УДК 539.43

СВЯЗЬ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ ПОВЕРХНОСТИ РАЗРУШЕНИЯ С КОМПЛЕКСОМ СТАНДАРТНЫХ ХАРАКТЕРИСТИК МАТЕРИАЛА НА РАСТЯЖЕНИЕ

Г. Г. Савенков, Б. К. Барахтин*

Научно-исследовательский институт "Поиск", 188162 Мурино Ленинградской области * Санкт-Петербургский государственный морской технический университет, 190008 Санкт-Петербург E-mail: sav-georgij@yandex.ru

Разработана модель определения фрактальной размерности контура поверхности разрушения цилиндрического образца со стандартными характеристиками на растяжение. Найдены аналитические зависимости, связывающие фрактальную размерность со стандартными характеристиками материала на растяжение и с коэффициентом поперечных деформаций. Проведена проверка качественного и количественного соответствия полученных расчетных зависимостей экспериментальным данным. Установлено, что расчетные и экспериментальные значения фрактальной размерности удовлетворительно согласуются.

Ключевые слова: фрактальная размерность, относительное удлинение, сужение, предел прочности, поперечная деформация.

Введение. Во фрактальной механике устанавливается соответствие статистического самоподобия рельефа поверхности разрушения в некотором промежуточном интервале масштабов с механическими свойствами твердого тела. Данное положение получило экспериментальное подтверждение для многих конструкционных металлических материалов. Количественной характеристикой любого фрактального объекта является его размерность D_f : чем больше фрактальная размерность измеряемого параметра, тем больше истинная длина линии, площадь поверхности, объем тела. В линейной механике разрушения установлена связь между величиной фрактальной размерности длины контура трещины lи критическим значением интенсивности напряжений K_{Ic} [1]:

$$K_{\mathrm{Ic}}^f \sim K_{\mathrm{Ic}} \Delta l^{0,5(1-D_f)}.$$
(1)

Здесь $K_{\rm Lc}^f$ — критическое значение коэффициента интенсивности напряжений для фрактальной трещины (характеризует сопротивление материала росту трещины в масштабе Δl); $K_{\rm Lc}$ — критический коэффициент интенсивности напряжений для трещины в макромасштабе (трещиностойкость материала [2]); D_f — фрактальная размерность длины контура трещины; Δl — выбранный масштаб измерения. Соотношение (1) следует из эмпирической зависимости Ричардсона для истинной длины профиля трещины l_t и масштаба измерения η [3]:

$$l_t = L_0 \eta^{1-D} \tag{2}$$

 $(L_0 -$ постоянная; D -нецелый показатель, зависящий от η).

В работе [4] показано, что величина D может рассматриваться как фрактальная размерность D_f профиля трещины, а зависимость (2) — записываться в виде

$$l_t \approx \Delta l^{1-D_f}.$$
(3)

Поскольку

$$K_{\rm Ic} = c\sigma \sqrt{l} \tag{4}$$

(c -коэффициент, зависящий от формы образца и условий испытаний; σ — разрушающее напряжение образца с трещиной, полудлина которой равна l), из (3), (4) следует соотношение

$$K_{\rm Ic}^f = K_{\rm Ic} (l_t/l)^{0.5} \sim K_{\rm Ic} \Delta l^{0.5(1-D_f)},\tag{5}$$

соответствующее соотношению (1).

Очевидно, что стандартные характеристики материала на растяжение (предел прочности материала $\sigma_{\rm B}$, относительное сужение ψ , относительное удлинение δ) также зависят от фрактальной размерности контура поверхности разрушения разрываемых образцов, поскольку они связаны с $K_{\rm Ic}$ различными корреляционными зависимостями [5].

Целью настоящей работы является установление связи между фрактальной размерностью D_f профиля поверхности разрушения цилиндрического образца и характеристиками $\sigma_{\rm B}$, δ , ψ как при квазистатических, так и при динамических видах нагружения.

