УДК 621.483

Эффективность работы парокомпрессионных тепловых насосов на неазеотропных смесевых хладагентах^{*}

Н.Н. Мезенцева

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: mezn@itp.nsc.ru

Представлены результаты расчета циклов парокомпрессионных тепловых насосов на озонобезопасных смесевых хладагентах. В качестве рабочих тел рассмотрены неазеотропные бинарные хладагенты R32/R152a (30/70) и R32/R134a (30/70). Свойства неазеотропных хладагентов рассчитывались по методу аддитивности термодинамических функций и по методике Lemmon, Jacobsen. Определены отклонения в значениях теплофизических свойств, полученные по двум методикам. Показано, что при использовании неазеотропной смеси R32/R152a (30/70) коэффициенты преобразования энергии будут больше на 2,2–3,6 % по сравнению с результатами для R32/R134a (30/70) при разности температур между процессами кипения и конденсации от 28 до 53°C.

Ключевые слова: неазеотропные хладагенты, тепловой насос, коэффициент преобразования энергии.

введение

В последние годы в холодильной и теплонасосной технике предлагается большое количество альтернативных смесевых хладагентов для замены веществ, применение которых ограничивается международными соглашениями о защите окружающей среды. К хладагентам предъявляют следующие требования:

 – экологические — озонобезопасность, низкий потенциал глобального потепления, негорючесть и нетоксичность;

– термодинамические — большая объемная холодо- и теплопроизводительность, низкая температура кипения при атмосферном давлении, невысокое давление конденсации, хорошая теплопроводность, малые плотность и вязкость хладагента, максимальная приближенность к заменяемым хладагентам (для альтернативных озонобезопасных хладагентов) по давлениям, температурам, удельной объемной холодо- и теплопроизводительности и коэффициенту преобразования;

 – эксплуатационные — термохимическая стабильность, химическая совместимость с материалами и холодильными маслами, достаточная взаимная растворимость с маслом для обеспечения его циркуляции, технологичность применения,

^{*} Работа выполнена при частичной финансовой поддержке Ведущей научной школы РФ (грант № НШ-8888.2010.8). Материалы были представлены на конференции молодых ученых.

негорючесть и взрывобезопасность, наличие запаха и цвета, способность растворять воду, незначительная текучесть и т. д.;

 – экономические — наличие промышленного производства, доступные цены. Найти хладагенты, отвечающие перечисленным требованиям, практически невозможно, поэтому в каждом отдельном случае хладагент выбирается с учетом конкретных условий работы холодильной машины либо теплового насоса, и предпочтение отдается таким веществам, которые удовлетворяют принципиальным и определяющим требованиям.

ЗАДАЧИ ИССЛЕДОВАНИЯ

Первоначально была отобрана группа хладонов, экологические показатели которых удовлетворяют международным требованиям по защите окружающей среды. Выбор хладонов по экологическим характеристикам осуществлен по трем показателям: потенциал глобального потепления относительно диоксида углерода (GWP), потенциал глобального потепления относительно фтортрихлорметана (HGWP), потенциал истощения азонового слоя относительно фтортрихлорметана (ODP) [1–4]. Результаты этих работ позволили рассматривать в качестве рабочих тел закрытого контура парокомпрессионного теплового насоса неазеотропные смеси R32/R134a и R32/R152a [5]. Критические параметры данных хладагентов представлены в табл. 1.

До недавнего времени не было способа расчета термодинамических свойств данных неазеотропных смесей, для таких целей использовалась аддитивная модель. С появлением новых зарубежных работ, основанных на экспериментальных данных, таких как [6], становится возможным получение более точных термодинамических свойств. И, естественно, ранее полученные результаты нуждаются в переоценке. В теплонасосном цикле рабочее тело претерпевает ряд изменений, это сложный процесс, требующий более детального исследования. В свою очередь, смесь, в отличие от однокомпонентного хладагента, имеет определенную специфику. У неазеотропных смесей наблюдается неизотермичность фазовых переходов или температурный глайд. В настоящей работе расчет термодинамических параметров бинарных смесей R32/R134a и R32/R152a, необходимых для анализа реализуемого цикла, выполнен по двум методикам. В первом случае в качестве метода исследования использован метод математического моделирования, при котором свойства неазеотропной смеси определялись по свойству аддитивности термодинамических функций [7, 8], во втором случае термодинамические свойства, получившие экспериментальное подтверждение, рассчитаны по базе данных Reference Fluid Thermodynamic and Transport Properties REFPROP Version 8.0 по методике, изложенной в работе [6]. Полученные значения термодинамических свойств рассматриваемых бинарных смесей, выполненные по двум методикам, использовались для дальнейшего расчета различных теплонасосных циклов.

