УДК 533; 517.92517.944

ЗАВИХРЕННЫЕ УСТАНОВИВШИЕСЯ ТЕЧЕНИЯ САМОГРАВИТИРУЮЩЕГО ГАЗА

Д. В. Паршин*, А. А. Черевко*,**, А. П. Чупахин*,**

* Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

** Новосибирский государственный университет, 630090 Новосибирск

E-mails: danilo.skiman@gmail.com, cherevko1@ngs.ru, chupakhin@hydro.nsc.ru

Найдено и исследовано точное решение уравнений установившегося движения самогравитирующего газа, описывающее завихренное течение газа с поверхности сферического источника и являющееся частично инвариантным относительно группы вращений (вихрь Овсянникова, особый вихрь). Фактор-система решения сводится к конечным формулам и одному обыкновенному дифференциальному уравнению третьего порядка. Определены различные режимы движения газа, описываемые данным решением: неограниченный разлет газа с закруткой с поверхности сферического источника, истечение газа с образованием сферы повышенной плотности на конечном расстоянии от указанного источника.

Ключевые слова: самогравитирующий газ, вихрь Овсянникова, частично инвариантное решение, группа вращений, завихренное истечение газа, сферический источник.

Введение. Уравнения газовой динамики с учетом самогравитации лежат в основе различных моделей астрофизики, описывающих истечение газа из звезд, спиральные структуры галактик, звездные скопления и т. д. [1-4]. Эти модели, учитывающие разнообразные физические факторы, достаточно сложны. Представляется важной и интересной задача определения влияния гравитации в чисто газодинамических моделях, описывающих многомерные движения газа, а также аналитическое исследование точных решений этих моделей. Естественным обобщением классических центрально-симметричных движений газа является вихрь Овсянникова (особый вихрь) [5] при наличии гравитации. Вихрь Овсянникова (ВО) является точным частично инвариантным решением [6, 7] уравнений газовой динамики. В этом вихре все термодинамические величины (давление, плотность, энтропия), а также модуль радиальной компоненты U и модуль H касательной к сферам $r = |\boldsymbol{x}| = \text{const}$ компоненты скорости \boldsymbol{u}_{τ} ($\boldsymbol{u} = U(r)\boldsymbol{u}_{n} + \boldsymbol{u}_{\tau}$) являются инвариантами группы вращений SO(3). В то же время угол $\omega = \omega(r, \varphi, \theta)$, определяющий отклонение вектора u_{τ} от меридиана сферы, зависит как от радиуса r, так и от широты θ ($0 \leq \theta \leq \pi$) и долготы φ ($0 \leq \varphi \leq 2\pi$) на сфере (рис. 1). Добавление к этой модели гравитационного потенциала Φ , зависящего только от радиуса, является естественным. Подобное обобщение для сферического газового источника в поле массивного притягивающего центра выполнено в [8]. В данной работе с использованием модели ВО исследуется завихренное установившееся течение самогравитирующего газа с поверхности сферы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 11-01-00026а), Президиума СО РАН (Интеграционный проект № 44), Отделения энергетики, машиностроения, механики и процессов управления РАН (грант № 2.13.4).

[©] Паршин Д. В., Черевко А. А., Чупахин А. П., 2014

Рис. 1. Разложение вектора скорости в сферической системе координат

Задачи астрофизики с учетом вращения [1] рассматриваются начиная со второй половины XX в., когда, в частности, было показано, что они оказывают существенное влияние на результаты спектрального анализа. Так, для короткопериодических звезд уширение спектральных линий обусловлено, главным образом, наличием вращения. В работах, посвященных изучению газовой динамики с учетом самогравитации, рассматриваются в основном одномерные или автомодельные движения газа [9–13] или исследуются свойства таких моделей [14] и корректность постановок начально-краевых задач [15]. Изучение точных решений, обусловленных теоретико-групповыми свойствами исходной модели, позволяет получить подробную информацию о решении, допускающую физическую интерпретацию.