1. Расчетно-теоретическая модель определения фрактальной размерности контура поверхности разрушения цилиндрического образца. При разработке метода определения D_f приняты следующие допущения:

1) поверхность разрушения разорванного цилиндрического образца является фрактальной;

2) для квазистатических испытаний используются стандартные (десятикратные) цилиндрические образцы. В соответствии с требованиями ГОСТ 1497-83 размеры этих образцов удовлетворяют соотношению

$$l_0/\sqrt{F_0} = 11,3,$$

где l_0 — начальная расчетная длина образца; F_0 — начальная площадь поперечного сечения образца.

Второе допущение обусловлено тем, что условное остаточное удлинение δ_{10} , определяемое в процессе испытаний, должно быть в наилучшей степени приближено к равномерному удлинению $\delta_{\rm B}$, соответствующему максимальному усилию на диаграмме растяжения. В этом случае справедливы соотношения для истинной относительной деформации e и истинного сужения $\psi_{\rm B}$ [6]

$$e = \ln \left(l_{cr}/l_0 \right) = \ln \left(1 + \delta_{\mathrm{B}} \right) \approx \ln \left(1 + \delta_{10} \right),$$

$$\psi_{10} \approx \psi_{\mathrm{B}} = -\ln \left(F_0/F_{cr} \right) = -e,$$

где l_{cr} — конечная длина образца после его растяжения; F_{cr} — конечная площадь поперечного сечения образца после его разрыва. Далее нижние индексы для δ и ψ опущены.

Рассмотрим геометрические соотношения для растянутого образца. В соответствии с [7] между l_0 , F_0 , l_{cr} , F_{cr} существует следующая зависимость:

$$F_0/F_{cr} = (l_{cr}/l_0)^{2\nu_{cr}} \tag{6}$$

 $(\nu_{cr}$ — коэффициент поперечной деформации в момент разрыва образца). Переходя к начальному r_0 и конечному r_{cr} радиусам поперечного сечения рабочей части образца, из (6) получаем

$$r_0/r_{cr} = (l_{cr}/l_0)^{\nu_{cr}}.$$
(7)

Так как по определению относительное сужение образца ψ в момент его разрыва равно $\psi = (F_0 - F_{cr})/F_0$, то соотношение

$$r_{cr} = r_0 (1 - \psi)^{0.5} \tag{8}$$

определяет радиус образца после разрыва без учета фрактального характера контура поверхности разрушения. В случае фрактального контура поверхности конечный радиус r_{cr}^{f} определяется на основе соотношения [8]

$$r_{cr}^{f} = \Delta r (r_{cr} / \Delta r)^{D_{f}} = \Delta r z^{D_{f}} (1 - \psi)^{0.5D_{f}}, \qquad (9)$$

где Δr — используемый масштаб измерения; $z = r_0/\Delta r$ — параметр подобия.

Подставляя (9) в (7) и разрешая получаемое уравнение относительно D_f (с учетом того, что $r_0 = \Delta r z$), имеем

$$D_f = \frac{1 - \nu_{cr} \ln (1 + \delta) / \ln z}{1 + 0.5 \ln (1 - \psi) / \ln z}.$$
(10)

Таким образом, из (10) следует, что фрактальная размерность контура разрушенной поверхности вдоль диаметра образца зависит от трех характеристик материала δ , ψ , ν_{cr} , а также от выбранного масштаба измерения. Отметим, что, хотя полученное выше соотношение (10) можно использовать лишь при определенных ограничениях, поскольку справедливо выражение (7) для фрактальной среды, проверка выражения (10), проведенная в п. **2**, подтвердила его удовлетворительное соответствие результатам экспериментов.