Таблица 1

Характеристика	R32/R134a (30/70)	R32/R152a (30/70)
Критическая температура, °С	91,55	102,89
Критическое давление, МПа	4,86	5,10
Критическая плотность, кг/м ³	456,94	374,54

Критические параметры смесевых неазеотропных хладагентов

Рис. 1. Термодинамический цикл парокомпрессионного теплового наноса на неазеотропных смесях хладагентов.

НПИ — низкопотенциальный источник теплоты, ОТ — отопление.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рассмотрен расчетный термодинамический цикл теплового насоса (рис. 1). Процесс кипения (5-I) происходит при переменной температуре. Затем сухой насыщенный пар поступает в пароперегреватель (I-I'). Далее перегретый пар подается в компрессор (I'-2'). Значение энталь-

Энтропия, кДж/(кг•К)

пии в точке 2' получено с учетом влияния индикаторного КПД компрессора. Конденсация паров хладагента в процессе (2–3) происходит при переменной температуре. В данном случае рассмотрен теплонасосный цикл для системы отопления. В этом цикле теплота переохлаждения (3–4) идет на перегрев паров хладагента перед входом в компрессор (1–1'). Перегрев паров хладагента после испарителя приводит к повышению конечной температуры сжатия (точка 2'), в результате возрастает разность удельных энтальпий для полезной теплоты и, как следствие, увеличивается коэффициент преобразования энергии в тепловом насосе.

В рассматриваемых неазеотропных смесях R32/R134a и R32/R152a присутствует хладагент R32. Особенность его применения заключается в высоких значениях давления (до 4,9 МПа при температуре 70 °C). Для поршневых компрессоров, используемых в теплонасосной и хладотехнике, максимальные рабочие давления достигают 2,8 МПа. Этот фактор учитывался при выборе состава неазеотропной смеси хладагентов. Были проведены расчеты смесей хладонов R32/R134a и R32/R152a с различной концентрацией компонентов. Определен состав смеси, для которой при достаточно высокой производительности (в сравнении с R12) рабочие давления находятся в допустимых пределах. Это возможно при содержании хладона R32 в смеси до 30 %. Так, для хладагента R32/R134a (30/70) давление конденсации при температуре 63 °C составляет 2,5 МПа, для смеси R32/R152a (30/70) — 2,1 МПа. На рис. 2 представлена зависимость давления от температуры смеси R32/R152a. При увеличении концентрации R32 в смеси производительность теплового насоса повышается. Но вместе с тем растет и давление, что приводит к необходимости внесения конструктивных изменений в компрессор и теплооб-

менники, а следовательно, к росту капитальных затрат. При содержании компонента R32 в смеси до 30 % конструкция теплового насоса претерпит незначительные изменения.

Проведен анализ основных характеристик смесевых неазеотропных хладагентов на линии насыщения, рассчитанных по методу аддитивности и по свойствам базы данных. В полученных результатах

Рис. 2. Зависимость давления от температуры смеси R32/R152a.

наблюдается отличие значений плотности в расчетах по двум методикам для хладагента R32/R152a на линии насыщения в паровой фазе. Отклонение находится в переделах 16 %. Результаты расчетов сведены в таблицы 2 и 3. Для хладагента R32/R152a на линии насыщения в жидкой фазе наблюдается существенное отличие (до 17 %) значений давления полученных по разным методикам. Отличие значений энтропии и энтальпии для рассматриваемых смесей хладагентов, полученных по двум методикам, находится в пределах 5,7 %.

При определении отклонений значений плотности, энтальпии и энтропии в области перегретого пара (табл. 4), полученных по двум методикам расчета, наблюдается незначительное расхождение результатов — до 1,7 %. Это связано с тем, что для всех компонентов были заданы одинаковые значения температуры и давления. При рассмотрении хладагентов в теплонасосном цикле при одинаковых температурах значения давлений имеют существенные отличия, особенно в области перегретого пара. Поэтому при расчете термодинамического цикла на неазеотропных хладагентах по методу аддитивности термодинамических функций изначально закладывается ошибка, и, как следствие, разница в расчетах существенно увеличивается.