1. Вывод уравнений модели. Уравнения установившихся движений самогравитирующего газа [2, 10] имеют вид

$$D\rho + \rho \operatorname{div} (\boldsymbol{u}) = 0,$$

$$D\boldsymbol{u} + \rho^{-1} \nabla p = \nabla \Phi,$$

$$\Delta \Phi = -4\pi G\rho,$$
(1.1)

где скорость газа \boldsymbol{u} , давление p, плотность ρ и гравитационный потенциал Φ — функции пространственных переменных \boldsymbol{x} ; $D = \boldsymbol{u} \cdot \nabla$; ∇ — градиент; Δ — лапласиан; G — гравитационная постоянная. Система (1.1) дополняется уравнением состояния газа, который будем считать политропным: $p = S\rho^{\gamma}$ (S — энтропия; $\gamma > 1$ — показатель адиабаты). Система (1.1) допускает группу вращений SO(3), действующую на прямом произведении пространств $\mathbb{R}^3(\boldsymbol{x}) \times \mathbb{R}^3(\boldsymbol{u})$. Задача нахождения наиболее широкой группы Ли инвариантности системы (1.1) является интересной и в настоящее время не решена. В таком представлении инвариантами группы SO(3) являются радиус-вектор $r = |\boldsymbol{x}|$, модули касательной $H = |\boldsymbol{u}_{\tau}|$ и радиальной U компонент вектора скорости соответственно. Этих величин недостаточно для построения инвариантного решения, поэтому на группе SO(3) реализуется частично инвариантное решение ранга и дефекта один [6], имеющее представление

$$U = U(r), \qquad \rho = \rho(r), \qquad H = H(r), p = p(r), \qquad S = S_0, \qquad \omega = \omega(r, \theta, \varphi),$$
(1.2)

где $S_0 = \text{const.}$ Подставляя представление (1.2) в систему (1.1), согласно общей теории

частично инвариантных решений [6] получаем объединение двух подсистем. Переопределенная подсистема для функции ω имеет вид

$$k\sin\omega U\omega_r + \sin\theta\cos\omega\omega_\theta + \sin\omega\omega_\varphi = -\cos\theta\sin\omega, \tag{1.3}$$

 $\sin\theta\sin\omega\omega_{\theta} - \cos\omega\omega_{\varphi} = \cos\theta\cos\omega + h\sin\theta,$

где функция *h* задается формулой

$$h = k(U(\ln \rho)' + r^{-2}(r^2 U)'), \qquad k = r/H,$$
(1.4)

штрих обозначает производную по r. Инвариантная подсистема для инвариантных функций имеет вид

$$UU' + \rho^{-1}p' = H^2/r + \Phi'; \tag{1.5}$$

$$U(rH)' = 0; (1.6)$$

$$kUh' = h^2 + 1; (1.7)$$

$$(r^2 \Phi')'/r^2 = g_0 \rho, \tag{1.8}$$

где $g_0 = -4\pi G$, причем уравнение (1.7) является условием совместности [6] системы (1.3). Включение гравитации в систему (1.5)–(1.8) приводит к изменению инвариантной подсистемы для ВО. Во-первых, в (1.5) добавляется слагаемое Φ' , учитывающее действие гравитационной силы, во-вторых, система дополняется уравнением (1.8) для гравитационного потенциала.

Система (1.3) интегрируется в конечном виде [5], геометрическая интерпретация решения представлена в [14]. Таким образом, исследование стационарного вихря Овсянникова (CBO) при наличии самогравитации сведено к анализу системы уравнений (1.5)–(1.8). Анализ CBO в отсутствие гравитации выполнен в [16].

Предположим, что $U \neq 0$. В этом случае из (1.6) следует представление для $|u_{\tau}|$

$$H = a_0/r, \qquad a_0 = \text{const} > 0.$$
 (1.9)

Тогда $k = r^2/a_0$. Из уравнения (1.7) можно выразить величину U через вспомогательную функцию h — своеобразный обобщенный потенциал решения — и ее производную:

$$U = a_0(h^2 + 1)/(h'r^2).$$
(1.10)

Для политропного газа с постоянной энтропией имеем $p = S_0 \rho^{\gamma}$, $c^2 = \gamma p / \rho = \gamma S_0 \rho^{\gamma-1}$ (с — скорость звука), $S_0 = \text{const.}$ Подставляя эти выражения в уравнение (1.5) и интегрируя его, получаем интеграл Бернулли (энергии), выраженный через плотность:

$$\frac{1}{2}U^2 + \frac{\gamma S_0}{\gamma - 1}\rho^{\gamma - 1} + \frac{a_0^2}{2r^2} = \Phi + b_0 \tag{1.11}$$

