¹ с амплитудой 9 мм) в течение 15 мин. Катализатор активен в жидкофазной конверсии 1,4-бутандиола в 2,3-дигидрофуран (выход продукта 65–74 %).

Оксид кремния

Механохимическая обработка оксида кремния SiO₂ (кварц, силикагель и др.) приводит к появлению на его поверхности не только сильно искаженных фрагментов Si-O-Si, но и радикалов =Si[•], -SiO[•], -Si: [163, 3]; свободнорадикальные дефекты образуются в очень высокой концентрации и демонстрируют высокую реакционную способность [164, 165]. В работе [166] сообщается, что при измельчении кварца разрушение химических связей во фрагменте ≡Si-O-Si≡ может приводить к образованию двух типов радикалов (≡Si[•] + [•]O-Si≡) и катионов (≡Si⁺ + [−]O-Si≡). Среди оксидов кремния наиболее интенсивно исследуется кварц. Первые работы по его МХА были выполнены в 1950–1960-х гг. Г. С. Ходаковым [167, 168]. Показано, что степень аморфизации кварца с малыми добавками ПАВ всегда больше, чем при измельчении с водой или без добавок. Активность кварца в физических и химических процессах зависит не только от дисперсности, но и от его структурного и энергетического состояния [168]. Следующая волна публикаций приходится на 1980-е гг. [169–177] и посвящена механохимическим реакциям на поверхности кварца и полиморфным превращениям в процессе МХА.

Механохимическая активация способствует накоплению энергии для последующего модификационного перехода. Так, отмечено [163], что механохимически активированный кварц может переходить непосредственно в α -кристобалит, причем температура перехода составляет 1470 К, что на 300 К ниже, чем для неактивированного кварца.

Полиморфное превращение кварц → кристобалит без дополнительной термообработки происходит при механохимической обработке в присутствии минерализатора (2 мас. % ортофосфата натрия Na₃PO₄) [178]. Максимальная степень фазового превращения (21 %) достигнута при обработке в течение 1 ч в условиях сухого воздуха. Использовалась планетарная мельница с энергонапряженностью 380 кВт/кг, мелющие корундовые шары диаметром 5 мм, массовое соотношение кварц/ шары равно 1:70.

Согласно [179], в результате МХА наблюдались полиморфные превращения кварца в тридимит + кристобалит; на поверхности кварцевых частиц образуются силикаты железа (железо намалывается в результате абразивного износа стальных мелющих тел мельницы). Тип мельницы влияет на поведение кварца в дальнейших термохимических и металлотермических процессах. Так, образцы кварца после МХА в планетарно-центробежной мельнице подвержены более интенсивному спеканию по сравнению с образцами, активированными в шаровой мельнице.

Длительное измельчение приводит к аморфизации. Например, SiO₂ изменяется до аморфной фазы после 120 ч обработки в вибрационной мельнице (размер кристаллитов 8 нм) [180]. Однако даже через 10 мин обработки (вибрационная мельница с тремя стальными кольцами в качестве мелющих тел) степень аморфизации может достигать 16.9 %, размер кристаллитов 5 нм [181]. Измельчение SiO₂ в шаровой мельнице в атмосфере азота [182] приводит к протеканию реакции замещения и образованию нитрида кремния α -Si₃N₄. Кристаллический оксид кремния проявляет более высокую реакционную способность по сравнению с аморфным.

Влияние МХА в планетарной мельнице в течение 2–5 ч на пористую структуру оксида кремния описано в [183], где установлено, что в случае пористых SiO₂ (силикагель, аэросилогель) происходит деструкция пористой структуры, повышается суммарный объем пор V_{Σ} , уменьшается удельная адсорбционная поверхность S_{yd} , причем при "влажной" активации (водная суспензия) эти изменения минимальны по сравнению с этанольной суспензией и "сухой" активацией. В случае непористого SiO₂ (аэросил) при "влажной" активации происходит образование пор.

При МХА пудры SiO₂ A-300 в керамической шаровой мельнице в течение 1–6 ч [184] повышается массивная плотность в зависимости от среды диспергирования и времени активации, например через 6 ч МХА в водной среде плотность возрастает от 0.045 до 0.4 г/см³, фиксируется сильное изменение пористой структуры, в то время как S_{yg} практически не изменяется.

В работе [185] МХА использована для получения наноструктурированного мезопористого SiO₂: в качестве исходного оксида кремния выбран мезопористый ксерогель SiO₂, синтезированный золь-гель способом с использованием поверхностно-активных веществ (ПАВ). Условия МХА: мельница 8000D SPEX, 0 °C, мелющие шары диаметром 13 мм, массовое отношение шары/образец равно 10:1, время обработки 10–100 мин.

Показано, что в результате МХА SiO₂ величина S_{yg} снижается в зависимости от типа ПАВ с 8 до 33 % для Brij-58 и СТАВ соответственно, объем пор повышается на 25 % при использовании СТАВ в качестве ПАВ. Пористая структура механоактивированного оксида кремния сохранялась после сушки образца. Установлено, что для получения пористых SiO₂ наиболее эффективны следующие параметры МХА: 1) время обработки 10– 30 мин (при последующем увеличении времени МХА наблюдается агломерация частиц); 2) материал мелющих шаров – нейлон (а не сталь или ZrO₂), так как в этом случае S_{yg} SiO₂ при МХА уменьшается не столь существенно; 3) в качестве ПАВ лучше использовать СТАВ или F127, так как Brij-58 или P123 промотируют агломерацию частиц SiO₂.

