2009. Tom 50. № 6

Ноябрь – декабрь

C. 1179 – 1186

УДК 543.442.2:620.187:621.793.:661.668′719

СТРУКТУРА РЕНИЕВЫХ ПОКРЫТИЙ, ПОЛУЧЕННЫХ МЕТОДОМ CVD

© 2009 Н.В. Гельфонд, Н.Б. Морозова, Е.С. Филатов*, С.А. Громилов, И.К. Игуменов

Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 21 июня 2008 г.

Методом химического осаждения из паровой фазы в атмосфере водорода из $Re_2(CO)_{10}$ и $Re(CO)_3(Cp)$ на стальных и керамических (C/SiC) подложках получены покрытия рения со средней толщиной 3—13 мкм при использовании $Re_2(CO)_{10}$ и 2—8 мкм при осаждении из $Re(CO)_3(Cp)$. Покрытия были исследованы методами рентгеновской дифракции и сканирующей электронной микроскопии. Показано, что при использовании $Re_2(CO)_{10}$ увеличение температуры осаждения приводит к росту текстурированных покрытий с преимущественной ориентацией кристаллитов в направлении [0 0 2]. При этом наблюдается тенденция уменьшения размеров кристаллитов рения. Структура Reпокрытий, полученных из $Re(CO)_3(Cp)$ на стальных подложках, при изменении температуры испарителя существенно меняется — с компактной неслоистой без ярко выраженного направления роста ($T_{испарителя} = 120$ °C) на трехслойную структуру с начальным слоем с компактной структурой и следующими за ним столбчатым и порошкообразным слоями ($T_{испарителя} = 110$ °C). На керамических подложках при температуре испарителя 110 °C образуется компактное мелкозернистое покрытие.

Ключевые слова: Re-покрытия, рентгеновская дифракция, сканирующая электронная микроскопия, химическое осаждение из паровой фазы (CVD), диренийдека-карбонил, циклопентадиенилренийтрикарбонил.

Рений обладает уникальным сочетанием физико-химических свойств, что делает его идеальным материалом для использования в различных областях науки и техники. Рений, многие его сплавы и соединения (окислы, сульфиды, перренаты) находят широкое применение в электронной, электротехнической промышленности, в приборостроении, а также в качестве катализаторов различных химических процессов. Рениевые покрытия применяют для повышения жаростойкости и износостойкости деталей и зашиты их от коррозии. Re-покрытия получают электролизом водных растворов солей [1—4] и методами физического осаждения из газовой фазы [5—9]. Для нанесения рениевых слоев в последние годы значительное распространение получил метод химического осаждения из паровой фазы (CVD) [10—15]. Покрытия осаждают путем термического разложения паров исходного соединения металла (прекурсора) на поверхности изделия. Для рения известно несколько различных классов исходных летучих соединений. В нашем исследовании для получения рениевых покрытий методом CVD были выбраны следующие прекурсоры: диренийдекакарбонил — Re₂(CO)₁₀ и циклопентадиенилренийтрикарбонил — Re(CO)₃(Cp).

 $Re_2(CO)_{10}$ достаточно хорошо охарактеризован различными физико-химическими методами [10—17]. Данные по термическому поведению $Re(CO)_3(Cp)$ приведены в [17]. Необходимо отметить, что $Re_2(CO)_{10}$ — наиболее часто применяемый прекурсор для осаждения Re-покрытий, в то время как использование $Re(CO)_3(Cp)$ в CVD рения (за исключением [17]) в литера-

^{*} E-mail: filatov@che.nsk.su

туре не описано. В [17] представлены результаты наших предварительных исследований CVD Re-слоев, синтезированных с использованием обоих прекурсоров. Целью настоящей работы является получение толстых (толщиной более 1 мкм) Re-покрытий, изучение влияния природы материала подложек, используемого прекурсора и условий осаждения на структуру покрытий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения рениевых слоев методом CVD использовали исходные соединения чистотой 98 % ($Re_2(CO)_{10}$) и 99 % ($Re(CO)_3(Cp)$), приобретенные в Strem Chemicals (Germany).

Выбор условий осаждения покрытий из $Re_2(CO)_{10}$ базировался на данных по термическим свойствам прекурсора [10—17]. При работе с $Re(CO)_3(Cp)$ основой для определения параметров осаждения послужили результаты исследований термических превращений данного соединения, проведенных ранее [17].