или скорость звука:

$$\frac{1}{2}U^2 + \frac{c^2}{\gamma - 1} + \frac{a_0^2}{2r^2} = \Phi + b_0$$

 $(b_0$ — константа). Подставляя в уравнение (1.4) представление (1.10) для U и выражение для c через ρ , имеем

$$\frac{1}{\gamma - 1} \left(\ln c^2 \right)' + \frac{h'}{1 + h^2} \left(\frac{1 + h^2}{h'} \right)' = \frac{hh'}{1 + h^2}$$

Интегрируя это выражение и преобразуя его, находим представление для c через функции h, h':

$$\left(\frac{c}{q_0}\right)^{2/(\gamma-1)} = \frac{h'}{\sqrt{1+h^2}},$$
(1.12)

где $q_0 = \text{const.}$ Преобразуя формулы (1.8), (1.10), (1.12), получаем следующее утверждение.

Лемма. Система (1.5)-(1.8) эквивалентна системе

$$\frac{1}{2}\left(U^2 + \frac{a_0^2}{r^2}\right) + \frac{c^2}{\gamma - 1} = \Phi + b_0; \tag{1.13}$$

$$\rho = \frac{\rho_0 |h'|}{\sqrt{1+h^2}}, \qquad c^2 = \frac{q_0^2 |h'|^{\gamma-1}}{(1+h^2)^{(\gamma-1)/2}}; \tag{1.14}$$

$$\Phi'' + \frac{2}{r} \Phi' = \frac{g_0 c^{2/(\gamma - 1)}}{(\gamma S_0)^{1/(\gamma - 1)}},$$
(1.15)

определяющей инвариантные функции СВО с учетом самогравитации через обобщенный потенциал h и его производные.

В случае классического CBO подстановка (1.10)-(1.14) в интеграл Бернулли приводит к неявному дифференциальному уравнению для h [16], что в рассматриваемом случае дает представление для Φ через h, h'. Функция Φ определяется из обыкновенного дифференциального уравнения второго порядка (1.15). В результате получаем более сложную задачу, чем в случае отсутствия самогравитации.

2. Свойства решения. Формулы (1.13)–(1.15) позволяют определить некоторые свойства решения. Будем рассматривать лишь ограниченные решения, т. е. такие, в которых функции U(r), $\Phi(r)$, $\rho(r)$, h(r) ограничены в области определения.

Свойство 1. На любом конечном интервале существования ограниченного решения производная $h_r \neq 0$.

Доказательство следует из уравнения (1.10). Предположим, что $h'(r_0)=0,$ тогда $U\to 0$ при $r\to r_0.$

Свойство 2. Решение определено в области $r \ge \tilde{r} > 0$.

Доказательство. Предположим обратное. Тогда из интеграла Бернулли следует, что при $r \to 0 \quad \Phi \to \infty$, т. е. получаем противоречие условию.

Свойства 1, 2 являются также свойствами СВО без самогравитации [16]. Как и в классической газовой динамике, из свойства 2 следует, что источник газа имеет конечный радиус [7]. Таким образом, задача о СВО с учетом самогравитации формулируется следующим образом: с поверхности сферы или ее части (например, сферического пояса) газ стекает таким образом, что имеет место закрутка: $H = |u_{\tau}| = a_0/r \neq 0$, причем распределение вектора u_{τ} задается решением системы (1.3).

Свойство 3. Закрутка максимальна вблизи источника и уменьшается с увеличением r.

Доказательство следует непосредственно из (1.9).

Свойство 4. В СВО при наличии самогравитации существует не более двух режимов течения.

Свойство 4 является аналогом свойства классического источника, определяющего как дозвуковое, так и сверхзвуковое течение газа. Схема доказательства свойства 4 такая же, как и в [8].

Доказательство. Подставим в интеграл Бернулли представление (1.10) для U и (1.14) для c^2 . В результате получаем уравнение, связывающее функции h, h', Φ . Ниже это уравнение используется в двух формах, первая из которых имеет вид

$$|h'|^{\gamma+1} + \frac{(\gamma-1)(b_0 + \Phi)}{c_0^2} \Big(\frac{a^2}{2(b_0 + \Phi)r^2} - 1 \Big) (1 + h^2)^{(\gamma-1)/2} (h')^2 + \frac{(\gamma-1)a^2(1 + h^2)^{(\gamma+3)/2}}{2c_0^2 r^4} = 0.$$
(2.1)