Механохимический синтез пористого SiO₂ можно осуществить путем МХА глин и последующего селективного выщелачивания с целью удаления катионов металлов и формирования пор. При использовании каолинита [186, 187] МХА проводят в планетарной мельнице Pulverisette 5 (300 мин⁻¹, мелющие шары из корунда, массовое отношение шары/ порошок равно 30:1) в течение 1 ч. Выщелачивание раствором H₂SO₄ (20 мас. %) в течение 0.5-4 ч при 90 °С (через 4 ч МХА остаточное содержание Al₂O₃ составляет 4 мас. %). Характеристики полученного SiO₂: $S_{yg} = 284 312 \text{ м}^2/\text{r}, V_y = 0.28 - 0.312 \text{ см}^3/\text{r},$ средний размер пор 3.8 нм [187]. При МС пористого SiO₂ из талька [188] МХА осуществляется в планетарной мельнице КМ-10 (600 мин⁻¹, стальные мелющие шары диаметром 10 мм, массовое отношение шары/тальк = 10:1) при комнатной температуре в течение 6-8 ч. Выщелачивание ионов Mg²⁺ раствором 4 M HCl в течение 2-3 ч при 80 °С. Полученный SiO₂ имеет следующие характеристики: $S_{\rm vg}$ = 133 m^2/r , $V_y = 0.22$ см³/г, размер микропор 1.2-1.8 нм, мезопор - 4.0-5.5 нм.

Возможность проведения механохимического модифицирования SiO₂ показана в работе [189]. Введение аминогрупп осуществляли при обработке силикагеля раствором органического аминосоединения в планетарной мельнице в среде толуола в течение 10–180 мин.

Механохимическое капсулирование кварцевых частиц в металлуглеродные оболочки описано в работе [190]. Синтез кремнийуглеродных композитов осуществляли путем МХА кварца в присутствии углеродсодержащего соединения-модификатора в центробежнопланетарной мельнице (1200 мин⁻¹, ускорение 20g) в течение 5–60 мин с остановкой через каждые 5 мин.

В качестве углеродсодержащих соединений использовались активированный уголь или полистирол. Эти соединения зауглероживают поверхность кварца при механохимической обработке, обеспечивая формирование наноструктурированных слоев толщиной 10-50 нм на поверхности и капсулирующие частицу кварца в оболочки различной структуры и плотности. В поверхностном слое кварцевых частиц после МХА присутствуют наночастицы железа, попадающие в механоактивируемую систему в результате намола железа со стенок барабанов и мелющих тел. Они образуют с функциональными радикалами на поверхности кварца железоорганические соединения, придавая кварцевым частицам магнитные свойства.

Использование в качестве добавки активированного угля и полистирола в еще большей мере усиливает этот эффект. Максимальные значения $S_{\rm уд}$ и V_{Σ} характерны для кварца после механохимической обработки с полистиролом, время обработки 20 мин: $S_{\rm уд} = 210 \text{ m}^2/\text{r}$, $V_{\Sigma} = 0.39 \text{ сm}^3/\text{r}$ (для исходного кварца эти показатели составляют 1.5 м²/г и 0.04 см³/г соответственно).

Добавка к исходному кварцу золошлака и 10 % Fe₂O₃ способствует повышению удельной поверхности, объема пор, магнитных и сорбционных свойств.

Синтезированный кварцево-углеродный композит использован в качестве сорбента для очистки поверхности воды от нефтяных разливов. Проведенные испытания показали высокую степень очистки воды: с поверхности собрано 92–98 % нефти. Установлено, что сорбент пригоден к многократному использованию после отжига в течение 1 ч при температуре 200–250 °С.

В процессе механохимической обработки структура кремнезема находится в состоянии перестройки, поэтому SiO₂ приобретает повышенную реакционную способность, которая проявляется в следующем: 1) кремнезем после МХА способен связывать фосфорный ангидрид в обычных условиях [191], тогда как неактивированный кремнезем взаимодействует с $\mathrm{P}_2\mathrm{O}_5$ лишь при нагревании до 300 °C; 2) МХА гидроксидов Ca, Mg и Al в присутствии SiO₂ существенно повышает интенсивность процессов дегидратации и аморфизации гидроксидов Ca, Mg и Al: скорости этих реакций в условиях механохимического воздействия изменяются в следующем порядке: $Al(OH)_3 > Ca(OH)_2 > Mg(OH)_2$ [192].

ЗАКЛЮЧЕНИЕ

В обзоре проанализированы литературные данные, посвященные изучению влияния механического воздействия на фазовый, химический состав и строение пористых неорганических материалов, которые обычно используются в качестве носителей при синтезе катализаторов нефтеперерабатывающих процессов. Рассмотрено влияние высокого давления и сдвиговых деформаций, происходящих в процессе МА, на изменение текстуры и морфологии оксидов алюминия, циркония, кремния, а также различных цеолитов и глин.

Показано, что в результате даже кратковременного механического воздействия например, на оксид алюминия (до 15 мин), температура образования α -Al₂O₃ снижается более чем на 200 °C. Температуры фазовых переходов снижаются и для механоактивированного оксида кремния (в среднем на 300 °C).

Установлено, что механическая активация смеси компонентов позволяет получать новые вещества с уникальными свойствами. Например, в результате МА смеси кварцевых и углеродных частиц получается кремнийуглероднйы композит с магнитными свойствами.

Проведенный анализ показывает, что исследования по изучению влияния процессов механической активации на структуру и свойства различных материалов интенсивно проводятся во всем мире. Пористые неорганические материалы после МХА, как правило, приобретают вид высокодисперсных порошков с размерами частиц 1–10 мкм, причем их состав и морфология существенно изменяются. Таким образом, метод МХА перспективен для создания новых материалов.