Процессы осаждения Re-покрытий проводили на установке, детальное описание которой приведено в [18]. Осаждение проводили в атмосфере водорода. Водород пропускали через испаритель, таким образом, он использовался как в качестве газа-носителя, так и в качестве газа-реагента. Скорость потока водорода была постоянной и равнялась 2,4 л/ч. В качестве подложек использовали стальные диски диаметром 25 мм и толщиной 0,5 мм, а также керамические пластины (C/SiC) $15 \times 10 \times 2,5$ мм. При расчете средней толщины покрытия учитывали массу покрытия (изменение массы подложки до и после эксперимента), площадь поверхности подложки с покрытием и плотность компактного металла. Средняя толщина покрытий находилась в диапазоне 3—13 мкм при использовании $Re_2(CO)_{10}$ и 2—8 мкм при осаждении Re-покрытий из $Re(CO)_3(Cp)$. Условия осаждения некоторых образцов Re-покрытий из паров $Re_2(CO)_{10}$ и $Re(CO)_3(Cp)$ приведены в табл. 1 и 2.

Структура полученных покрытий подробно исследована методами рентгеновской дифракции и сканирующей электронной микроскопии (СЭМ). Рентгендифрактометрическое исследование проведено с использованием рентгеновских дифрактометров ДРОН-3М и ДРОН-RМ4 (R=192 мм, CuK_{α} -излучение, Ni-фильтр, сцинтилляционный детектор с амплитудной дискриминацией, щели Соллера на первичном и отраженном пучках 2,5°) при комнатной температуре в области углов 2θ от 5° до 100° . Щель, определяющая расходимость первичного пучка в экваториальной плоскости, имела ширину 1 мм и высоту 10 мм. Таким образом, в районе 40° 2θ (область наиболее сильных дифракционных отражений) размер облучаемой области был \sim 7×11 мм. Ширина приемной щели составляла $0,1^{\circ}$.

Таблица 1 Условия осаждения Re-покрытий с использованием Re₂(CO)₁₀

	-()						
№ об- разца	Материал подложки	Температура осаждения, °С	Средняя тол- щина, мкм				
I	Сталь	350	7,0				
II	Сталь	400	6,0				
III	Сталь	450	3,8				
IV	Сталь	550	3,4				
V	C/SiC	350	6,1				
VI	C/SiC	400	5,8				
VII	C/SiC	450	5,9				
VIII	C/SiC	550	3,3				

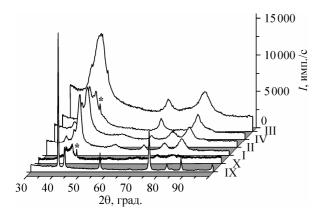
Таблица 2 Условия осаждения Re-покрытий с использованием Re(CO)₃(Cp)

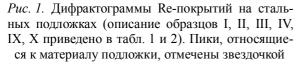
· · · · · ·							
	№ об- разца	Материал подложки	Температура испарителя, °С	Средняя тол- щина, мкм			
	IX	Сталь	110	7,8			
	X	Сталь	120	3,2			
	XI	C/SiC	110	7,1			

П р и м е ч а н и е. Газ-носитель — H_2 (2,4 л/ч); температура осаждения — 550 °C; общее давление в реакторе — 1 атм.

В качестве внешнего эталона был использован Si (a = 5,4309 Å). Образцы устанавливали в стандартные держатели из комплекта гониометра ГУР-8. Рабочие поверхности покрытия и держателя совмещали с помощью мелкошлифованной стеклянной пластинки. Такое крепление позволило вывести исследуемую поверхность на ось гониометра. Участки дифрактограмм от 30° до 100° 20 были записаны по точкам — шаг $0,2^{\circ}$ 20, время накопления от 5 до 60 с (выбор зависел от интенсивности дифракционной картины). Рентгенофазовый анализ проведен с использованием картотеки PDF [19].

Исследование покрытий методом СЭМ проводили на электронных микроскопах JSM T200, Karl Zeiss LEO1430. Для изучения структуры покрытий приготавливали сколы соответствующих образцов.


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Результаты рентгендифрактометрического исследования серий образцов Re-покрытий представлены на рис. 1, 2 и в табл. 3. Для проверки воспроизводимости результатов процессов CVD были приготовлены дополнительные образцы Re-покрытий в условиях, близких к образцам III, IX и X. Рентгендифрактометрический анализ этих образцов показал хорошую воспроизводимость результатов измерений.