Рассмотрим влияние на фрактальную размерность таких характеристик материала, как пластичность ψ , деформационная способность δ , коэффициент поперечной деформации ν_{cr} . Известно, что при $\delta \approx \psi$ разрушение образца является хрупким и происходит без образования шейки [6]. Если при хрупком разрушении $\nu_{cr} \to 0, \psi \to 0$, то $D_f \to 1$. В случае образования шейки при $\psi \to 1, \nu_{cr} \to 0, 5$, учитывая, что $\ln(1+\delta) = -\ln(1-\psi)$, имеем $D_f \to 1$. Фрактальная размерность D_f как размерность Хаусдорфа — Безиковича для линии [4] должна находиться в диапазоне $1 \leq D_f < 2$. Найдем условие, при котором $D_f \to 2$. Подставим значение $D_f = 2$ в (10):

$$\frac{1 - \nu_{cr} \ln (1 + \delta) / \ln z}{1 + 0.5 \ln (1 - \psi) / \ln z} \to 2.$$

Преобразуя данное выражение, получаем

$$-\nu_{cr} \,\frac{\ln\left(1+\delta\right)}{\ln z} \to 1 + \frac{\ln\left(1-\psi\right)}{\ln z}.\tag{11}$$

Поскольку левая часть выражения (11), состоящая из произведения положительной величины и частного от деления также двух положительных величин, имеет знак "минус", это выражение справедливо только при выполнении условия $-2 < \ln(1-\psi)/\ln z < -1$ или

$$-1.0 < \frac{\ln z}{\ln \left(1 - \psi\right)} < -0.5,\tag{12}$$

т. е. при фиксированных ψ и r_0 его выполнение зависит от выбора Δr . Анализ двойного неравенства (12) показывает, что подобрать необходимый масштаб измерения можно только при $\psi \to 1$, но это противоречит условию $D_f \to 1$ при $\psi \to 1$. Таким образом, D_f никогда не будет стремиться к двум.

Влияние ν_{cr} на D_f неоднозначно. Из (10) следует, что в случае увеличения ν_{cr} фрактальная размерность должна уменьшаться. Однако увеличение ν_{cr} всегда означает переход материала в более пластичное состояние, т. е. увеличение характеристики пластичности материала ψ . В этом случае кривая зависимости $D_f = \varphi(\nu_{cr})$ должна иметь точку экстремума (см. ниже), и можно сделать вывод о том, что фрактальная размерность, а значит, и фрактальные свойства поверхности разрушения определяются поперечными деформациями. Поскольку данных о поведении коэффициента поперечных деформаций немного, рассмотрим изменение этого параметра в упругой области (в этом случае он называется коэффициентом Пуассона ν). В работе [9] сделан вывод, что более мягкие (т. е. более пластичные, менее хрупкие) материалы имеют больший коэффициент Пуассона по сравнению с другими материалами того же класса.

В работе [10] (несмотря на то что в ней обсуждается коэффициент Пуассона, приведены данные и получены результаты для ν_{cr}) найдена экспериментальная зависимость

$$\nu_{cr} = 0.25 + 0.3\delta^{1.5}.\tag{13}$$

С помощью (13) можно найти приближенное значение относительного удлинения, при котором D_f имеет максимальное значение. Для этого подставим (13) в (10), в результате чего получим

$$D_f = \frac{1 - (0.25 + 0.3\delta^{1.5})\ln(1+\delta)/\ln z}{1 - 0.5\ln(1+\delta)/\ln z}.$$
(14)

С помощью первой производной выражения (14), приравнивая ее числитель к нулю, получаем алгебраическое уравнение (вследствие громоздкости оно не приводится), которое можно решать численными методами. Искомое значение δ будет определяться с помощью значения $\ln z$. Отметим, что для экспериментов, описываемых в настоящей работе, $\ln z = 6,435$, и в этом случае значение δ , при котором значение D_f максимально, равно 0,4.