Установлено, что в результате даже кратковременного воздействия на оксид алюминия (до 15 мин) изменяется последовательность фазовых переходов и более чем на 200 °C снижается температура образования α -Al₂O₃. Для механоактивированного оксида кремния температура фазовых переходов также снижается (в среднем на 300 °C), при этом снижаются и пористые показатели. Механохимическая обработка кварцевых частиц в присутствии углерода позволяет получить композиты с существенно измененными свойствами. Механохимическая активация цеолитов, широко используемых в качестве носителей катализаторов, приводит к аморфизации их структуры и дегидратации, в результате чего катионы в каналах становятся лабильными. Это способствует улучшению каталитических свойств: снижению содержания ароматических углеводородов, повышению содержания изоалканов и увеличению выхода бензина.

Работа выполнена при финансовой поддержке РФФИ (проект № 15-03-04405а).

СПИСОК ЛИТЕРАТУРЫ

- 1 Фундаментальные основы механической активации, механосинтеза и механохимических технологий / под ред. Е. Г. Аввакумова. Новосибирск: Изд-во СО РАН, 2009. 342 с.
- 2 Буянов Р. А., Золотовский Б. П., Молчанов В. В. // Сиб. хим. журнал. 1992. Вып. 2. С. 5–17.
- 3 Аввакумов Е. Г. Механические методы активации химических процессов. Новосибирск: Наука, 1986. 297 с.
- 4 Авакумов Е.Г. // Химия уст. разв. 1994. Т. 2, № 2–3. С. 541–558.
- 5 Болдырев В. В., Аввакумов Е. Г. // Усп. химии. 1971. Т. XL, вып. 10. С. 1835–1856.
- 6 Уваров Н. Ф., Болдырев В. В. // Усп. химии. 2001. Т. 70, № 4. С. 307-329.
- 7 Гусев Г. М. // Механохимические явления при сверхтонком измельчении. / под ред. В. М. Кляревского, В. И. Молчанова. Новосибирск: Изд. Ин-та геологии и геофизики СО АН СССР, 1971. 176 с.
- 8 Дремин А. Н., Бреусов О. Н. // Усп. химии. 1968. Т. 37, № 5. С. 898-1005.
- 9 Болдырев В. В. Экспериментальные методы в механохимии твердых неорганических веществ. Новосибирск: Наука, 1983. 65 с.
- 10 Болдырев В. В., Аввакумов Е. Г. // Усп. химии. 1971. Т. XL, вып.10. С. 1835–1854.
- 11 Бутягин П. Ю. // Усп. химии. 1994. Т. 63, № 12. С. 1031–1043.
- 12 Болдырев В. В. // Усп. химии. 2006. Т. 75, № 3. С. 203-216.
- 13 Будников П. П., Гинстлинг А. М. Реакции в смесях твердых веществ. Изд. 3-е, испр. и доп. М: Стройиздат, 1971. 488 с.
- 14 Уракаев Ф. Х., Шевченко В. С., Кетегенов Т. А. // Журн. физ. химии. 2004. Т. 78, № 3. С. 571–574.
- 15 Болдырев В. В., Хабибулин А. Х., Косова Н. В., Аввакумов Е. Г. // Неорган. матер. 1997. Т. 33, № 11. С. 1350–1353.
- 16 Balaz P., Takacs L., Ohtani T., Mack D. E., Boldizarova E., Soika V., Achimovicova M. // J. Alloys Compd. 2002. Vol. 337, No. 1–2. P. 76–82.
- 17 Уракаев Ф. Х., Шевченко В. С., Кетегенов Т. А. // Журн. физ. химии. 2004. Т. 78, № 3. С. 571–574.
- 18 Уракаев Ф. Х., Болдырев В. В. // Журн. физ. химии. 2005. Т. 79, № 4. С. 662–672.
- 19 Urakaev F. Kh., Boldyrev V. V. // Powder Technol. 2000. Vol. 107, No. 1–2. P. 93–107.