Произведены расчеты температурного глайда (табл. 5) для смесевых неазеотропных хладагентов R32/R134a и R32/R152a на линии насыщения. Расчеты показывают, что для хладагента R32/R134a в интервале температур 10–50 °C значение глайда уменьшается от 6,3 до 5,1 с увеличением температуры. А для хладагента R32/R152a глайд уменьшается от 7,2 до 6,2 в том же температурном интервале. Наличие температурного глайда позволяет снизить работу сжатия в компрессоре. При изменении агрегатного состояния неазеотропной смеси температурный глайд увеличивает скрытую теплоту парообразования. В целом наблюдается положительное влияние температурного глайда на процессы преобразования энергии, протекающие в тепловом насосе.

1 4 0 0 1 11 14 4 4	Т	a	б	л	и	ц	a	2
---------------------	---	---	---	---	---	---	---	---

		X	ладагент	R32/R13	34a (30/7	Хладагент R32/R152a (30/70)					
Параметр			Тем	пература	ı, °C	Температура, °С					
		10	20	30	40	50	10	20	30	40	50
TΒ,	р', (1 методика)	1188,61	1152,12	1113,14	1070,60	1023,39	961,16	932,79	902,51	869,68	833,32
Плотнос кг/м ³	<i>р</i>',(2 методика)	1196,90	1160,20	1121,00	1078,40	1031,30	976,48	949,35	920,58	889,74	856,24
	Отличие, %	0,7	0,7	0,7	0,7	0,7	1,5	1,7	1,9	2,2	2,7
Энтальпия, кДЖ/кг	<i>h</i> ', (1 методика)	214,83	230,07	245,80	262,17	279,38	217,36	235,18	253,56	272,63	292,60
	<i>h</i> ′, (2 методика)	205,47	220,80	236,63	253,08	270,34	204,87	222,58	240,83	259,74	279,44
	Отличие, %	4,4	4,0	3,7	3,5	3,2	5,7	5,4	5,0	4,7	4,5
тропия, Іж/кг-К	<i>s</i> , (1 методика)	1,05	1,10	1,16	1,21	1,26	1,06	1,12	1,18	1,24	1,31
	<i>s</i> , (2 методика)	1,02	1,07	1,13	1,18	1,23	1,02	1,08	1,14	1,20	1,27
В Д	Отличие, %	2,9	2,7	2,6	2,5	2,4	3,8	3,6	3,4	3,2	3,1

Свойства смесевых неазеотропных хладагентов на линии насыщения (жидкая фаза)

Таблица З

		Х	ладагент	R32/R13	34a (30/7	0)	Хладагент R32/R152a (30/70)						
Параметр		Температура, °С						Температура, °С					
		10	20	30	40	50	10	20	30	40	50		
ΈĽ,	р', (1 методика)	23,22	31,07	42,71	57,04	75,96	17,23	23,39	31,38	41,78	55,51		
Плотнос кг/м ³	р', (2 методика)	22,94	31,43	42,46	56,78	75,562	14,48	19,76	26,57	35,29	46,50		
	Отличие, %	1,3	0,9	0,6	0,5	0,5	16,0	15,5	15,4	15,5	16,2		
Энтальпия, кДЖ/кг	<i>h</i> ', (1 методика)	438,02	441,90	445,09	447,41	448,54	514,64	519,13	522,89	525,71	527,28		
	<i>h</i> ', (2 методика)	438,75	442,95	446,54	449,36	451,16	516,18	521,19	525,59	529,22	531,89		
	Отличие, %	0,2	0,2	0,3	0,4	0,6	0,3	0,4	0,5	0,7	0,9		
нтропия, Дж/кг•К	<i>s</i> ′, (1 методика)	1,84	1,83	1,81	1,80	1,78	2,11	2,09	2,07	2,05	2,03		
	<i>s</i> ', (2 методика)	1,85	1,84	1,83	1,81	1,80	2,13	2,11	2,09	2,07	2,05		
(r) H	Отличие, %	0,6	0,6	0,6	0,7	0,7	0,9	0,9	0,9	1,0	1,0		

