2007. Том 48, № 5

Сентябрь – октябрь

C. 947 – 956

УДК 546.562+547.442+541.66

СТРУКТУРА И ТЕРМИЧЕСКИЕ СВОЙСТВА ЛЕТУЧИХ КОМПЛЕКСОВ МЕДИ(II) С β-ДИИМИННЫМИ ПРОИЗВОДНЫМИ АЦЕТИЛАЦЕТОНА И СТРОЕНИЕ КРИСТАЛЛОВ 2-(МЕТИЛАМИНО)-4-(МЕТИЛИМИНО)-2-ПЕНТЕНА

© 2007 Н.Б. Морозова*, П.А. Стабников, И.А. Байдина, П.П. Семянников, С.В. Трубин, И.К. Игуменов

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 20 июля 2006 г.

С доработки — 29 мая 2007 г.

Синтезированы хелаты меди(II) с β -дииминными производными ацетилацетона общей формулы Cu(R¹C(NR²)CHC(NR²)R¹)₂, где R¹, R² — алкильные заместители. Комплексы идентифицированы по данным химического анализа, точкам плавления и методом высокотемпературной масс-спектрометрии. Методом Кнудсена измерены параметры температурной зависимости давления пара и определены стандартные термодинамические

параметры ΔH_T^0 и ΔS_T^0 процессов сублимации. Проведено рентгеноструктурное исследование комплексов меди(II) Cu(CH₃—C(NCH₃)—CH—C(NCH₃)—CH₃)₂, a = 10,363(1), b = 11,978(1), c = 12,653(1) Å, V = 1570,6(3) Å³, пространственная группа *Pnc2*, Z = 4, $d_{\text{выч}} = 1,328$, R = 0,027 и Cu(CH₃—C(NC₂H₅)—CH—C(NC₂H₅)—CH₃)₂, a = 11,782(4), b = 13,951(8), c = 25,591(8) Å, V = 4206(3) Å³, пространственная группа *C*222₁, Z = 8, $d_{\text{выч}} = 1,169$ г/см³, R = 0,10, а также 2-(метиламино)-4-(метилимино)-2-пентена CH₃—(C=(NCH₃))—CH=(C—(NHCH₃))—CH₃, a = 12,129(2), b = 12,034(2), c = 5,692(1) Å, $\beta = 107,05(3)^\circ$, V = 794,3(3) Å³, пространственная группа *Cc*, Z = 4, $d_{\text{выч}} = 1,055$ г/см³, R = 0,06. Методом атом-атомных потенциалов проведены расчеты ван-дер-ваальсовой энергии кристаллической решетки E_{cryst} комплексов меди(II). Расчетные значения сопос-

тавлены с экспериментально найденными значениями энтальпий сублимации ΔH_T^0 .

Ключевые слова: β-дииминаты меди(II), кристаллическая структура, давление пара, энергия кристаллической решетки.

Тонкие металлические пленки меди используют в различных областях полупроводниковой микроэлектроники [1—3]. Современная технология переходит на медную металлизацию, так как медь обладает значительной устойчивостью по отношению к электромиграции, высокими параметрами теплоемкости и электропроводности [4]. Тонкие пленки меди можно получить различными способами, но химическое осаждение из газовой фазы (CVD) более предпочтительно при получении конформных и селективных покрытий с высоким аспектным соотношением. К настоящему времени известно большое число различных летучих комплексов меди(II, I), многие из которых используют в процессах химического осаждения из газовой фазы: галогениды, циклопентадиенильные производные, β -дикетонаты и их производные, а также комплексы меди с азотсодержащими лигандами, включая новую серию амидинатов меди(I), недавно представленных в работах [4—8]. Однако до сих пор продолжает оставаться актуальной задача поиска новых исходных соединений меди для получения медных пленок с высокой адгезией (от лат. adhaesio — сцепление, прилипание) к барьерным и изолирующим слоям на кремнии. Перспективным направлением, на наш взгляд, при синтезе комплексов является замена

^{*} E-mail: mor@che.nsk.su

донорных атомов кислорода в координационном узле на атомы азота для получения соединений, не содержащих кислорода, что позволяет надеяться на улучшение адгезионных свойств медных пленок при использовании таких соединений в процессах CVD.

Цель работы заключалась в кристаллографическом исследовании комплексных соединений меди(II) с β -дииминными производными ацетилацетона общей формулы Cu(R¹C(NR²)CHC(NR²)R¹)₂, где R¹, R² — алкильные заместители, и 2-(метиламино)-4-(метилимино)-2-пентена, изучении процессов парообразования летучих комплексных соединений меди(II), расчетах ван-дер-ваальсовой энергии кристаллической решетки E_{cryst} и сопоставлении ее с экспериментально найденными значениями энтальпии сублимации.