- 20 Уракаев Ф. Х., Кетегенов Т. А., Петрушин Е. И., Савинцев Ю. П., Тюменцева О. А., Чупахин А. П., Шевченко В. С., Юсупов Т. С., Болдырев В. В. // Физ.-техн. пробл. разработки полез. Ископаемых. 2003. № 3. C. 110-122.
- 21 Urakaev F. Kh., Boldyrev V. V. // Powder Technol. 2000. Vol. 107, No. 3. P. 197-206.
- 22 Аввакумов Е. Г., Уракаев Ф. Х., Татаринцева М. И. // Кинетика и катализ. 1983. Т. 24, № 1. С. 227–229.
- 23 Уракаев Ф. Х., Такач Л., Сойка В., Шевченко В. С., Болдырев В. В. // Журн. физ. химии. 2001. Т. 75, № 12. C. 2174–2179.
- 24 Молчанов В. В., Буянов Р. А. // Усп. химии. 2000. Т. 69, № 5. C. 476-493.
- 25 Xing T., Hua Li L., Hou L., Hu X., Zhou S., Peter R., Petravic M., Chen Y. // Carbon. 2013. Vol. 57. P. 515-519.
- 26 Wakayama H., Mizuno J., Fukushima Y., Nagano K., Fukunaga T., Mizutani U. // Carbon 1999. Vol. 37. P. 947-952.
- 27 Grigorieva T. F., Barinov A. P., Lyakhov N. Z. Mechanochemical Synthesis in Metallic Systems. Novosibirsk, 2008
- 28 Borunova A. B., Zhernovenkova Yu. V., Streletskii A. N., Portnoy V.K. Determination of Energy Intensity of Mechanochemical Reactors of Different Types: Book of abstracts INCOME-3. Prague, 2000. P. 88.
- 29 Fundamentals of Mechanical Activation Mechanosynthesis and Mechanochemical Technologies. / Ed. E. G. Avvakumov. Novosibirsk: Publ. House of SB RAS, 2009.
- 30 Ильин А. П., Широков Ю. Г., Прокофьев В. Ю. // Неорган. матер. 1995. Т. 31, № 7. С. 933-936.
- 31 Ильин А. А., Смирнов Н. Н., Гордина Н. Е., Ильин А. П. // Изв. вузов. Химия и хим. технол. 2005. Т. 48, № 6. C. 83-87.
- 32 Goodshaw H. J., Forrester J. S., Suaning G. J., Kisi E. H. // J. Mater. Sci. 2007. Vol. 42, No. 1. P. 337-345.
- 33 Грудцин С. М., Прокофьев В. Ю., Ильин А. П. // Изв. вузов. Химия и хим. технол. 2008. Т. 51, № 9. С. 82-85.
- 34 Юшкова О. В., Кулебакин В. Г., Поляков П. В., Мамина Л.И., Зеер Г.М. // Изв. вузов. Химия и хим. технол. 2007. Т. 50, № 12. С. 123-124.
- 35 A. c. 1586056 CCCP, 1995.
- 36 Пат. 2064837 РФ, 1996.
- 37 Менжервс Л. Т., Исупов В. П., Коцупало Н. П. // Изв. СО АН СССР. Сер. хим. наук. 1988. № 9, вып. 3. C. 53-57.
- 38 Парамзин С. М., Панкратьев Ю. Д., Паукштис Е. А., Криворучко О. П., Золотовский Б. П., Буянов Р. А. // Изв. СО АН СССР. Сер. хим. наук. 1984. № 11, вып. 4. C. 33-37.
- 39 Парамзин С. М., Криворучко О. П., Золотовский Б. П., Буянов Р.А., Малахов В.В., Крюкова Г.Н., Болдырева Н. Н. // Изв. СО АН СССР. Сер. хим. наук. 1984. № 17, вып. 6. С. 39-42.
- 40 Парамзин С. М., Панкратьев Ю. Д., Турков В. М., Золотовский Б. П., Криворучко О. П., Буянов Р. А. // Изв. СО АН СССР. Сер. хим. наук. 1988. № 5, вып. 2. С. 47-50.
- 41 Парамзин С. М., Золотовский Б. П., Буянов Р. А., Криворучко О. П. // Сиб. хим. журн. 1992. № 2. С. 130-134.
- 42 Золотовский Б. П., Парамзин С. М., Криворучко О. П., Буянов Р. А. // Изв. СО АН СССР. Сер. хим. наук. 1987. № 17, вып. 5. С. 80-84.
- 43 Дробот Н. Ф., Отдельнов В. В., Евдокимов В. И., Штайнике У., Кречмер У., Хенниг Х.-П., Больман У. // Журн. неорган. химии. 1990. Т. 35, № 10. С. 2503-2507.

- 44 Ильин А. П., Смирнов Н. И., Широков Ю. Г. // Изв. вузов. Химия и хим. технол. 1995. Т. 38, № 4-5. С. 24-27. 45 Пат. 2102321 РФ, 1998.
- 46 Пат. 2096325 РФ, 1997. 47 Пат. 2048908 РФ. 1995.
- 48 Клапцов В. Ф., Сурин С. А., Чукин Г. В., Нефедов Б. К., // Химия и технол. топлив и масел. 1986. № 10. С. 4-6. 49 A. c. 1376492 CCCP, 1990.
- 50 Золотовский Б. П., Зинченко Т. О., Молчанов С. А. / / Защита окр. среды в нефтегаз. комплексе. 2007. № 12. C. 38-41.
- 51 Пат. 2176931 РФ, 2001.
- 52 A. c. 1077209 CCCP, 1999.
- 53 Чесноков В. В., Молчанов В. В., Паукштис Е. А., Коновалова Т. А. // Кинетика и катализ. 1995. Т. 36, № 5. C. 759-762.
- 54 Андрюшкова О. В., Ушаков В. А., Крюкова Г. Н., Кириченко О.А., Полубояров В.А. // Химия уст. разв. 1996. T. 4, № 1. C. 15-26.
- 55 Tsuchida T., Ichikawa N. // React. Solids. 1989. Vol. 7, No. 3. P. 207-217.
- 56 Kano J., Saeki S., Saito F., Tanjo M., Yamazaki S. // Int. J. Mineral Proc. 2000. Vol. 60, No. 2. P. 91-100.
- 57 MacKenzie K. J. D., Temuujin J., Smith M. E., Angerer P., Kameshima Y. // Thermochim. Acta. 2000. Vol. 359, No. 1. P 87-94
- 58 Золотовский Б. П., Парамзин С. М., Зайковский В. И., Буянов Р. А., Плясова Л. М., Лойко В. Е., Литвак Г. С. // Кинетика и катализ. 1990. Т. 31, № 3. С. 751-755.
- 59 A. c. 1123253 CCCP, 1999.
- 60 US Pat. No. 5641469, 1997.
- 61 A. c. 1477467 CCCP, 1989.
- 62 Пат. 2092438 РФ, 1997.
- 63 Пат. 2392226 РФ, 2010.
- 64 Пат. 2409519 РФ, 2011.
- 65 Li P., Xi S., Zhou J. // Ceram. Int. 2009. Vol. 35, No. 1. P. 247-251. 66 Золотовский Б. П., Буянов Р. А., Криворучко О. П. / / Катализ и катализаторы. Новосибирск: Изд-во Института катализа СО РАН, 1998. С. 182-183.
- 67 Zolotovskii B. P., Buyanov R. A. // Stud. Surf. Sci. Catal. 1995. Vol. 91. P. 793-798.
- 68 Фионов А. В., Лунина Е. В., Паренаго О. О., Толмачев А. М., Туракулова А. О., Ивакин Ю. Д., Зуй А. И., Данчевская М. Н. // Журн. физ. химии. 1997. Т. 71, № 12. C. 2167-2170.
- 69 Золотовский Б. П., Парамзин С. М., Пельменщиков А. Г., Пакштис Е. А., Клевцов Д. П., Ермолаева Н. В., Буянов Р. А., Жидомиров Г. М. // Кинетика и катализ. 1989. Т. 30, № 6. С. 1439-1443.
- 70 Молчанов В. В., Буянов Р. А., Гойдин В. В. // Кинетика и катализ. 1998. Т. 39, № 3. С. 465-471.
- 71 Ding J., Tsuzuki T., McCormick P. G. // J. Amer. Ceram. Soc. 1996. Vol. 79, No. 11. P. 2956-2958.
- 72 Кузнецов П. Н., Кузнецова Л. И., Жижаев А. М. // Химия уст. разв. 2002. Т. 10, № 1-2. С. 135-141.
- 73 Kuznetsov P. N., Kuznetsova L. I., Zhyzhaev A. M., Pashkov G. L., Boldyrev V. V. // Appl. Catal. A. 2002. Vol. 227, No. 1-2. P. 299-307.
- 74 Кузнецов П. Н., Жижаев А. М., Кузнецова Л. И. // Журн. прикл. химии. 2002. Т. 75, № 2. С. 177-182.
- 75 Кузнецов П. Н., Кузнецова Л. И., Жижаев А. М., Колесникова С. М. // Журн. неорган. химии. 2002. Т. 47, № 3. C. 450-455.
- 76 Кузнецов П. Н., Кузнецова Л. И., Жижаев А. М., Пашков Г. Л., Болдырев В. В. // Химия уст. разв. 2003. T. 11, № 4. C. 601-609.