Установим взаимосвязь между пределом прочности (временным сопротивлением) $\sigma_{\rm B}$ и фрактальной размерностью. Как известно, предел прочности — условное напряжение, соответствующее максимальному значению растягивающей силы $P_{\rm max}$ и вычисляемое по формуле

$$\sigma_{\rm B} = P_{\rm max}/F_0.$$

Между условным $\sigma_{\rm B}$ и истинным $S_{\rm B}$ пределами прочности существует следующая зависимость:

$$S_{\rm B} = \sigma_{\rm B}(1+\delta) = P_{\rm max}/F_{cr}.$$
(15)

В данном случае истинный предел прочности $S_{\rm B}$ можно считать приближенно равным истинному сопротивлению разрыву S_t . Однако и истинный предел прочности, вычисляемый по формуле (15), характеризует для образца только средние напряжения в его сечении, площадь которого равна F_{cr} . Настоящий истинный предел прочности $S_{\rm B}t$ превышает $S_{\rm B}$ вследствие равенства

$$S_{\mathsf{B}}F_{cr} = S_{\mathsf{B}t}(F_{cr} - F_{crd}),\tag{16}$$

где F_{crd} — суммарная площадь всех микро- и мезодефектов в критическом сечении образца. Примем, что F_{crd} определяется разностью значений площади критического сечения с учетом фрактальности поверхности разрушения F_{cr}^{f} и площади гладкого сечения F_{cr} , т. е. $F_{crd} = F_{cr}^{f} - F_{cr}$. Тогда на основании (15), (16) с учетом фрактального характера поверхности разрушения разорванного образца получаем следующее соотношение для $S_{\rm Bt}$:

$$S_{\rm Bt} = \sigma_{\rm B} (1+\delta) / (2 - F_{cr}^f / F_{cr}).$$
(17)

Подставляя в (17) соотношения (8), (9) и разрешая полученное выражение относительно D_f , получаем

$$D_f = 1 + \frac{\ln\left(2 - \sigma_{\rm B}(1+\delta)/S_{\rm Bt}\right)}{2\ln z + \ln\left(1 - \psi\right)}.$$
(18)

Можно полагать, что истинный предел прочности образца $S_{\rm Bt}$ с учетом фрактальности поверхности разрушения стремится к теоретической прочности реального металла на отрыв. По аналогии с теоретической прочностью реального металла совершенного кристалла, определенной в работе [8], теоретическую прочность реального металла оценим с помощью зависимости

$$S_{\rm Bt} \approx (\alpha W_c E/2)^{0.5},\tag{19}$$

где W_c — поглощенная в процессе пластической деформации удельная энергия; $\alpha < 1$ — константа, определяемая в эксперименте.

С учетом (19) соотношение (18) принимает вид

$$D_f = 1 + \frac{\ln\left(2 - \sigma_{\rm B}(1+\delta)/A\right)}{2\ln z + \ln\left(1 - \psi\right)},\tag{20}$$

где $A = (\alpha W_c E/2)^{0,5}$. Из (20) следует, что при прочих равных условиях D_f увеличивается при уменьшении $\sigma_{\rm B}$. Данный вывод хорошо согласуется с физикой процесса, поскольку очевидно, что чем меньше $\sigma_{\rm B}$ (соответственно δ и ψ при этом возрастают), тем материал более пластичен, а значит, разрушение образца становится вязким и происходит за счет образования и слияния микро- и мезопор. В этом случае фрактальная размерность резко увеличивается [11].

2. Методики и результаты экспериментальных исследований. Проведены квазистатические испытания десятикратных образцов из стали марок 30XH4M и 28X3CHMBФA ($d_0 = 5$ мм) с использованием универсальной машины Instron 4202 и динамические испытания образцов из тех же материалов ($d_0 = 5$ мм, $l_0 = 10$ мм) при скорости деформации $\dot{\varepsilon} = 5 \cdot 10^3$ с⁻¹ с помощью составного стержня Гопкинсона.