Впервые синтез соединений такого рода был описан в работе [9]. Там же приведены некоторые данные ЯМР спектроскопии, оптические спектры и температуры плавления ряда хелатов меди(II). Недавно были опубликованы сведения о синтезе и кристаллографическом исследовании ряда бис-хелатов меди(II) с несимметричными заместителями при атоме азота и концевыми заместителями [10]. Другие сведения о таких соединениях в литературе отсутствуют.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез комплексов меди(II) осуществляли по модифицированной нами методике [9]. Исходными реагентами являлись β -дикетоны (2,4-пентандион и 3,5-гептандион), алифатические первичные амины и соль меди(II) (Et₄NBr)₂CuCl₂. Синтез осуществляли в несколько стадий: получение исходных β -кетоиминных лигандов общей формулы CH₃—C(NRH))=CH— —CO—CH₃, получение β -дииминов тетрафторборатной соли общей формулы [CH₃—C(NHR))— CH—C(NHR)—CH₃]BF₄ и получение β -дииминатных комплексов меди(II) общей формулы Cu(R¹C(NR²)CHC(NR²)R¹)₂. Таким образом, последовательным замещением атомов кислорода в β -дикетоне были получены фторборатные соли β -дииминов различного состава с концевыми заместителями —CH₃ и —C₂H₅ и на их основе синтезированы хелаты меди(II) с симметричными заместителями при атомах азота:

Методика синтеза подробно описана нами в [11].

Очистка и характеристика комплексов меди(II). Комплексы очищали методом вакуумной сублимации при $P = 10^{-4}$ Торр и T = 90-120 °C. Синтезированные соединения меди(II) охарактеризованы по данным химического анализа на элементы С, Н, N и Cu (трилонометрическое титрование) и методом масс-спектрометрии [11]. Температуру плавления соединений измеряли на столике Кефлера: T_{nn} для 1 — 145—147 °C; 2 — 147—149 °C; 3 — 99—100 °C; 4 — 88—90 °C.

Масс-спектры газовой фазы хелатов меди(II) были получены на масс-спектрометре высокого разрешения МХ-1310 при энергии ионизирующих электронов 60 эВ. Анализ полученных масс-спектров показал, что для комплексов меди(II) наблюдаются интенсивные пики молекулярных ионов. Пути фрагментации хелатов подобны. Наиболее интенсивными являются пики (CuL—H). В масс-спектрах также наблюдаются пики свободных лигандов (HL, L[•], L—H, L—H₂) (табл. 1).

Методы исследования. Монокристаллы комплекса 2 для рентгеноструктурного исследования были выращены при испарении бензольного раствора в инертной атмосфере, монокристаллы комплекса 3 — сублимацией при $P = 10^{-4}$ Topp и T = 90 °C, монокристаллы CH₃— (C=(NCH₃))—CH=(C—(NHCH₃))—CH₃ (HL) — при сублимации соответствующего хелата меди(II) с частичным разложением комплекса и образованием кристаллов HL. На воздухе кристаллы HL достаточно быстро разрушаются.

Таблица 1

949

Рентгеноструктурное исследование 2-(метиламино)-4-(метилимино)-2-пентена проведено на дифрактометре Syntex Р21 (СиКα-излучение, графитовый монохроматор), комплексов 2 и 3 — на Bruker P4 (Mo K_{α} дифрактометре излучение, графитовый монохроматор). Кристаллографические характеристики исследованных соединений и параметры экспериментов приведены в табл. 2. Структуры решены прямым методом и уточнены в анизотропно-изотропном (для Н) приближении, атомы водорода метильных групп заданы геометрически. Координаты базисных атомов приведены в табл. 3, основные межатомные расстояния и валентные углы — в табл. 4. Все расчеты выполнены по комплексу программ SHELX-97 [14].

Данные о температурных зависимостях давления насыщенного пара соединений меди(II) были получены методом Кнудсена с масс-спектрометрическим анализом состава паровой фазы. Детальное описание эксперимента представлено в [15]. Для проведения исследований предварительно проводили трехкратную сублимационную очистку соединений. Термодинамические параметры (ΔH_T^0 , ΔS_T^0) процессов сублимации представлены в табл. 5.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

63 27.5 Cu^+ 1.2 1.5 Структура соединения 2. Соеди-1.3 нение кристаллизуется в виде призм темного цвета, принадлежащих к ромбической сингонии. Структура молекулярная, построена из изолированных молекул комплекса 2, строение одной из независимых молекул приведено на рис. 1. Атомы меди расположены на двойной оси и имеют координацию четырьмя атомами азота в форме полиэдра, промежуточного между квадратом и тетраэдром. Средняя длина связей Cu—N 1,954 Å, хелатный валентный угол N—Cu—N равен 94,7°. Разница в длинах связей N—C и N—CH₃, С—Су и С—CH₃ составляет в среднем 0,13 и 0,11 Å соответственно. Угол перегиба металлоцикла по линии N...N не превышает 3,5°, а плоскости двух хелатных лигандов комплекса развернуты на угол 64,7°. В кристалле каждая молекула комплекса 2 окружена десятью соседними с расстояниями между центрами Си...Си 6,048-8,711 Å. Упаковка молекул в исследуемой структуре приведена на рис. 2.