В табл. 3 представлены результаты обработки дифрактограмм по программе Powder Cell 2,4 [20]. Для описания профилей отражений была использована функция Лоренца. При расчетах уточняли параметры элементарной ячейки (ПЭЯ), текстуру и параметры, характеризующие профиль дифракционных рефлексов.

Уточнение ПЭЯ показало, что покрытия можно разделить на две группы. Первая соответствует образцам, полученным при температурах осаждения ≥ 450 °C, вторая — ниже этого значения. Для первой группы (образцы III, IV, VII, VIII, IX, X и XI) значения ПЭЯ лежат в узких пределах: a = 2,760(4)—2,770(4) Å, c = 4,450(6)—4,461(6) Å и практически совпадают с эталонными значениями чистого кристаллического Re: a = 2,760 Å, c = 4,458 Å, пространственная группа $P6_3/mmc$, [19, №5-702]. Вторая группа (образцы I, II, V и VI) характеризуется заметно увеличенными значениями параметра a = 2,782(4)—2,789(4) Å, при этом c практически не меняется — 4,451(6)—4,460(6) Å.

Увеличение параметра a Re было отмечено в работе [21] при термобарической обработке смеси высокодисперсного порошка Re c размерами областей когерентного рассеяния (ОКР) \sim 3 нм и технической сажи. Согласно проведенным оценкам, в наших образцах размеры ОКР на уровне 5—10 нм. В работе [12] показано, что при осаждении рения методом CVD в составе покрытий присутствует углерод, количество которого изменяется от 0,43 до 34,64 %

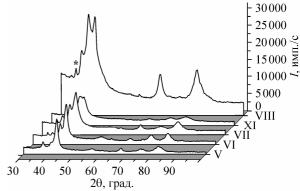
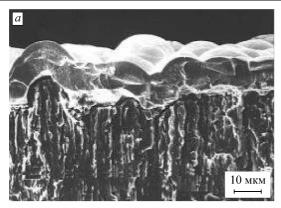


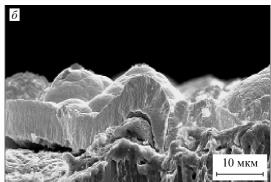
Рис. 2. Дифрактограммы Re-покрытий на C/SiC подложках (описание образцов V, VI, VII, VIII, XI приведено в табл. 1 и 2). Пики, относящиеся к материалу подложки, отмечены звездочкой

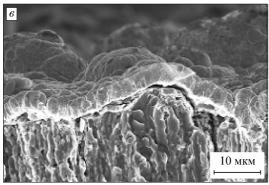
Рентгендифрактометрические параметры Re-покрытий

Vanagetanuatura	Образцы										
Характеристика	I	II	III	IV	V	VI	VII	VIII	IX	X	XI
Прекурсор*	A	A	A	A	A	A	A	A	Б	Б	Б
Материал подложки	Сталь	Сталь	Сталь	Сталь	C/SiC	C/SiC	C/SiC	C/SiC	Сталь	Сталь	C/SiC
$T_{\text{исп}}$, °C	90	90	90	90	90	90	90	90	110	120	110
$T_{ m ocaжд}$, °С	350	400	450	550	350	400	450	550	550	550	550
a, Å	2,785	2,783	2,767	2,760	2,789	2,782	2,760	2,760	2,763	2,770	2,760
c, Å	4,458	4,451	4,450	4,461	4,458	4,460	4,456	4,458	4,459	4,457	4,458
OKP, Å	90	83	82	82	100	105	60	59		101	59
(100)/37,6/7	11	10	51	26	15	8	17	26	<1	22	18
(002)/40,5/95	17	46	57	100	14	32	46	100	18	77	100
(101)/42,9/100	100	100	100	85	100	100	100	96	5	100	93
(102)/56,4/28	9	8	2	3	8	10	5	5	10	9	10
(110)/67,9/5	11	9	27	50	12	7	20	50	2	14	16
(103)/75,2/48	18	26	8	6	12	23	19	11	100	25	26
(200)/80,3/1	3	8	20	17	3	2	10	10	1	10	13
(112)/82,1/39	30	39	36	85	24	32	37	73	23	26	32
(201)/83,7/9	10	9	39	12	13	6	11	5	5	22	8
(004)/87,5/11	1	4	2	10	2	2	5	9	67	4	4
(202)/94,0/4	3	3	3	7	3	3	3	3	2	5	3
(104)/99,4/11	3	2	3	17	3	4	1	1	66	5	11

 Π р и м е ч а н и е. В скобках даны индексы отражений, за ними следуют величины углов 2θ и расчетные значения интенсивностей.