ФОРМИРОВАНИЕ НЕОРГАНИЧЕСКИХ НОСИТЕЛЕЙ И КОМПОНЕНТОВ КАТАЛИЗАТОРОВ С ПРИМЕНЕНИЕМ МЕХАНИЧЕСКОЙ АКТИВАЦИИ 725

- 77 Кузнецова Л. И., Кузнецов П. Н., Жижаев А. М., Твердохлебов В. П., Аввакумов Е. Г., Болдырев В. В. // Изв. вузов. Химия и хим. технол. 2008. Т. 51, № 10. С. 82–87.
- 78 Кузнецов П. Н., Кузнецова Л. И., Жижаев А. М. // Фундаментальные основы механохимической активации, механосинтеза и механохимических технологий / отв. ред. Е. Г. Аввакумов. Новосибирск: Изд-во СО РАН, 2009. С. 68–86.
- 79 Кузнецова Л. И., Кузнецов П. Н., Казбанова А. В., Жижаев А. М., Аввакумов Е. Г., Болдырев В. В. // Изв. вузов. Химия и хим. технол. 2008. Т. 51, № 11. С. 33–36.
- 80 Кузнецов П. Н., Казбанова А. В., Кутихина Е. А., Кузнецова Л. И. // Изв. вузов. Химия и хим. технол. 2008. Т. 51, № 6. С. 36-38.
- 81 Кузнецов П. Н., Кузнецова Л. И., Жижаев А. М., Пашков Г. Л., Болдырев В. В. // Химия уст. разв. 2004. Т. 12, № 2. С. 193–199.
- 82 Kuznetsov P. N., Kuznetsova L. I., Zhyzhaev A. M., Kovalchuk V. I., Sannikov A. L., Boldyrev V. V. // Appl. Catal. A. 2006. Vol. 298. P. 254–260.
- 83 Карагедов Г. Р., Шацкая С. С., Ляхов Н. З. // Химия уст. разв. 2006. Т. 13, № 4. С. 369–377.
- 84 Карагедов Г. Р., Рыжиков Е. А., Шацкая С. С. // Химия уст. разв. 2002. Т. 10, № 1–2. С. 89–98.
- 85 Karagedov G. R., Shatskaya S. S., Lyakhov N. Z. // J. Mater. Sci. 2007. Vol. 42, No. 18. P. 7964–7971.
- 86 Stefaniz G., Musiz S., Gajoviz A. // J. Eur. Ceram. Soc. 2007. Vol. 27, No. 2–3. P. 1001–1016.
- 87 Зюзин Д. А., Мороз Э. М., Пахомов Н. А., Карагедов Г. Р. // Изв. РАН. Сер. физ. 2007. Т. 71, № 5. С. 637–640.
- 88 Michel D., Faudot F., Gaffet E., Mazerolles L. // J. Am. Ceram. Soc. 1993. Vol. 76, No. 11. P. 2884–2888.
- 89 Jiang J. Z., Poulsen F. W., Morup S. // J. Mater. Res. 1999. Vol. 14. P. 1343–1352
- 90 Dodd A. C., McCormick P. G. // J. Eur. Ceram. Soc. 2002. Vol. 22, No. 11. P. 1823–1829.
- 91 Ding J., Tsuzuki T., McCormick P. G. // Nanostruct. Mater. 1997. Vol. 8, No. 1. P. 75-81.
- 92 Dodd A. C., Raviprasad K., McCormick P.G. // Scripta Mater. 2001. Vol. 44, No. 4. P. 689–694.
- 93 Dodd A. C., Tsuzuki T., McCormick P. G. // Mater. Sci. Eng. A. 2001. Vol. 301, No. 1. P. 54–58.
- 94 US Pat. No. 6503475, 2003.
- 95 US Pat. No. 6703334, 2004
- 96 Kosanovic C., Bronic J., Subotic B., Smit I., Stubicar M., Tonejc A., Yamamoto T. // Zeolites. 1993. Vol. 13, No. 4. P. 261–268.
- 97 Kosanovic C., Bronic J., Cizmek A., Subotic B., Smit I., Stubicar M., Tonejc A. // Zeolites. 1995. Vol. 15, No. 3. P. 247–252.
- 98 Kosanovic C., Cizmek A., Subotic B., Smit I., Stubicar M., Tonejc A. // Zeolites. 1995. Vol. 15, No. 1. P. 51–57.
- 99 Kosanovic C., Cizmek A., Subotic B., Smit I., Stubicar M., Tonejc A. // Zeolites. 1995. Vol. 15, No. 7. P. 632–636.
- 100 Kosanovic C., Subotic B., Smit I. // Thermochim. Acta. 1998. Vol. 137, No. 1. P. 25–37.
- 101 Kasai E., Mimura H., Sugiyama K., Saito F., Akiba K., Waseda Y. // Adv. Powder Technol. 1994. Vol. 5, No. 2. P. 189–203.
- 102 Восмериков А. В., Величкина Л. М., Восмерикова Л. Н., Коробицына Л. Л., Иванов Г. В. // Химия уст. разв. 2002. Т. 10, № 1–2. С. 45–51.
- 103 Пономаренко И. Ю., Паукштис Е. А., Коваль Л. М. // Кинетика и катализ. 1993. Т. 34, № 6. С. 1095–1098.
- 104 Gujar A. C., Guda V. K., Nolan M., Yan Q., Toghiani H., White M.G. // Appl Catal A. 2009. Vol. 363, No. 1–2. P. 115–121.