Структура соединения 3. Соединение кристаллизуется в виде сросшихся призм темнофиолетового цвета, принадлежащих к ромбической сингонии. Структура соединения молекулярная, состоит из изолированных молекул (3), два способа ориентации которых приведены на рис. 3. Атом меди расположен в общем положении и координирован четырьмя атомами азота двух лигандов. Образующийся координационный полиэдр имеет форму сплюснутого тетраэдра, промежуточную между квадратом и тетраэдром. Длины связей Cu—N лежат в интервале

спектрах газовой фазы комплексов меои(11). 1, 2, 3, 4							
		Относительная интенсивность					
Ион	M/z	1	2	3	4		
		(М.в. 257)	(М.в. 313)	(М.в. 369)	(М.в. 369)		
$CuN_4C_{18}H_{34}^+$	369			32	40		
$CuN_4C_{15}H_{25}^+$	324			7,2			
$CuN_4C_{14}H_{26}^+$	313		26,8				
$CuN_4C_{10}H_{18}^+$	257	54					
$CuN_4C_9H_{15}^+$	242	3,3					
$CuN_4C_8H_{12}^+$	227	45,8	2,8				
$CuN_2C_9H_{18}^+$	217			100	100		
$CuN_{3}C_{8}H_{15}^{+}$	216	6,2					
$CuN_2C_9H_{16}^+$	215			17	7,4		
$CuN_{3}C_{7}H_{12}^{+}$	201	1,7	1,6	7	2,9		
$CuN_{3}C_{6}H_{12}^{+}$	189		100	3,3			
$CuN_{3}C_{6}H_{11}^{+}$	188		7,2		3,1		
$CuN_{3}C_{6}H_{10}^{+}$	187		6,8	2,8	6,9		
$CuN_2C_6H_{11}^+$	174		6	2,8	2,3		
$CuN_2C_6H_{10}^{+}$	173	1,2	5,2	2,8	3,7		
$CuN_2C_5H_{10}^{+}$	161	100					
$CuN_2C_5H_9^+$	160	23,3					
$CuN_2C_5H_8^{+}$	159	23					
$CuN_2C_5H_7^{\ +}$	158		4,0				
$CuNC_5H_8^+$	145	71					
$CuNC_4H_7^{+}$	132	5,8	2,8				
$CuNC_{3}H_{7}^{+}$	120	10					
$CuNC_{3}H_{6}^{+}$	119	9,1					
$CuNC_2H_3^+$	104	38,3	3,6	2,5	3,4		
CuNCH^+	90	3.8					

Наиболее интенсивные пики молекулярных ионов в масс-

Таблица 2

2			
Соединение	2	3	HL
Брутто-формула	$CuN_4C_{14}H_{26}$	CuN ₄ C ₁₈ H ₃₄	$N_2C_7H_{14}$
Молекулярная масса	313,93	370,03	126,20
Длина волны, Å	0,71073	0,71073	1,54178
Параметры ячейки: <i>a</i> , <i>b</i> , <i>c</i> , Å	10,363(1), 11,978(1), 12,653(1)	11,782(4), 13,951(8), 25,591(8)	12,129(2), 12,034(2), 5,6920(11)
β, град.	90	90	107,05(3)
$V, Å^3$	1570,6(3)	4206(3)	794,3(3)
Пространственная группа	Pnc2	C222 ₁	Cc
Ζ	4	8	4
<i>d</i> , г/см ³	1,328	1,169	1,055
Область θ, град.	1,97—24,98	2,26—24,99	5,30-69,91
Число эксперим. / независ. отражений	1697/1465	2084/2067	876/839
R для отражений с $I > 2\sigma(I)$	0,027	0,1084	0,0599
<i>R</i> для всех отражений	0,0332	0,2780	0,0906

Кристаллографические характеристики и параметры дифракционного эксперимента для исследуемых комплексов меди(II) и HL

Таблица З

Координаты атомов и изотропные параметры атомных смещений U_{eq} , $Å^2$ в соединениях **2**, **3** и HL