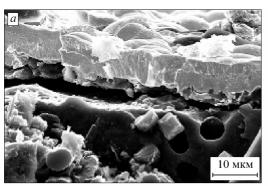

в зависимости от используемого прекурсора. Содержание углерода в Re-покрытии, осажденном из $Re_2(CO)_{10}$ при 450 °C, равно 0,43 %. Из диаграммы состояния Re—C (см., например, [22]) следует, что возможно вхождение атомов углерода в структуру Re (до 0,5 %) с образованием карбидов внедрения. Таким образом, полученные вариации ПЭЯ можно обоснованно связать именно с этим процессом.

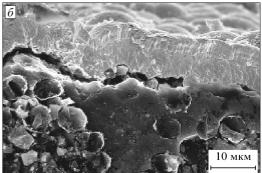

Для Re-покрытий, полученных из $Re_2(CO)_{10}$, значения полуширины отражений и их относительной интенсивности заметно отличаются. При температуре выше 450 °C наблюдается тенденция уменьшения размера кристаллитов рения. Увеличение температуры как стальных, так и керамических подложек до 550 °C приводит к росту текстурированных покрытий с преимущественной ориентацией кристаллитов в направлении $[0\ 0\ 2]$.


СЭМ изображения Re-покрытий, полученных из $Re_2(CO)_{10}$ при различных температурах стальных подложек, представлены на рис. 3. Температуру осаждения изменяли ступенчато с шагом 50 °C от 350 до 450 °C (образцы I, II, III). Поверхность покрытий состоит из крупноразмерных сфероидов. В отличие от результатов исследований, представленных в работе [15], в структуре полученных образцов не наблюдается горизонтальной слоистости. При температуре 450 °C наблюдается преимущественно столбчатая структура покрытий.

При осаждении Re-покрытий из $Re_2(CO)_{10}$ на керамические подложки (образцы V, VI, VII) морфология поверхности меняется (рис. 4). Рельеф поверхности покрытий повторяет рельеф подложки. В изученном диапазоне температур осаждения (350—450 °C) не образуются крупноразмерные сфероидные частицы. Увеличение температуры осаждения, так же как и при ис-

^{*} Прекурсор $A - Re_2(CO)_{10}$, прекурсор $E - Re(CO)_3(Cp)$.





Puc.~3.~ Изображения СЭМ образцов Re-покрытий (прекурсор — $Re_2(CO)_{10}$), полученных при различных температурах стальных подложек: a — образец I, 350 °C, δ — образец II, 400 °C, ϵ — образец III, 450 °C. Описание образцов I, II, III приведено в табл. 1

пользовании стальных подложек, приводит к росту текстурированных покрытий с преимущественной ориентацией кристаллитов в направлении [0 0 2]. При температурах 350—400 °C (см. рис. 4, a, δ) полученные покрытия состоят из двух слоев. Нижний слой, ближний к подложке, имеет компактную, сплошную структуру. Структуру верхнего слоя можно отнести к столбчатой. На сколе покрытия, осажденного на C/SiC при 450 °C (см. рис. 4, ϵ), наблюдается

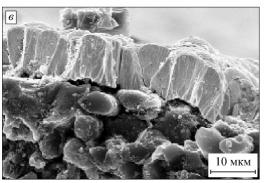
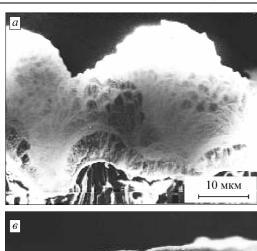
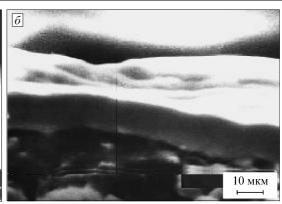
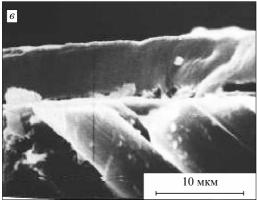





Рис. 4. Изображения СЭМ образцов Re-покрытий (прекурсор — $Re_2(CO)_{10}$), полученных при различных температурах C/SiC подложек: a — образец V, 350 °C; δ — образец VI, 400 °C, ϵ — образец VII, 450 °C. Описание образцов V, VI, VII приведено в табл. 1

Puc. 5. Изображения СЭМ образцов Re-покрытий (прекурсор — Re(CO)₃(Cp)), температура подложки 550 °C: a — образец IX, стальная подложка, температура испарителя 110 °C, δ — образец X, стальная подложка, температура испарителя 120 °C, ϵ — образец XI, C/SiC подложка, температура испарителя 110 °C.