После испытаний образцы с изломами были разрезаны вдоль оси, так чтобы аналитические сечения (поверхности образцов, которые шлифуются, полируются и подвергаются химическому травлению для выявления структуры или дефектности образцов) были перпендикулярны изломам (рис. 1). В дальнейшем участки профилей поверхности разрушения, соответствующие очагам разрушения образцов (вблизи оси образца) (см. рис. $1, \delta, e$), рассматривались с помощью светового микроскопа "Аксиоверт" (см. рис. 1, a) и электронного растрового микроскопа "Камскан" при увеличениях $10 \div 3000$. Точность измерений зависела от выбранного масштаба и оценивалась как половина цены деления масштабной единицы измерения.

В итоге с использованием результатов измерений длины L профиля излома с вариацией масштаба измерений x не менее трех порядков построены зависимости $\ln L - \ln x$ (рис. 2). Поскольку в массиве данных коэффициент корреляции составлял не менее 0,89, искомые зависимости были сглажены с помощью метода наименьших квадратов, а величина фрактальной размерности вычислена с помощью метода вертикальных сечений [12] по соотношению $D_f = \ln L / \ln x$. Результаты испытаний приведены в таблице (D_f^p , D_f^s — расчетное и экспериментальное значения фрактальной размерности при статических испытаниях). Кроме экспериментально полученных значений фрактальной размерности приведены ее расчетные значения D_f^p , (D_f^p)_A, определенные по формуле (10). Однако расчетные и экспериментальные значения фрактальной размерности мало отличаются от единицы. Этот факт свидетельствует о практической значимости D_f и объективности утверждения о том, что трещина является самоподобным объектом (в случае вязких изломов последнее утверждение ставится под сомнение в [13]).

Прежде всего, отметим, что полученные значения фрактальной размерности близки к так называемым универсальным значениям D_f [14–16], равным 1,25 для вязкой трещины и 1,13 для хрупкой. Тем не менее фрактальный характер трещин ставится под сомнение только в указанной выше работе [13].

Рис. 1. Разрушение образцов из стали марки 28Х3СНМВФА: *а* — профиль поверхности разрушения; *б*, *в* — структура очага разрушения образца (*б* — после динамических испытаний, *в* — после квазистатических испытаний)

Рис. 2. Зависимость длины профиля излома L от масштаба измерения x в логарифмических координатах для образцов из стали марок 30ХН4М (1, 2) и 28Х3СНМВФА (3, 4): 1, 3 — после статических испытаний; 2, 4 — после динамических испытаний

Марка стали	Результаты квазистатических испытаний					Результаты динамических испытаний				
	$σ_{\rm B}$, ΜΠα	δ_{10}	ψ_{10}	D_f^{p}	$D_f^{\mathfrak{s}}$	$σ_{\rm B}^{\rm д}$, ΜΠα	δд	$\psi_{\mathtt{Д}}$	$(D_f^{\mathrm{p}})_{\mathrm{p}}$	$(D_f^{\mathfrak{I}})_{\mathtt{Д}}$
30XH4M	1300	0,2	0,22	1,010	1,02	1350	0,42	0,46	1,030	1,03
28Х3СНМВФА	750	0,2	0,32	1,023	1,07	1220	0,26	0,54	1,057	1,08

Механические характеристики испытанных образцов и их фрактальная размерность

Рассмотрим влияние фрактальности трещин и фрактальной размерности на такую характеристику материала, как критический коэффициент интенсивности материала K_{Ic} . Для этого с использованием формулы (5) оценим, как меняется K_{Ic} для стали марок 30ХН4М и 28Х3СНМВФА в масштабе $\Delta l = 5$ мкм. Стандартные значения K_{Ic} для стали марок зи этих марок, механические характеристики которых приведены в таблице, равны 34 и 21 МПа · м^{0,5} соответственно. Для l = 2,5 мм и указанного масштаба измерения значение K_{Ic}^{f} превышает K_{Ic} в 22,6 раза для стали марки 30ХН4М и в 30,6 раза для стали марки 28Х3СНМВФА, т. е. при таком масштабе эти характеристики практические равны.