			-					
Атом	x	У	Z	$U_{ m eq}$				
1	2	3	4	5				
2								
Cu(1)	0	0	-0,0045(1)	0,0035(1)				
Cu(2)	0,5000	0	0,7491(1)	0,0035(1)				
N(1)	-0,0805(6)	0,1038(5)	0,0948(6)	0,0036(2)				
N(2)	0,0622(6)	0,1165(6)	-0,0987(6)	0,0038(2)				
N(3)	0,4199(6)	0,1066(5)	0,6523(6)	0,0033(2)				
N(4)	0,5640(6)	0,1140(6)	0,8471(6)	0,0044(2)				
C(1)	-0,0834(7)	0,2149(6)	0,0870(7)	0,0038(2)				
C(2)	-0,0119(8)	0,2648(8)	-0,0030(12)	0,0044(2)				
C(3)	0,0539(7)	0,2216(8)	-0,0813(7)	0,0038(2)				
C(4)	-0,1571(8)	0,2903(7)	0,1598(7)	0,0045(2)				
C(5)	0,1214(9)	0,3043(8)	-0,1555(7)	0,0053(2)				
C(6)	-0,1525(10)	0,0587(8)	0,1857(8)	0,0049(3)				
C(7)	0,1342(13)	0,0815(11)	-0,1860(9)	0,0077(4)				
C(8)	0,4213(7)	0,2142(6)	0,6658(7)	0,0032(2)				
C(9)	0,4850(7)	0,2735(7)	0,7393(10)	0,0039(2)				
C(10)	0,5552(8)	0,2253(7)	0,8295(7)	0,0044(2)				
C(11)	0,3448(8)	0,2839(7)	0,5885(8)	0,0051(3)				
C(12)	0,6225(9)	0,3064(7)	0,8998(7)	0,0061(3)				
C(13)	0,3463(8)	0,0555(6)	0,5685(7)	0,0039(2)				
C(14)	0,6319(8)	0,0782(8)	0,9464(7)	0,0043(2)				

Окончание таб							
1	2	3	4	5			
3							
Cu	0,1991(2)	0,11363(18)	0,37848(10)	0,0692(10)			
N(1)	0,3119(16)	0,0167(13)	0,3962(6)	0,063(5)			
N(2)	0,0886(17)	0,0229(16)	0,3531(7)	0,078(6)			
C(1)	0,306(3)	-0,0730(15)	0,3845(10)	0,073(7)			
C(2)	0,209(3)	-0,114(2)	0,3625(10)	0,097(9)			
C(3)	0,108(3)	-0,068(2)	0,3470(9)	0,067(7)			
C(4)	0,402(2)	-0,1427(17)	0,3971(14)	0,133(14)			
C(5)	0,019(2)	-0,137(2)	0,3292(10)	0,111(10)			
C(6)	0,421(2)	0,0537(19)	0,4196(9)	0,082(7)			
C(7)	0,497(3)	0,101(2)	0,3802(14)	0,140(12)			
C(8)	-0,022(3)	0,062(2)	0,3402(10)	0,110(11)			
C(9)	-0,102(3)	0,0724(18)	0,3840(14)	0,115(11)			
N(3)	0,2009(19	0,2008(13)	0,4386(7)	0,067(5)			
N(4)	0,1913(19)	0,2150(13)	0,3258(6)	0,069(6)			
C(10)	0,207(2)	0,293(2)	0,4332(10)	0,082(8)			
C(11)	0,204(2)	0,3420(15)	0,3841(11)	0,078(7)			
C(12)	0,201(2)	0,3008(18)	0,3330(11)	0,072(8)			
C(13)	0,215(3)	0,363(2)	0,4798(11)	0,127(13)			
C(14)	0,195(3)	0,372(2)	0,2914(11)	0,114(9)			
C(15)	0,189(4)	0,1536(17)	0,4909(10)	0,115(12)			
C(16)	0,073(2	0,149(4)	0,5078(12)	0,18(2)			
C(17)	0,192(3)	0,1798(19)	0,2694(10)	0,109(11)			
C(18)	0,312(4)	0,149(2)	0,2515(10)	0,138(13)			
	HL						
C(1)	0,9696(6)	0,2836(7)	0,8946(14)	0,069(2)			
C(2)	0,8953(10)	0,3325(3)	0,690(2)	0,0771(12)			
C(3)	0,8270(6)	0,2834(8)	0,4707(14)	0,073(2)			
N(1)	0,9706(5)	0,1725(6)	0,9065(12)	0,0789(19)			
N(2)	0,8232(5)	0,1746(7)	0,4603(10)	0,077(2)			
C(4)	1,0385(6)	0,3503(10)	1,1060(17)	0,090(3)			
C(5)	0,7548(8)	0,3552(12)	0,2609(19)	0,099(3)			
C(0)	1,0408(8) 0.7527(0)	0,1140(9) 0.1162(0)	1,1279(18) 0.2488(17)	0,103(4) 0.007(3)			
$\mathcal{C}(I)$	0,7337(9)	0,1103(9)	0,2408(17)	0,097(3)			