Свойства смесевых неазеотропных хладагентов на линии насыщения (паровая фаза)

Таблица 4

		Х	Сладагент	R32/R13	34a (30/7	Хладагент R32/R152a (30/70)					
Параметр			<u>Тем</u> Даг	<u>пература</u> вление, М	і <u>, °C</u> 1Па	<u>Температура, °С</u> Давление, МПа					
		$\frac{10}{1,3}$	$\frac{20}{1,7}$	$\frac{30}{2,2}$	$\frac{40}{2,8}$	<u>50</u> 3,4	$\frac{10}{1,3}$	$\frac{20}{1,7}$	<u>30</u> 2,2	$\frac{40}{2,8}$	$\frac{50}{3,4}$
Tb,	р. (1 методика)	1191,65	1156,79	1120,19	1081,46	1038,99	963,30	936,01	907,33	876,90	843,34
лотнос кг/м ³	<i>р</i> , (2 методика)	1177,40	1141,70	1104,20	1064,60	1021,60	959,88	933,37	905,82	877,10	846,44
Ш	Отличие, %	1,2	1,3	1,4	1,6	1,7	0,4	0,3	0,2	0	0,4
Энтальпия, кДЖ/кг	<i>h</i> , (1 методика)	214,93	230,12	245,75	261,89	278,76	217,55	235,34	253,63	272,50	292,13
	<i>h</i> _. (2 методика)	214,87	230,02	245,57	261,56	278,11	217,41	235,07	253,17	271,74	290,84
	Отличие, %	0	0	0,1	0,1	0,2	0,1	0,1	0,2	0,3	0,4
я, Х	<i>s</i> , (1 методика)	1,05	1,10	1,15	1,20	1,26	1,06	1,12	1,18	1,24	1,30
нтропи Дж/кг	<i>s</i> , (2 методика)	1,05	1,10	1,15	1,20	1,25	1,06	1,12	1,18	1,24	1,29
нС Цл	Отличие, %	0	0	0	0	0,2	0	0,1	0,1	0,2	0,3

Свойства смесевых неазеотропных хладагентов в области перегретого пара

Таблица 5

		Х	ладагент	R32/R13	34a (30/7	Хладагент R32/R152a (30/70)						
Пар	аметр		Давл	тение <i>P</i> ,	МПа	Давление Р, МПа						
		0,593	0,813	1,098	1,431	1,849	0,493	0,676	0,907	1,194	1,544	
атура °C	жидкая фаза	3,7	14,0	24,2	34,6	44,9	2,8	13,0	23,2	33,5	43.8	
Темпер T, °	паровая фаза	10,0	20,0	30,0	40,0	50,0	10,0	20,0	30,0	40,0	50.0	
Глайд, °С		6,3	6,0	5,8	5,4	5,1	7,2	7,0	6,8	6,5	6,2	

Определение температурного глайда для смесевых неазеотропных хладагентов на линии насыщения

В качестве критерия эффективности термодинамического цикла принят коэффициент преобразования энергии:

$$\varphi = q_K / A l_{\Pi} \,, \tag{1}$$

 $Al_{\rm I}$ — действительная работа, затраченная на сжатие паров хладагента в компрессоре, кДж/кг, $q_{\rm K}$ — тепловая нагрузка потребителей, кДж/кг.

Расчет работы сжатия, удельной производительности, энтальпий в контрольных точках цикла, коэффициента преобразования проводятся по нижеописанным зависимостям [9].

Теоретическая работа компрессора (кДж/кг) определяется разностью энтальпий в процессе сжатия при постоянной энтропии:

$$Al = h_c - h_l', \tag{2}$$

Значение энтальпии в точке *C* (см. рис. 1) определяется по энтропии в точке *l'* при давлении конденсаций.

Коэффициент подачи компрессора:

$$\lambda = \lambda_C \cdot \lambda_{\Pi P} \cdot \lambda_W \cdot \lambda_{\Pi \Pi} \cdot \lambda_{\Pi}, \tag{3}$$

где λ_C , $\lambda_{ДP}$, λ_W , $\lambda_{\Pi\Pi}$, λ_{Π} — объемный коэффициент, коэффициент дросселирования, коэффициент подогрева, коэффициент плотности, коэффициент прочих потерь подачи компрессора соответственно [9].