Обозначим h' = q и рассмотрим случай, когда показатель адиабаты $\gamma = m/n$ является рациональным (m, n -натуральные числа, причем m > n, поскольку $\gamma > 1$). Пусть $z = q^{1/n}$, тогда уравнение (2.1) записывается в виде алгебраического уравнения относительно z:

$$z^{m+n} + Az^{2n} + B = 0. (2.2)$$

Здесь

$$A = \frac{\gamma - 1}{c_0^2} \left(\frac{a^2}{2r^2} - (b_0 + \Phi) \right) (1 + h^2)^{(\gamma - 1)/2};$$
(2.3)

$$B = \frac{(\gamma - 1)a^2(1 + h^2)^{(\gamma + 3)/2}}{2c_0^2 r^4} > 0.$$
 (2.4)

Справедливо правило Декарта, в соответствии с которым количество положительных корней многочлена либо совпадает с количеством перемен знаков его коэффициентов, либо на четное число меньше его [17]. Согласно (2.3), (2.4) количество перемен знаков в коэффициентах (2.2) определяется сигнатурой (+, sign (A), +) и равно либо нулю, либо двум. При A > 0 уравнение (2.2) не имеет корней, при A < 0 число таких корней не больше двух. Из интеграла Бернулли (1.11) следует, что A < 0, поэтому количество корней не более двух.

3. Сведение системы уравнений (1.13)–(1.15) к одному уравнению более высокого порядка. Систему (1.13)–(1.15) можно свести к одному обыкновенному дифференциальному уравнению третьего порядка для функции *h*. Выразим из уравнения (2.1) гравитационный потенциал Ф через функции *h*, *h*':

$$\Phi = \frac{c_0^2 |h'|^{\gamma - 1}}{(\gamma - 1)(1 + h^2)^{(\gamma - 1)/2}} + \frac{a(1 + h^2)^2}{2r^4(h')^2} + \frac{a^2}{2r^2} - b_0.$$
(3.1)

Подставляя (3.1) в левую часть (1.15), а представление (1.14) для c^2 — в правую часть, получаем искомое уравнение третьего порядка. Вследствие его громоздкости получение каких-либо аналитических данных о свойствах его решения существенно затруднено. Дальнейший анализ решений этого уравнения выполняется численно. Для расчетов выбирается значение $\gamma = 5/3$, соответствующее одноатомному газу [7]. В этом случае уравнение третьего порядка имеет вид

$$-rY^{3/2}h'(12h(h')^{2} + Y(-6h'' + rh''')) + 3r^{2}\sqrt{Y}((2Y-1)(h')^{4} + 3r^{2}(h'')^{2}Y^{5/2} - k_{0}r^{6}(h')^{5} + 6Y^{3/2}(h')^{2}(Y - r^{2}hh'')) = 0, \quad (3.2)$$

где $Y = 1 + h^2$. Для получения численного решения уравнения (3.2) необходимо задавать данные Коши: $h_0 = h(R_0), h'_0 = h'(R_0), h''_0 = h''(R_0)$. По формулам (1.10), (1.14) вычисляются значения физических величин на поверхности сферы-источника $U_0 = U(R_0),$ $\rho_0 = \rho(R_0), c_0 = c(R_0)$. Значение потенциала $\Phi_0 = \Phi(R_0)$ и производная Φ' вычисляются по формуле (3.1). Для того чтобы задать $\Phi'_0 = \Phi'(R_0)$, нужно задать $h''_0 = h''(R_0)$.

4. Результаты численных расчетов. Численно исследованы свойства двух возможных режимов течения газа, которые соответствуют СВО при наличии самогравитации и существование которых было доказано при доказательстве свойства 4.

Для первого режима решение определено на конечном интервале $r \in [R_0, R_1)$. При $r \to R_1$ плотность газа неограниченно возрастает. Этот факт можно трактовать как образование на некотором расстоянии от источника сферы с повышенной плотностью, на которой наблюдается сгущение частиц газа. По мере удаления от источника плотность

Рис. 3. Графики функций ρ, U, M, Φ' для решения (3.2): $a - h(1,7) = 2, h'(1,7) = -1, h''(1,7) = 1, \delta - h(2) = 2, h'(2) = -1, h''(2) = 1; 1 - \rho, 2 - U, 3 - M, 4 - \Phi'$

потока газа уменьшается, а радиальная скорость и число Маха достигают максимальных значений. Решение заканчивается градиентной катастрофой функций ρ , Φ' при конечном значении $r = R_2$ (рис. 2,*a*).