Таблица 4

Межатомные расстояния d, Å и валентные углы ω, град. в соединениях 2, 3 и HL

-		, ,	
Связь	d	Угол	ω
1	2	3	4
		2	
Cu(1)—N(2)	1,946(7)	N(2)#1—Cu(1)—N(2)	104,4(4)
Cu(1)—N(1)	1,955(7)	N(2)#1—Cu(1)—N(1)	135,2(3)
Cu(2)—N(3)	1,954(7)	N(2)— $Cu(1)$ — $N(1)$	94,5(2)
Cu(2)—N(4)	1,961(7)	N(1)—Cu(1)—N(1)#1	100,0(4)
N(1)—C(1)	1,334(9)	N(3)—Cu(2)—N(3)#2	102,4(4)
N(1)—C(6)	1,473(11)	N(3)—Cu(2)—N(4)	94,9(2)
N(2)—C(3)	1,281(11)	N(3)—Cu(2)—N(4)#2	135,0(2)
N(2)—C(7)	1,398(13)	N(4)—Cu(2)—N(4)#2	101,5(5)
N(3)—C(8)	1,300(9)	C(1)-N(1)-C(6)	114,3(8)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c cccccc} C(1)C(2) & 1,484(14) & C(3)N(2)Cu(1) & 125,2(6) \\ C(1)C(4) & 1,498(11) & C(7)N(2)Cu(1) & 116,5(7) \\ C(2)C(3) & 1,309(15) & C(8)N(3)C(13) & 121,6(7) \\ C(3)C(5) & 1,534(11) & C(8)N(3)Cu(2) & 124,1(6) \\ C(8)C(9) & 1,343(12) & C(13)N(3)Cu(2) & 114,1(4) \\ C(8)C(11) & 1,511(11) & C(10)N(4)Cu(2) & 116,7(8) \\ C(9)C(10) & 1,472(13) & C(10)N(4)Cu(2) & 123,9(6) \\ C(10)C(12) & 1,491(11) & C(14)N(4)Cu(2) & 119,3(6) \\ N(1)C(1)C(2) & 116,5(8) \\ C(3)C(2)C(1) & 133,0(8) \\ N(2)C(3)C(2) & 123,6(8) \\ N(3)C(8)C(9) & 124,9(7) \\ N(4)C(10)C(9) & 123,2(8) \\ \end{array}$	
$\begin{array}{c cccccc} C(1) & -C(4) & 1,498(11) & C(7) - N(2) - Cu(1) & 116,5(7) \\ C(2) - C(3) & 1,309(15) & C(8) - N(3) - C(13) & 121,6(7) \\ C(3) - C(5) & 1,534(11) & C(8) - N(3) - Cu(2) & 124,1(6) \\ C(8) - C(9) & 1,343(12) & C(13) - N(3) - Cu(2) & 114,1(4) \\ C(8) - C(11) & 1,511(11) & C(10) - N(4) - C(14) & 116,7(8) \\ C(9) - C(10) & 1,472(13) & C(10) - N(4) - Cu(2) & 123,9(6) \\ C(10) - C(12) & 1,491(11) & C(14) - N(4) - Cu(2) & 119,3(6) \\ N(1) - C(1) - C(2) & 116,5(8) \\ C(3) - C(2) - C(1) & 133,0(8) \\ N(2) - C(3) - C(2) & 123,6(8) \\ N(3) - C(8) - C(9) & 128,4(7) \\ C(8) - C(9) - C(10) & 124,9(7) \\ N(4) - C(10) - C(9) & 123,2(8) \end{array}$	
$\begin{array}{c ccccc} C(2) & -C(3) & 1,309(15) & C(8) - N(3) - C(13) & 121,6(7) \\ C(3) - C(5) & 1,534(11) & C(8) - N(3) - Cu(2) & 124,1(6) \\ C(8) - C(9) & 1,343(12) & C(13) - N(3) - Cu(2) & 114,1(4) \\ C(8) - C(11) & 1,511(11) & C(10) - N(4) - C(14) & 116,7(8) \\ C(9) - C(10) & 1,472(13) & C(10) - N(4) - Cu(2) & 123,9(6) \\ C(10) - C(12) & 1,491(11) & C(14) - N(4) - Cu(2) & 119,3(6) \\ N(1) - C(1) - C(2) & 116,5(8) \\ C(3) - C(2) - C(1) & 133,0(8) \\ N(2) - C(3) - C(2) & 123,6(8) \\ N(3) - C(8) - C(9) & 1223,2(8) \\ \end{array}$	