- 105 Gopalakrishnan S., Yada S., Muench J., Selvam T., Schwieger W., Sommer M., Peukert W. // Appl. Catal. A. 2007. Vol. 327, No. 2. P. 132–138.
- 106 Павлихин Б. М., Курчаткина Т. В., Зеленухина И. А., Гребенькова О. П. // Нефтеперераб. и нефтехимия. 1986. № 3. С. 7–8.
- 107 Xie J., Kaliaguine S. // Appl. Catal. A. 1997. Vol. 148, No. 2. P. 415–423.
- 108 Пономоренко И. Ю., Коваль Л. М., Белоусова В. Н., Тартынов В. В. // Журн. физ. химии. 1992. Т. 66, № 12. С. 3231–3237.
- 109 Wakihara T., Sato K., Inagaki S., Tatami J., Komeya K., Meguro T., Kubota Y. // ACS Appl. Mater. Interf. 2010. Vol. 2, No. 10. P. 2715-2718
- URL: http://pubs.acs.org/doi/abs/10.1021/am100642w) 110 Zielinski P. A., Van Neste A., Akolekar D.B., Kaliaguine
- S. // Місгорог. Mater. 1995. Vol. 5, No. 3. Р. 123–133. 111 Сивирилова Л. И., Коваль Л. М., Восмериков А. В.
- // Журн физ. химии. 1989. Т. 63, № 11. С. 2973–2976. 112 On D. Trong, Kapoor M. P., Thibault E., Gallot J. E.,
- Lemay G., Kaliaguine S. // Micropor. Mesopor. Mater. 1998. Vol. 20, No. 1-3. P. 107-118.
- 113 Inui T., Yamada T., Matsuoka A., Pu S.-B. // Ind. Eng. Chem. Res. 1997. Vol. 36. P. 4827–4831.
- 114 Jeong H., Kim Y., Lee Y., Kang M. // Korean J. Chem. Eng. 2009. Vol. 26, No. 2. P. 371–376.
- 115 Inui T., Pu S. B., Kugai J. I. // Appl. Catal. A. 1996. Vol. 146, No. 2. P. 285–296.
- 116 Kang M., Inui T. // Catal. Lett. 1998. Vol. 53. P. 171-176.
- 117 Коваль Л. М., Гайворонская Ю. И. // Изв. вузов. Химия и хим. технол. 1999. Т. 42, № 6. С. 121–126.
- 118 Kharitonov A. S., Fenelonov V. B., Voskresenskaya T. P., Rudina N. A., Molchanov V. V., Plyasova L. M., Panov G. I. // Zeolites. 1995. Vol. 15, No. 3. P. 253–258.
- 119 Wakihara T., Ichikawa R., Tatami J., Endo A., Yoshida K., Sasaki Y., Komeya K., Meguro T. // Cryst. Growth Des. 2011.Vol. 11, No. 4. P. 955–958.
- 120 A. c. 1546424 CCCP, 1990.
- 121 Kim W., Zhang Q., Saito F. // J. Chem. Eng. Jpn. 2000. Vol. 33, No. 2. P. 217–222.
- 122 Япония, патентная заявка JP 2000-072435 Production of zeolite / S.Masuda, K.Masame, F.Saito / Sumitomo Metal Ind.; 07.03.2000
- 123 Basaldella E. I., Kikot A., Pereira E. // React. Solids. 1990. Vol. 8, No. 1–2. P. 169–177.
- 124 San Cristobal A. G., Castello R., Luengo M. A. M., Vizcayno C. // Appl. Clay Sci. 2010. Vol. 49, No. 3. P. 239-246.
- 125 Karge H. G., Beyer H. K. // Stud. Surf. Sci. Catal. 1991. Vol. 69. P. 43–64.
- 126 Karge H. G., Zhang Y., Beyer H. K. // Catal. Lett. 1992. Vol. 12. P. 147–156.
- 127 Jentys A., Lugstein A., Vinek H. // J. Chem. Soc., Faraday Trans. 1997. Vol. 93, No. 22. P. 4091–4094.
- 128 Beran S., Wichterlovat B., Karge H. G. // J. Chem. Soc. Faraday Trans. 1990. Vol. 86, No. 17. P. 3033–3037.
- 129 Sulikowski B., Find J., Karge H. G., Herein D. // Zeolites. 1997. Vol. 19, No. 5–6. P. 395–403.
- 130 Jia C., Beaunier P., Massiani P. // Micropor. Mesopor. Mater. 1998. Vol. 24, No. 1–3. P. 69–82.
- 131 Karge H. G., Mavrodinova V., Zheng Z., Beyer H. K. // Appl. Catal. 1991. Vol. 75, No. 2. P. 343–357.
- 132 Beyer H. K., Karge H. G., Borbely G. // Zeolites. 1988. Vol. 8, No. 1. P. 79–82.
- 133 Karge H. G., Beyer H. K., Borbely G. // Catal. Today. 1988. Vol. 3, No. 1. P. 41–52.