Описание образцов IX, X, XI приведено в табл. 2

ярко выраженная столбчатая структура, формирование которой происходит уже на начальных стадиях роста.

При использовании в качестве прекурсора $Re(CO)_3(Cp)$ (см. табл. 2) температуру подложек поддерживали постоянной (550 °C); температуры испарителя устанавливали 110 и 120 °C; материал подложки — сталь (образцы IX и X) и C/SiC (образец XI). Как следует из данных СЭМ и результатов рентгенографического исследования Re-покрытий на стальных подложках (см. рис. 1, 2, 5 (a, δ), табл. 3), незначительное изменение температуры испарителя (т.е. концентрации паров прекурсора в зоне осаждения) привело к существенному изменению структуры покрытий. При температуре испарителя 120 °C (см. рис. 5, δ) покрытие имеет компактную неслоистую структуру без ярко выраженного направления роста. В некоторых местах наблюдаются сфероидные формирования. При температуре испарителя 110 °C (см. рис. 5, a) характер структуры покрытия меняется по мере протекания процесса роста. Вначале образуется тонкий слой с компактной структурой, затем формируется покрытие толщиной несколько микрометров со столбчатой структурой и верхний порошкообразный слой. При той же температуре испарителя (110 °C) на керамической подложке образуется компактное мелкозернистое покрытие (см. рис. 5, a).

Особенности наблюдаемых явлений при формировании Re-покрытий, а именно: уменьшение размеров кристаллитов при увеличении температуры осаждения, изменение структуры покрытий по мере их роста, а также формирование столбчатых структур можно объяснить присутствием в составе покрытий углеродсодержащих продуктов (УП), образующихся при термораспаде прекурсоров. При высоких температурах осаждения (≥ 450 °C) УП присутствуют в покрытии в свободном (не связанном с рением) состоянии и могут сегрегировать на межкристаллических границах, препятствуя спеканию рения в крупные частицы. Понижение температуры подложки приводит к образованию карбидов внедрения, что уменьшает содержание свободных УП, и, соответственно, рений кристаллизуется в более крупные частицы. При этом УП могут находиться на поверхности частиц рения в виде тонкого аморфного слоя. Подобные аморфные углеродсодержащие слои мы наблюдали при изучении иридиевых пленок [23, 24].

При некоторых условиях процесса CVD на начальных стадиях роста образуются Re-слои с компактной структурой, по мере дальнейшего роста формируются покрытия со структурой столбчатого типа. Такие структуры характерны и для покрытий из металлов платиновой группы [24]. При росте покрытий происходит накопление УП на поверхности металла, образуется переходный слой, в котором зарождаются кристаллиты металла с направлением роста, перпендикулярным поверхности подложки. Дальнейшее осаждение приводит к формированию слоя со столбчатой структурой.

ЗАКЛЮЧЕНИЕ

Проведено исследование Re-покрытий, полученных из двух прекурсоров в различных температурных режимах. Показано, что повышение температуры подложки при осаждении Reпокрытий из $Re_2(CO)_{10}$ как на стальных, так и на керамических образцах приводит к росту текстурированных покрытий с преимущественной ориентацией кристаллитов в направлении $[0\ 0\ 2]$ с образованием столбчатой структуры и уменьшению размеров кристаллитов рения.

При синтезе Re-покрытий на стальных подложках из Re(CO)₃(Cp) изменение температуры испарителя на 10 °C приводит к существенному изменению структуры покрытий. При температуре испарителя 120 °C покрытие имеет компактную неслоистую структуру. При температуре испарителя 110 °C характер структуры покрытия меняется в процессе роста. На первых стадиях образуется сплошное покрытие, затем вырастает слой со столбчатой структурой и на поверхности формируется порошкообразный слой. При той же температуре испарителя (110 °C) на керамической подложке образуется компактное мелкозернистое покрытие.

Структурные особенности Re-покрытий можно объяснить присутствием углеродсодержащих продуктов в составе покрытий. При высокой температуре осаждения УП образуют тонкие слои на поверхности кристаллитов, препятствуя образованию крупных частиц. При понижении температуры осаждения происходит образование карбидов внедрения, что уменьшает содержание УП, и рений кристаллизуется в более крупные частицы. Накопление углерода на поверхности растущего покрытия при определенных условиях приводит к изменению механизма роста и формированию многослойных покрытий с различной структурой слоев.