$\begin{array}{c ccccc} C(3) & -C(5) & 1,534(11) & C(8) - N(3) - Cu(2) & 124,1(6) \\ C(8) - C(9) & 1,343(12) & C(13) - N(3) - Cu(2) & 114,1(4) \\ C(8) - C(11) & 1,511(11) & C(10) - N(4) - C(14) & 116,7(8) \\ C(9) - C(10) & 1,472(13) & C(10) - N(4) - Cu(2) & 123,9(6) \\ C(10) - C(12) & 1,491(11) & C(14) - N(4) - Cu(2) & 119,3(6) \\ N(1) - C(1) - C(2) & 116,5(8) \\ C(3) - C(2) - C(1) & 133,0(8) \\ N(2) - C(3) - C(2) & 123,6(8) \\ N(3) - C(8) - C(9) & 128,4(7) \\ C(8) - C(9) - C(10) & 124,9(7) \\ N(4) - C(10) - C(9) & 123,2(8) \end{array}$	
$\begin{array}{c ccccc} C(8) - C(9) & 1,343(12) & C(13) - N(3) - Cu(2) & 114,1(4) \\ C(8) - C(11) & 1,511(11) & C(10) - N(4) - C(14) & 116,7(8) \\ C(9) - C(10) & 1,472(13) & C(10) - N(4) - Cu(2) & 123,9(6) \\ C(10) - C(12) & 1,491(11) & C(14) - N(4) - Cu(2) & 119,3(6) \\ N(1) - C(1) - C(2) & 116,5(8) \\ C(3) - C(2) - C(1) & 133,0(8) \\ N(2) - C(3) - C(2) & 123,6(8) \\ N(3) - C(8) - C(9) & 128,4(7) \\ C(8) - C(9) - C(10) & 124,9(7) \\ N(4) - C(10) - C(9) & 123,2(8) \end{array}$	
$\begin{array}{c ccccc} C(8) - C(11) & 1,511(11) & C(10) - N(4) - C(14) & 116,7(8) \\ C(9) - C(10) & 1,472(13) & C(10) - N(4) - Cu(2) & 123,9(6) \\ C(10) - C(12) & 1,491(11) & C(14) - N(4) - Cu(2) & 119,3(6) \\ N(1) - C(1) - C(2) & 116,5(8) \\ C(3) - C(2) - C(1) & 133,0(8) \\ N(2) - C(3) - C(2) & 123,6(8) \\ N(3) - C(8) - C(9) & 128,4(7) \\ C(8) - C(9) - C(10) & 124,9(7) \\ N(4) - C(10) - C(9) & 123,2(8) \end{array}$	
$\begin{array}{c ccccc} C(9) - C(10) & 1,472(13) & C(10) - N(4) - Cu(2) & 123,9(6) \\ C(10) - C(12) & 1,491(11) & C(14) - N(4) - Cu(2) & 119,3(6) \\ N(1) - C(1) - C(2) & 116,5(8) \\ C(3) - C(2) - C(1) & 133,0(8) \\ N(2) - C(3) - C(2) & 123,6(8) \\ N(3) - C(8) - C(9) & 128,4(7) \\ C(8) - C(9) - C(10) & 124,9(7) \\ N(4) - C(10) - C(9) & 123,2(8) \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c cccc} C(8) & -C(9) & -C(10) & 124,9(7) \\ N(4) & -C(10) & -C(9) & 123,2(8) \\ \end{array} $	
N(4) - C(10) - C(9) = 123,2(8) 3	
3	
Cu—N(2) 1,93(2) N(2)—Cu—N(1) 94,8(8)	
Cu—N(1) 1,950(17) N(2)—Cu—N(4) 102,2(8)	
Cu—N(4) 1,956(16) N(1)—Cu—N(4) 133,9(8)	
Cu—N(3) 1,960(16) N(2)—Cu—N(3) 132,7(9)	
N(1)—C(1) 1,29(2) N(1)—Cu—N(3) 103,9(8)	
N(1)—C(6) 1,51(3) N(4)—Cu—N(3) 95,3(7)	
N(2)—C(3) 1,29(3) C(1)—N(1)—C(6) 118(2)	
N(2)—C(8) 1,45(3) C(1)—N(1)—Cu 125,7(19)	
C(1)—C(2) 1,39(4) C(6)—N(1)—Cu 115,9(13)	
C(1)—C(4) 1,53(3) C(3)—N(2)—C(8) 120(3)	
C(2)—C(3) 1,42(3) C(3)—N(2)—Cu 124(2)	
C(3)—C(5) 1,50(3) C(8)—N(2)—Cu 115,9(18)	
C(6)—C(7) 1,50(3) N(1)—C(1)—C(2) 122(3)	
C(8)-C(9) 1,47(4) $C(1)-C(2)-C(3)$ 128(2)	
N(3)—C(10) 1,30(3) N(2)—C(3)—C(2) 124(3)	
N(3)—C(15) 1,50(3) C(7)—C(6)—N(1) 113(2)	
N(4)—C(12) 1,22(3) N(2)—C(8)—C(9) 116(2)	
N(4)—C(17) 1,52(3) C(10)—N(3)—C(15) 122(2)	
C(10) - C(11) 1,43(3) $C(10) - N(3) - Cu$ 122,2(17)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