- 134 Thoret J., Marchal C., Dordmieux-Morin C., Man P. P., Gruia M., Fraissard J. // Zeolites. 1993. Vol. 13. P. 269–275.
- 135 Hagen A., Schneider E., Benter M., Krogh A., Kleinert A., Roessner F. // J. Catal. 2004. Vol. 226, No. 1. P. 171–182.
- 136 Mingelgrin U., Kliger L., Gal M., Saltzman S. // Clays and Clay Minerals. 1978. Vol. 26. P. 299–307.
- 137 Dellisantia F., Valdre G. // Appl. Clay Sci. 2005. Vol. 28. P. 233-244.
- 138 Filipovic-Petrovic L, Kostic-Gvozdenovic L, Eric-Antonic S. // J. Serb. Chem. Soc. 2002. Vol. 67, No. 11. P. 753-760.
- 139 Cicel B, Kranz G. // Clay Minerals. 1981. Vol. 16. P. 151–162.
 140 Ramadan A. R., Esawi A. M. K., Gawad A. A. // Appl.
- Clay Sci. 2010. Vol. 47, No. 3–4. P. 196–202
- 141 Vdovic N., Jurina I., Skapin S. D., Sondi I. // Appl. Clay Sci. 2010. Vol. 48, No. 4. P. 575–580.
- 142 Xia M., Jiang Y., Zhao L., Li F., Xue B., Sun M., Liu D., Zhang X. // Colloids Surf. A. 2010. Vol. 356, No. 1– 3. P. 1–9.
- 143 Aglietti E. F., Porto Lopez J. M., Pereira E. // Int. J. Mineral Proc. 1986. Vol. 16. P. 125–135.
- 144 Frost R. L., Mako E., Kristof J., Horvath E., Theo Kloprogge J. // J. Colloid Interface Sci. 2001. Vol. 239, No. 2. P. 458-466.
- 145 Horvath E., Frost R. L., Mako E., Kristof J., Cseh T. // Thermochim. Acta. 2003. Vol. 404. P. 227–234.
- 146 Mako E., Frost R. L., Kristof J., Horvath E. // J. Colloid Interface Sci. 2001. Vol. 244, No. 2. P. 359–364.
- 147 Григорьева Т. Ф., Ворсина И. А., Баринова А. П., Ляхов Н. 3. // Неорган. матер. 1996. Т. 32, № 1. С. 84–88.
- 148 Aglietti E. F. // Appl. Clay Sci. 1994. Vol. 9. P. 139–147. 149 Aglietti E. F., Porto Lopez J. M. // Mater. Res. Bull.
- 1992. Vol. 27, No. 10. P. 1205–1216.
- 150 Filio J. M., Sugiyama K., Saito F., Waseda Y. // Powder Technol. 1994. Vol. 78. P. 121–127.
- 151 Kano J., Saito F. // Powder Technol. 1998. Vol. 128. P. 166-170.
- 152 Godet-Morand L., Chamayou A., Dodds J. // Powder Technol. 2002. Vol. 128. P. 306–313.
- 153 Ishimori T., Senna M. // Ind. Eng. Chem. Res. 1995. Vol. 34. P. 895–897.
- 154 Пащенко Е. А. // Журн. прикл. химии. 2005. Т. 78, № 2. С. 344.
- 155 Романенко Е. П., Тарабан Е. А., Ткачев А. В. // Изв. РАН. Сер. хим. 2006. № 6. С. 956–961.
- 156 Hrachova J., Billik P., Fajnor V. S. // J. Therm. Anal. Calorim. 2010. Vol. 101, No. 1. P. 161–168.
- 157 Абрамова Е., Лапидес И., Ярив Ш. // Химия уст. разв. 2007. Т. 15, № 2(1). С. 3–7.
- 158 Lee Y.-C., Kuo C.-L., Wen S.-B., Lin C.-P. // Appl. Clay Sci. 2007. Vol. 36, No. 4. P. 265–270.
- 159 Frost R. L., Horvath E., Mako E., Kristof J., Cseh T. // J. Colloid Interface Sci. 2003. Vol. 265, No. 2. P. 386–395.
- 160 Cheng H., Liu Q., Zhang J., Yang J., Frost R. L. // J. Colloid Interface Sci. 2010. Vol. 348, No. 2. P. 355–359.
- 161 Πατ. 2209824 ΡΦ, 2001.
 162 Leite L., Stonkus V., Edolfa K., Ilieva L., Plyasova L.,
- To Zaikovski V. // Appl. Catal. A. 2006. Vol. 311. P. 86–93.
- 163 Хайнике Г. Трибохимия. М.: Мир, 1987. 458 с.
- 164 Бобышев А. А., Радциг В. А. // Кинетика и катализ. 1988. Т. 29, № 3. С. 638–647.
- 165 Радциг В. А. // Кинетика и катализ. 1979. Т. 20, № 5. С. 1206.