Индикаторный КПД [10]:

$$\eta_i = \lambda_W + b \cdot t_0, \tag{4}$$

где t_0 — температура кипения, °С, b — опытный коэффициент для хладоновых машин.

Коэффициент подогрева компрессора:

$$\lambda_W = T_0 / (a \cdot T_K + c \cdot \theta), \tag{5}$$

здесь *а*, *с* — постоянные, зависящие от величины компрессора и способа его охлаждения, θ — температура перегрева, °К.

Числовые значения энтальпий определяются по линии насыщения в точках *1*, *2* (паровая фаза) и в точке *3* (жидкая фаза) для каждой смеси исследуемых хладагентов (см. рис. 1). Значение энтальпии в точке *1*' определяется по заданной температуре перегрева и давлению, соответствующему температуре насыщения.

Действительная энтальпия паров хладона после компрессора, кДж/кг:

$$h_{2}'=h_{1}'+Al/\eta_{i}, \qquad (6)$$

энтальпия в точке 4, кДж/кг:

$$h_4 = h_3 - (h_1' - h_1), \tag{7}$$

удельная производительность в цикле, кДж/кг:

$$q_{\rm K} = h_2' - h_4, \tag{8}$$

Таблица б

Параметр	Первая методика						Вторая методика					
Температура кипения <i>T</i> ₀ , °C	10	15	20	25	30	10	15	20	25	30		
Температура конденсации <i>T</i> _K , °C			63			63						
	-	Хладагент R32/R134a (30/70)										
Коэффициент подачи, λ	0,593	0,620	0,645	0,668	0,690	0,591	0,618	0,644	0,667	0,689		
Индикаторный КПД, η_i	0,732	0,756	0,781	0,805	0,830	0,732	0,756	0,781	0,805	0,830		
Действитель- ная работа <i>Al_Д</i> , кДж/кг	53,63	45,74	38,64	32,22	26,43	55,73	47,63	40,29	33,65	27,69		
Тепловая нагрузка $q_{\rm K}$, кДж/кг	202,05	196,64	191,93	187,78	184,16	209,53	204,05	199,21	194,99	191,31		
Коэффициент преобразова- ния, <i>ф</i>	3,80	4,34	5,02	5,90	7,06	3,76	4,28	4,94	5,79	6,91		
			Хлада	агент R32	2/R152a ((30/70)						
Коэффициент подачи, λ	0,593	0,621	0,646	0,668	0,690	0,590	0,618	0,644	0,667	0,689		
Индикаторный КПД, η_i	0,732	0,756	0,781	0,805	0,830	0,732	0,756	0,781	0,805	0,830		
Действитель- ная работа <i>Al_Д</i> , кДж/кг	71,99	61,45	51,93	43,34	35,58	75,02	64,16	54,31	45,36	37,31		
Тепловая на- грузка q _К , кДж/кг	282,77	275,09	268,36	262,41	257,17	290,15	282,34	275,43	269,31	263,31		
Коэффициент преобразова- ния, <i>ф</i>	3,94	4,49	5,18	6,07	7,24	3,87	4,40	5,07	5,94	7,07		

Результаты расчета термодинамических циклов на неазеотропных хладагентах

действительная работа компрессора, кДж/кг:

$$Al_{\Pi} = h_2' - h_1'. \tag{9}$$

Общей термодинамической закономерностью для всех рабочих тел является сокращение работы сжатия и увеличение коэффициента преобразования энергии в теплонасосном цикле при уменьшении перепада температур между процессами конденсации и кипения.

Расчеты для неазеотропных смесевых хладагентов по формулам (1–9) сведены в табл. 6. На рис. 3 представлена зависимость коэффициента преобразования энергии в тепловом насосе от перепада температур между процессами кипения и конденсации, полученного по двум методикам расчета. Расчеты эффективности термодинамического цикла показывают, что коэффициенты преобразования энергии для неазеотропных смесей, рассчитанные по методу аддитивности при различных ΔT , имеют большее значение на 1,1–2,5 % по сравнению с результатами, полученными по методике Lemmon, Jacobsen. Для одинаковых ΔT , как внутренней функции теплового насоса, неазеотропная смесь R32/R152a позволяет иметь коэффициент преобразования энергии больше на 2,2–3,6 % по сравнению с R32/R134a.