_		Окончан	ие табл. 4
1	2	3	4
		HL	
C(1) - N(1)	1,339(10)	N(1) - C(1) - C(2)	117,6(8)
C(1) - C(2)	1,377(14)	N(1) - C(1) - C(4)	120,3(9)
C(1) - C(4)	1,484(12)	C(2) - C(1) - C(4)	121,8(9)
C(2) - C(3)	1,411(15)	C(1) - C(2) - C(3)	129,6(4)
C(3) - N(2)	1,310(11)	N(2) - C(3) - C(2)	117,5(8)
C(3)—C(5)	1,526(13)	N(2) - C(3) - C(5)	121,7(9)
N(1)—C(6)	1,473(12)	C(2) - C(3) - C(5)	120,6(10)
N(2) - C(7)	1,434(11)	C(1) - N(1) - C(6)	120,7(8)
		C(3)—N(2)—C(7)	122,1(8)

П р и м е ч а н и е. Операторы симметрии, используемые для генерации эквивалентных атомов: #1 -x, -y, z; #2 -x+1, -y, z.

Таблица 5

Термодинамические параметры процессов сублимации β -дииминатов меди(II) ($\lg P_{Torr} = -(A/T) + B$)

Комплекс	<i>n</i> *	ΔT , K	В	A	$\Delta \overline{H}_{T}^{0}$, кДж/моль	ΔS_T^0 , Дж/моль-К
1	4	335—397	10,82	5012	95,8±13,4	152,0±5,0
2	7	349—380	17,51	7564	145,2±10,4	279,9±3,8
3	5	326—361	15,23	6304	120,5±1,7	236,4±5,0
4	6	330—371	15,47	6205	120,0±1,7	241,0±9,6

* *п* — число экспериментальных точек.

1,93—1,96, среднее значение 1,95 Å, хелатный валентный угол N—Cu—N равен в среднем 95°. Средние длины связей N—C в хелатном кольце и до заместителя равны 1,28 и 1,50 Å соответственно. Углы перегиба металлоциклов по линии N...N не превышают 6°, *транс*-углы N—Cu—N составляют в среднем 133,3°. В кристалле каждая молекула **3** окружена восемью соседними с

Рис. 2. Упаковка молекул 2 в кристалле

Рис. 1. Строение молекулы 2

Рис. 3. Два способа ориентации молекулы комплекса 3

Рис. 4. Упаковка молекул комплекса 3 в кристалле

расстояниями между центрами Си...Си 6,981—9,370 Å. Упаковка молекул в исследуемой структуре приведена на рис. 4.

Структура CH₃—(C=(NCH₃))—CH=(C—(NHCH₃))—CH₃ (HL). Соединение кристаллизуется в виде бесцветных прозрачных пластинок, весьма неустойчивых на воздухе, поэтому для исследования кристалл помещали в капилляр. Структура молекулярная, состоит из изолированных молекул, строение и упаковка которых в кристалле приведена на рис. 5. Молекула со-

Рис. 5. Структура изолированных молекул CH₃—CNCH₃—CH₂—CNCH₃—CH₃— *a*, и упаковка молекул в кристалле — *б*

Рис. 6. Температурная зависимость давления насыщенного пара хелатов меди(II): соединения 1 - 1; 2 - 2; 3 - 3; 4 - 4

единения практически плоская, все неводородные атомы в пределах 0,02 Å лежат в одной плоскости. Средние длины внутренних и концевых связей N—C равны 1,324 и 1,452 Å, соответствующие значения связей С—C в молекуле равны 1,394 и 1,506 Å. Валентные углы на атомах углерода C(1) и C(3) отличаются от идеальных 120° не более чем на 2,5°. Валентный угол C(1)C(2)C(3) составляет 129,6°. Атом

водорода H(1) хорошо локализован у атомов азота, является мостиковым и расположен несимметрично. Расстояния N(1)—H(1) и H(1)—N(2) равны соответственно 1,27 и 1,45 Å, угол N(1)H(1)N(2) составляет 154°. В кристалле молекулы упакованы в стопки вдоль кратчайшего направления *c*, угол наклона плоскости молекулы к оси стопки — 49,4°, в структуре каждая такая стопка окружена четырьмя идентичными. Межмолекулярные взаимодействия определяются контактами H...H, имеющими нижней границей 2,59 Å.

Расчет энергии ван-дер-ваальсова межмолекулярного взаимодействия. На основе полученных структурных данных проведен расчет энергии ван-дер-ваальсова межмолекулярного взаимодействия методом атом-атомных потенциалов. Параметры потенциалов Букингема для расчетов были взяты из работы Зоркого [17]. Параметры потенциалов для атома меди рассчитывали исходя из глубины потенциальной ямы, равной 1,21 кДж/моль, и равновесного расстояния 4,00 Å [18]. Энергию рассчитывали по формуле

$$U = 1/2 \sum_{k=2}^{N} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[-A_{i,j} / R_{i,j}^{6} + B_{i,j} \cdot \exp(-\alpha_{i,j} \cdot R_{i,j}) \right],$$

где k — номер соседней молекулы; N — число молекул из ближайшего окружения; i — номер атома первой молекулы; j — номер атома k-й молекулы; n — число атомов в молекуле; $R_{i,j}$ — расстояние между атомами i и j; $A_{i,j}$, $B_{i,j}$, $\alpha_{i,j}$ — параметры атом-атомных потенциалов.