Для второго режима решение определено при всех $r \ge R_0$. Такой поток газа развивается при начальных данных (U_0, c_0) , когда $U_0 > c_0$, т. е. течение заведомо является сверхзвуковым. Поведение физических величин аналогично поведению соответствующих величин при классическом разлете газа: в удаляющемся на бесконечность потоке происходит разрежение газа, что приводит к увеличению числа Маха, при этом радиальная скорость монотонно возрастает (рис. $2, \delta$).

Оба режима течения газа имеют место и в случае пространственного стока, т. е. при $h'(R_0) < 0$, когда согласно (1.10) газ натекает на сферу извне. Из (3.2) следует, что уравнение не допускает замену h' на -h', поэтому поведение решения в данном случае не должно соответствовать его поведению в случае источника. Изменение расчетных физических величин в случае стока показано на рис. 3. На рис. 3, *a* решение соответствует случаю, когда

сток локализован в области $R_1 < r < R_2$, а на рис. 3, δ — случаю, когда газ затягивается в коллапсирующее облако из бесконечности. Для получения более подробного описания подобных объектов, как правило, требуется учитывать электродинамику и излучение.

Режимы течения при наличии самогравитации и в случае ее отсутствия (см. [16]) качественно различаются. В частности, для случая, когда присутствует самогравитация, имеет место режим течения с локальным максимумом плотности внутри области течения. В целом обе модели имеют решения, существующие на конечном расстоянии от источника, и решения, соответствующие разлету газа в вакуум. Как и в [16], решения могут быть дозвуковыми и сверхзвуковыми и определяются на сферическом поясе $\theta_1 < \theta < \theta_2$.

5. Истечение газа без вращения. При движении газа без закрутки $a_0 = 0, H = 0,$ интеграл Бернулли принимает вид

$$\frac{U^2}{2} + \frac{c^2}{\gamma - 1} = \Phi + b_0. \tag{5.1}$$

Уравнение неразрывности (1.4) интегрируется следующим образом:

$$\rho U = q_0/r^2. \tag{5.2}$$

Уравнение Пуассона для гравитационного потенциала записывается в виде

$$\Phi_{rr} + 2\Phi_r/r = -4\pi G\rho \tag{5.3}$$

и замыкает систему.

Выражая ρ из интеграла (5.2), подставляя полученные значения в (5.1), (5.3) и используя уравнение состояния для политропного газа, получаем систему, состоящую из конечного интеграла и обыкновенного дифференциального уравнения второго порядка:

$$\frac{U^2}{2} + \frac{\gamma q_0^{\gamma - 1} S_0}{(\gamma - 1)(r^2 U)^{\gamma - 1}} = \Phi + b_0;$$
(5.4)

$$R^2 \Phi_{rr} + 2R \Phi_r = -4\pi G q_0 / U. \tag{5.5}$$

Подставим в (5.5) представление для Φ из (5.4). Тогда система (5.4), (5.5) приводится к одному дифференциальному уравнению второго порядка для функции U:

$$5q_0^{2/3}S_0(2U^2 + 5r^2(U')^2 + rU(2U' - 3rU'')) + 9U(r^2U)^{2/3}(4\pi Gq_0 + rU(2UU' + r(U')^2 + rU(U''))) = 0.$$
(5.6)

В результате изменения масштабов переменных уравнение (5.6) преобразуется к уравнению с одним управляющим параметром \tilde{k} :

$$(2U^{2} + 5r^{2}(U')^{2} + rU(2U' - 3rU'')) + \tilde{k}U(r^{2}U)^{2/3}(1 + rU(2UU' + r(U')^{2} + rU(U''))) = 0, \quad (5.7)$$

которое исследуется численно аналогично уравнению (3.2).

Определены два режима течения газа.

Режим первого типа может быть как дозвуковым, так и сверхзвуковым и определен для любых $r \ge R_0$ (рис. 4,*a*). По мере удаления от источника плотность газа уменьшается и происходит разгон потока с выходом на режим сверхзвукового течения газа.

Режим второго типа возникает в ограниченной области $r \in [R_0, R_1)$ и является сверхзвуковым (рис. 4, δ). На конечном расстоянии от источника число Маха имеет минимум, а плотность — максимум. Решение заканчивается на конечном расстоянии от источника, когда неограниченно возрастают производная потенциала Φ' и радиальная скорость U.