Авторы благодарны Hannelore Benien, Lluis Gimeno-Fabra, Johannes Vlcek, Harry Nizard за помощь в проведении исследований и за плодотворное обсуждение результатов. Изучение ряда образцов Re-покрытий методом СЭМ проведены В.С. Даниловичем, за что авторы выражают ему свою искреннюю благодарность.

Работа выполнена при финансовой поддержке EADS Deutschland GmbH, Corporate Research Centre, Lab Germany, Munich, Germany.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Коровин Н.В., Ронжин М.П.* // Журн. физ. химии. 1961. **35**. С. 660.
- 2. Никитина А.А., Соминская З.М., Ваграмян А.Т. // Электрохимия. 1968. 4. С. 82.
- 3. Скляренко С.Я., Соминская З.М., Никитина А.А. / Сб. "Рений" М.: Изд-во АН СССР, 1961. С. 100.
- 4. *Соминская 3.М., Никитина А.А., Артамонова Е.К. и др. /* Сб. "Металлургия рения" М.: Наука, 1970. С. 101.
- 5. Gimpl M.L., Fuschillo N., McMaster A.D. // Trans. Metal. Soc. AIME236. 1966. P. 331 // Microelectronics Reliability. 1967. 6, N 3. P. 255.
- 6. Danielsson H., Kasemo B., Marklund I. // Thin Solid Films. 1972. 9, N 1. P. 121 132.
- 7. *Ul Haq A., Meyer O.* // Ibid. 1982. **94**, N 2. P. 119 132.
- 8. Kolmakov A.G., Geminov V.N., Vstovsky G.V. et al. // Surf. Coat. Technol. 1995. 72, N 1. P. 43 50.
- 9. Oh Seongshik, Hite Dustin A., Cicak K. et al. // Thin Solid Films. 2006. 496, N 2. P. 389 394.
- 10. Гинзбург А.А. // Журн. приклад. химии. 1961. 11. С. 2569.
- 11. *Гинзбург А.А.* // Труды института "Гипроникель". 1962. **12**. С. 35.
- 12. Hermann W.A., Wachter W.M., Kuhn F.E., Fisher R.W. // J. Organomet. Chem. 1998. 553. P. 443.

- 13. *Juarez L.F., Lafont M.-C., Senocq F., Vahlas C.* // Proc. Internat. Conf. Chem. Vapor Deposit. XVI and EUROCVD-14. Paris, France, 2003. The Electrochemical Society, Inc., Pennington, NJ, USA, Proceedings V. 2003-08 / Ed.: M.D. Allendorf, F. Maury, F. Teyssandier P. 538.
- 14. *Сыркин В.Г.*, Уэльский А.А., Акмеева Р.И., Романова Л.Н. // Журн. приклад. химии. 1972. **45**, № 10. С. 2261.
- 15. Сыркин В.Г. / CVD-метод: химическое парофазное осаждение М.: Наука, 2000.
- 16. *Баев А.К.*, Демьянчук В.В. и др. // Журн. физ. химии 1971. **45**. С. 1368.
- 17. *Gelfond N.V., Morozova N.B., Igumenov I.K. et al.* // Proc. XVth Internat. Eur. Conf. Chem. Vapor Deposit. (EUROCVD-15). Bochum, Germany, 2005. The Electrochemical Society, Inc., Pennington, NJ, USA, Proceedings V. 2005-09 / Ed.: A. Devi, R. Fischer, H. Parala, M.D. Allendorf, M.L. Hitchman. P. 1029.
- 18. Гельфонд Н.В., Бобренок О.Ф., Предтеченский М.Р. и др. // Неорган. матер. 2009. 45, № 6. С. 718.
- 19. Powder Diffraction File. Alphabetical Index. Inorganic Phases. Sets 1-46. / ICDD. USA. 1996. P. 927.
- 20. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. 29. P. 301.
- 21. Громилов С.А., Шубин Ю.В., Филатов Е.Ю. и др. // Журн. структур. химии. 2008. 49, № 1. С. 52.
- 22. Савицкий Е.М., Тылкина М.А., Поварова К.Б. Сплавы рения. М.: Наука, 1965.
- 23. Бадалян А.М., Белый В.И., Гельфонд Н.В. и др. // Журн. структур. химии. 2002. 43, № 4. С. 605.
- 24. *Igumenov I.K., Gelfond N.V., Morozova N.B., Nizard H.* // Chem. Vap. Deposition. 2007. **13**, N 11. P. 633.