Координаты атомов водорода рассчитывали геометрически. Однако в структуре 2 метильные заместители при атоме азота разупорядочены, поэтому для этих атомов так же, как и в работе [18], были взяты параметры группы CH₃ с равновесным расстоянием $R_0 = 4,2$ Å и глубиной потенциальной ямы в 1,13 кДж/моль. Расчетные значения энергии ван-дер-ваальсова межмолекулярного взаимодействия для упаковки 2 равны 120,3 кДж/моль, для упаковки 3 — 114,5 кДж/моль, для упаковки лиганда — 66,5 кДж/моль. Полученные величины согласуются с экспериментальными значениями энтальпии сублимации (см. табл. 5).

Заниженное значение для соединения 2 можно объяснить вращением групп CH_3 при атомах азота и трудностью оценки энергетики взаимодействия этих групп в межмолекулярном взаимодействии. В расчетах не учитывали электростатическое взаимодействие, вносящее поправку до 10 %.

Таким образом, строение молекул и их упаковка в кристаллах для хелатов меди 2 и 3 близки, однако расчеты показывают, что интенсивность ван-дер-ваальсового взаимодействия в комплексе 3 меньше, чем в комплексе 2. Это можно объяснить бо́льшим экранированием атома меди более объемными заместителями C_2H_5 , что делает упаковку кристалла более рыхлой.

Измерение давления пара. Для определения влияния природы лиганда на летучесть β дииминатов меди(II) эффузионным методом Кнудсена были исследованы параметры температурной зависимости давления насыщенного пара соединений (рис. 6) и вычислены термодинамические параметры (ΔH_T^0 , ΔS_T^0) процессов сублимации (см. табл. 5). Необходимо отметить, что все исследуемые соединения практически полностью сублимировались из ячейки Кнудсена, остаток составлял порядка 1—2 % от исходной массы. Рисунок 6 показывает, что вариация заместителей R^2 при атоме азота и концевых заместителей R^1 в лиганде для комплексов меди(II) может существенно изменять относительную летучесть — практически на два порядка. Полученные экспериментальные данные для хелатов меди **2** и **3** показывают бо́льшую летучесть комплекса **3**, что подтверждается выводами, сделанными из приведенных выше расчетов.

Таким образом, в настоящей работе определены структуры 2-(метиламино)-4-(метилимино)-2-пентена и комплексных соединений меди(II) с β -дииминными производными ацетилацетона общей формулы Cu(R¹C(NR²)CHC(NR²)R¹)₂, где R¹, R² — алкильные заместители, а также исследованы термические свойства летучих комплексных соединений меди(II).

Авторы выражают благодарность Т.И. Лисковской за помощь в проведении синтетических экспериментов и Ю.В. Гатилову за проведение рентгеноструктурного эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. Norman J.A.T. // J. Phys. IV France. 2001. 11. P. Pr3-497 Pr-3-503.
- 2. Gardini P., Glaze J., Williams O. // Solid State Technol. 1998. 41. P. 73 76.
- 3. Arita Y., Awaya N., Amazawa T., Mutsuda T. // Intl. Electron Devices Meet. Tech. Digest IEEE. 1989. P. 893 895.
- 4. Lim B.S., Rahtu A., Park J.-S., Gordon R.G. // Inorg. Chem. 2003. 42. P. 7951 7958.
- 5. Doppelt P. // Coord. Chem. Rev., Pt. 2. 1998. 178–180. P. 1785 1809.
- 6. Вертопрахов В.Н., Круподер С.А. // Успехи химии. 2000. **69**. С. 1149 1177.
- 7. Petersen G.A., Parmeter J.E., Apblett C.A. et al. // J. Electrochem. Soc. 1995. 142. P. 939 946.
- 8. Li Z., Barry S.T., Gordon R.G. // Inorg. Chem. 2005. 44, N 6. P. 1728 1735.
- 9. McGeachin S.G. // Canad. J. Chem. 1968. 46. P. 1903 1912.
- 10. Park K.-H., Marshall W.J. // J. Amer. Chem. Soc. 2005. 127. P. 9330 9331.
- 11. Morozova N.B., Gelfond N.V., Liskovskaya T.I. et al. // Proc. Internat. Conf. EUROCVD-15. 2005, Electrochemical Society, NJ, USA, P. V. 2005-09. P. 667 674.
- 12. Казицина Л.А., Куплетская Н.Б., Полстянко Л.Л. и др. // Журн. общ. химии. 1961. **31**. С. 313 323.
- 13. Fisher B. // Ber. 1912. 45. P. 1983.
- 14. Sheldrick G.M. SHELX-97. Release 97-1. University of Göttingen, 1997.
- 15. Semyannikov P.P., Igumenov I.K., Trubin S.V. et al. // Thermochim. Acta. 2005. 432. P. 91 98.
- 16. Igumenov I.K., Gelfond N.V., Galkin P.S. et al. // Desalination. 2001. 136. P. 273 279.
- 17. Тимофеева Т.В., Черникова Н.Ю., Зоркий П.М. // Успехи химии. 1980. 6. С. 966 997.
- 18. Стабников П.А., Игуменов И.К., Белослудов В.Р. и др. // Изв. СО АН СССР. Сер. хим. наук. 1985. Вып. 1. С. 37 42.