Таким образом, анализ полученных результатов подтверждает удовлетворительное соответствие экспериментальных и расчетных значений фрактальной размерности. Это соответствие является наилучшим при динамических испытаниях. Можно отметить, что соответствие расчетных и экспериментальных данных для образцов из менее пластичной стали марки 30ХН4М лучше соответствия для образцов из стали марки 28Х3СНМВФА. Качественно подтверждается, что при уменьшении предела прочности фрактальная размерность увеличивается: значения D_f для высокопрочной стали марки 30ХН4М меньше значений D_f для более пластичной и менее прочной стали марки 28Х3СНМВФА.

Заключение. В работе получены аналитические зависимости между фрактальной размерностью поверхностей разрушения и стандартными механическими характеристиками материалов. Эти соотношения проверены экспериментально при испытаниях образцов из стали марок 28Х3СНМВФА и 30ХН4М в условиях динамического и квазистатического растяжения. Установлено, что результаты расчетов величин размерностей поверхностей разрушения удовлетворительно согласуются с экспериментальными данными.

ЛИТЕРАТУРА

- Mu Z. Q., Lung C. W. Studies on the fractal dimension and fracture toughness of steel // J. Appl. Phys. 1988. V. 21, N 5. P. 848–850.
- 2. Качанов Л. М. Основы механики разрушения. М.: Наука, 1974.
- Dauskardt R. H., Haubensak F., Ritchie R. O. On the interpretation of the fractal character of fracture surfaces // Acta Metal. Mater. 1990. V. 38, N 2. P. 143–150.
- 4. Mandelbrot B. B. The fractal geometry of nature. N. Y.: Freeman, 1983.
- 5. Романив О. Н. Вязкость разрушения конструкционных сталей. М.: Металлургия, 1979.
- 6. Шапошников Н. А. Механические испытания металлов. М.; Л.: Машгиз, 1951.
- Ишлинский А. Ю. Эйлерово описание деформирования одной изотропной среды // Прикладные задачи механики. Кн. 1. Механика вязкоупругих и не вполне упругих тел. М.: Наука, 1986. С. 333–336.
- Иванова В. С. Синергетика: Прочность и разрушение металлических материалов. М.: Наука, 1992.
- Кузьменко В. А. Закономерности изменения коэффициента поперечных деформаций // Пробл. прочности. 1971. № 8. С. 48–53.

- Черкасов И. И. О связи коэффициента Пуассона с пластическими свойствами материала // Журн. техн. физики. 1952. Т. 22, вып. 11. С. 1834–1837.
- 11. Баланкин А. С., Иванова В. С., Бреусов В. П. Коллективные эффекты в кинетике разрушения и спонтанное изменение фрактальной размерности диссипативной структуры при вязкохрупком переходе // Докл. РАН. 1992. Т. 322, № 6. С. 1080–1085.
- 12. **Иванова В. С.** Синергетика и фракталы в материаловедении / В. С. Иванова, А. С. Баланкин, И. Ж. Бунин, А. А. Оксогоев. М.: Наука, 1994.
- 13. Кудря А. В., Соколовская Э. А., Арсенкин А. М. Эффективность применения средств наблюдения различной размерности для анализа морфологии вязкого излома улучшаемых сталей // Деформация и разрушение материалов. 2010. № 1. С. 38–44.
- Malay K. J., Hansen A., Hinrichen E. L. Experimental measurements of the roughness of brittle cracks // Phys. Rev. Lett. 1992. V. 68, N 2. P. 213–215.
- 15. Milman V. Y., Stelmashenko N. A., Blumenfeld R. Fracture surfaces: A critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements // Progr. Material Sci. 1994. V. 38. P. 425–474.
- 16. Bouchaud E. Scaling properties of cracks // J. Phys. Condens. Matter. 1997. V. 9. P. 4319–4344.

Поступила в редакцию 29/III 2010 г., в окончательном варианте — 29/XI 2010 г.