Рис. 4. Графики функций ρ , U, M, Φ' для решения (5.7) в случае отсутствия вращения: $a - U(2) = 1, U'(2) = 1, \tilde{k} = 6,4934 \cdot 10^{-5}, \ \delta - U(2) = 1, U'(2) = 1, \tilde{k} = 1,62336; 1 - \rho, 2 - U, 3 - M, 4 - \Phi'$

В случае исключения вращения у решения отсутствует локальный максимум плотности (см. рис. 4). Таким образом, добавление вращения в модель пространственного движения самогравитирующего газа не только усложняет модель по сравнению со случаем его отсутствия, но и дает более интересное решение.

Заключение. Вихрь Овсянникова при наличии самогравитации как точное решение уравнений газовой динамики является более сложным для анализа по сравнению с классическим случаем стационарного вихря Овсянникова. При аналитическом исследовании инвариантной подсистемы задача сводится к одному дифференциальному уравнению третьего порядка. В результате численных расчетов определены два возможных режима движения, описывающие завихренное движение самогравитирующего газа из области на поверхности сферы. В случае режима первого типа решение определено на конечном расстоянии от источника, при этом плотность в потоке газа становится не ограниченной на некоторой сфере конечного радиуса, окружающей источник. Такое решение можно трактовать как образование пространственного стока или сгущение частиц газа на сфере. В случае реализации режима второго типа источник является сверхзвуковым, решение определено всюду и описывает разлет газа в вакуум. Величина закрутки в течении изменяется по закону r^{-1} .

ЛИТЕРАТУРА

- 1. Тассуль Ж. Л. Теория вращающихся звезд. М.: Мир, 1982.
- 2. Пиблс Ф. Дж. Э. Структура Вселенной в больших масштабах. М.: Мир, 1983.
- 3. Зельдович Я. Б. Теория тяготения и эволюция звезд / Я. Б. Зельдович, И. Д. Новиков. М.: Наука, 1975.
- 4. Седов Л. И. Методы подобия и размерности в механике. М.: Наука, 1981.
- 5. Овсянников Л. В. Особый вихрь // ПМТФ. 1995. Т. 36, № 3. С. 45–52.
- 6. Овсянников Л. В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978.
- 7. Овсянников Л. В. Лекции по основам газовой динамики. М.; Ижевск: Ин-т компьютер. исслед., 2003.

- Паршин Д. В., Чупахин А. П. Стационарный вихрь Овсянникова в поле массивного притягивающего центра // Журн. Сиб. федерал. ун-та. Сер. Математика и физика. 2010. Т. 3, вып. 2. С. 228–243.
- 9. Богоявленский О. И. Методы качественной теории динамических систем в астрофизике и газовой динамике. М.: Наука, 1980.
- 10. Станюкович К. П. Неустановившиеся движения сплошной среды. М.: Наука, 1971.
- 11. Баутин С. П. Математическое моделирование истечения идеального газа в вакуум / С. П. Баутин, С. Л. Дерябин. Новосибирск: Наука. Сиб. издат. фирма, 2005.
- 12. Арафайлов С. И., Краснобаев К. В., Тагирова Р. Р. Одномерное сжатие ограниченных объемов самогравитирующего газа // Изв РАН. Механика жидкости и газа. 2012. № 3. С. 7–17.
- Барская И. С., Мухин С. И., Чечеткин В. М. Математическое моделирование равновесных конфигураций самогравитирующего газа. М., 2006. (Препр. / РАН. Ин-т прикл. математики им. М. В. Келдыша; № 41).
- Golovin S. V. Singular vortex in magnetohydrodynamics // J. Phys. A. 2005. V. 38, N 20. P. 4501–4516.
- Luo T., Smoller J. Existence and non-linear stability of rotating stars solutions of the compressible Euler — Poisson equations // Arch. Rat. Mech. Anal. 2009. V. 191. P. 447–496.
- Черевко А. А., Чупахин А. П. Стационарный вихрь Овсянникова. Новосибирск, 2005. С. 228–243. (Препр. / СО РАН. Ин-т гидродинамики; № 1).
- 17. Прасолов В. В. Многочлены. М.: Моск. центр непрерыв. мат. образования, 2003.

Поступила в редакцию 30/IX 2013 г.

167