Рис. 3. Зависимость коэффициента преобразования энергии φ от разности температур конденсации и кипения ΔT для неазеотропных смесей хладагентов.

Первая методика: *I* — R32/R152a (30/70), *2* — R32/R134a (30/70), вторая: *3* — R32/152a (30/70), *4* — R32/R134a (30/70).

выводы

Проведены расчеты циклов современных тепловых насосов на озонобезопасных смесях хладагентов R32/R134a и R32/R152a с концентрацией компонента R32 в исследуемых смесях 30 %. Термо-

динамические свойства смесей определялись по методу аддитивности термодинамических функций и по методике Lemmon, Jacobsen. Отклонения значений энтальпии и энтропии, полученные по двум методам расчета на линии насыщения, в жидкой и паровой фазе не превышают 5,7 %. Отклонения значений энтальпии, энтропии и плотности в области перегретого пара находятся в пределах 1,7 %. Хорошее соответствие результатов в области перегретого пара связано с тем, что одновременно были заданы температура и давление. При перегреве паров хладагента при постоянном давлении и переменной температуре картина меняется, и отклонения значений энтропии и энтальпии значительно увеличиваются. При другой концентрации компонента R32 в смесях хладагентов R32/R134a и R32/R152a результаты расчетов будут отличаться.

Расчет эффективности термодинамического цикла показывает, что коэффициенты преобразования энергии на неазеотропных смесях хладагентов, рассчитанные по методу аддитивности, на 2,5 % выше, чем результаты, полученные по методике Lemmon, Jacobsen. При использовании неазеотропной смеси R32/R152a коэффициенты преобразования энергии будут на 2,2–3,6 % больше по сравнению с результатами для R32/R134a при разности температур кипения и конденсации от 28 до 53 °C.

СПИСОК ЛИТЕРАТУРЫ

- **1. Мухин В.А.**, Мезенцева Н.Н. Озонобезопасные рабочие тела для тепловых насосов. Тр. VIII Всерос. науч.-техн. конф. "Энергетика: экология, надежность, безопасн.". Томск. 2002. С. 115–117.
- **2. Мезенцева Н.Н.** Рабочие тела для тепловых насосов. Тез. докл. VII Всерос. шк.-конф. молод. уч. "Актуальные вопросы теплофизики и физич. гидрогазодинамики". Новосибирск. 2002. С. 200–201.
- Мезенцева Н.Н. Рабочие тела для компрессионных тепловых насосов. Тр. XVI Шк.-сем. молод. уч. и спец. под рук. акад. РАН А.И. Леонтьева "Проблемы газодинамики тепломассообмена в энергетических установках". Санкт-Петербург. М.: МЭИ. 2007. Т. 2. С. 292–294.
- Мезенцева Н.Н. Хладагенты для компрессионных тепловых насосов. Тез. докл. Всерос. шк.-сем. мол. уч. «Физика неравновес. процессов в энергетике и наноиндуст.». Новосибирск. 2007. С. 89–90.
- 5. Мезенцева Н.Н., Огуречников Л.А. Неазеотропные смеси в тепловых насосах // Альтернативная энергетика и экология. 2008. № 7. С. 110–115.
- 6. Lemmon E.W., Jacobsen R.T. Equations of state for mixture of R32, R125, R134a, R143a and R152a // J. Phys. Chem. Ref. Data. 2004. Vol. 33, № 2. P. 593-620.
- Холодильная техника. Кондиционирование воздуха. Свойства веществ: справ./ Под ред. С.Н. Богданова. Изд. 4-е., перераб. и доп. СПб.:СПбГАХПТ, 1999. 320 с.
- 8. Б.Н. Максимов, В.Г. Барабанов, И.Л. Серушкин и др. Промышленные фторорганические продукты: справ. / Изд. 2-е, перераб. и доп. СПб: Химия, 1996. 544 с.
- 9. А.В. Быков, Э.М. Бежанишвили, И.М. Калнинь и др. Холодильные компрессоры / Под ред. А.В. Быкова. Изд. 2-е, перераб. и доп. М.: Колос, 1992. 304 с.
- 10. Н.Н. Кошкин, И.А. Сакун, Е.М. Бамбушек и др. Холодильные машины / Под общ. ред. И.А. Сакуна. Л.: Машиностроение, 1985. 510 с.

Статья поступила в редакцию 27 декабря 2010 г.