- 166 Hasegawa M., Kimata M., Kobayashi S.-I. // J. Appl. Polymer Sci. 2001. Vol. 82. P. 2849–2855.
- 167 Ходаков Г. С., Ребиндер П. А. // Коллоидн. журн. 1961. Т. 23, № 4. С. 482–488.
- 168 Ходаков Г. С. // Усп. химии. 1963. Т. 32, № 7. С. 860-881.
- 169 Стрелецкий А. Н., Бутягин П. Ю. // Кинетика и катализ. 1980. Т. 21, № 3. С. 765–769.
- 170 Быстриков А. В., Стрелецкий А. Н., Бутягин П. Ю. // Кинетика и катализ. 1980. Т. 21, № 4. С. 1013–1018.
- 171 Берестецкая И. В., Быстриков А. В., Стрелецкий А. Н., Бутягин П. Ю. // Кинетика и катализ. 1980. Т. 21, № 4. С. 1019–1022.
- 172 Быстриков А. В., Стрелецкий А. Н., Бутягин П. Ю. // Кинетика и катализ. 1980. Т. 21, № 5. С. 1148–1153.
- 173 Радциг В. А., Халиф В. А. // Кинетика и катализ. 1979.Т. 20, № 3. С. 705-713.
- 174 Королева С. М., Щербакова М. Я., Юсупов Т. С., Истомин В.Е. // Изв. СО АН СССР. Сер. хим. наук. 1987. № 2, вып. 1. С. 48–52.
- 175 Гришина Т. Д., Смагунов В. Н., Черняк А. С. // Журн. неорган. химии. 1987. Т. 32, № 3. С. 793–796.
- 176 Штайнике У. // Изв. СО АН СССР. Сер. хим. наук. 1985. № 8, вып. 3. С. 46–47.
- 177 Архипенко Д. К., Бокий Г. Б., Григорьева Т. Н., Королева С. М., Юсупов Т. С. // ДАН СССР. 1987. Т. 296, № 6. С. 1370–1374.
- 178 Косенко Н. Ф., Смирнова М. А. // Изв. вузов. Химия и хим. технол. 2008. Т. 51, № 2. С. 58–60.
- 179 Кетегенов Т. А., Тюменцева О. А., Бакракова О. С., Уракаев Ф. Х. // Химия уст. разв. 2005. Т. 13, № 2. С. 217–223.
- 180 Kanno Y. // Powder Technol. 1985. Vol. 44. P. 93-97.
- 181 Palaniandy S., Azizli K.A.M., Hussin H., Hashim S. F. S. // Int. J. Mineral Proc. 2007. Vol. 82, No. 4. P. 195–202.
- 182 Chen Y., Ninham B. W., Ogarev V. // Scripta Metallurgica Mater. 1995. Vol. 32, No. 1. P. 19-22.
- 183 Sydorchuk V., Khalameida S., Zazhigalov V., Skubiszewska-Zixba J., Leboda R., Wieczorek-Ciurowa K. // Appl. Surf. Sci. 2010. Vol. 257, No. 2. P. 446–450.
- 184 Gun'ko V. M., Voronin E. F., Nosach L. V., Turov V. V., Wang Z., Vasilenko A. P., Leboda R., Skubiszewska-Ziκba J., Janusz W., Mikhalovsky S. V. // J. Colloid Interface Sci. 2011. Vol. 355, No. 2. P. 300-311.
- 185 Hampsey J. E., Castro C. L. de, McCaughey B., Wang D., Mitchell B. S., Lu Y. // J. Am. Ceram. Soc. 2004. Vol. 87, No. 7. P. 1280–1286.
- 186 Temuujin J., Burmaa G., Amgalan J., Okada K., Jadambaa T., MacKenzie K. J. D. // J. Porous Mater. 2001. Vol. 8, No. 2. P. 233–238.
- 187 Temuujin J., Okada K., MacKenzie K. J. D., Jadambaa T. // Powder Technol. 2001. Vol. 121, No. 2–3. P. 259–262.
- 188 Yang H., Du G., Hu Y., Jin S., Yang W., Tang A., Avvakumov E. G. // Appl. Clay Sci. 2006. Vol. 31, No. 3–4. P. 290–297.
- 189 Teokcharov L., Simeonov D., Uzunov I., Klissurski D. // J. Mater. Sci. Lett. 1992. Vol. 11, No. 17. P. 1180–1182.
- 190 Мофа Н. Н., Червякова О. В., Кетегенов Т. А., Мансуров З. А. // Химия уст. разв. 2003. Т. 11, № 5. С. 755–761.
- 191 Комлев В. Г., Смирнова М. А. // Перспективные материалы. 2002. № 2. С. 86-88.
- 192 Liao J. F., Senna M. // Solid State Ionics. 1993. Vol. 66, No. 3-4. P. 313-319.