УДК 542.913+546.562-31+546.831

ВЛИЯНИЕ ВЫСОКОЭНЕРГЕТИЧЕСКОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОРОШКОВ НА ПРОЦЕСС МАГНИЙТЕРМИЧЕСКОГО ВОССТАНОВЛЕНИЯ В РЕЖИМЕ САМОРАСПРОСТРАНЯЮЩЕГОСЯ ВЫСОКОТЕМПЕРАТУРНОГО СИНТЕЗА В СМЕСИ SiO₂/C/Mg

T. Chanadee^{1,3}, S. Singsarothai²

¹Университет принца Сонгкла, Хат Яй, Сонгкхла 90110, Таиланд, tawat.ch@psu.ac.th

²Университет Таксина, Папайом, Паталунг 93210, Таиланд, s.singsarothai@gmail.com

³Инновационный материаловедческий центр, Университет принца Сонгкла, Хат Яй, Сонгкхла 9011, Таиланд

Смеси порошков SiO₂/C/Mg, механически обработанные в планетарной шаровой мельнице в течение 60, 90, 120 и 150 мин, использовались для проведения самораспространяющегося высокотемпературного синтеза (CBC) с целью получения композита Si—SiC. Термические свойства механически обработанных смесей исследовали методами дифференциальной сканирующей калориметрии и термогравиметрии. Состав и микроструктуру синтезированных материалов и материалов, полученных после обработки продуктов CBC в кислоте, исследовали соответственно методами рентгенофазового анализа и растровой электронной микроскопии. Установлено, что увеличение времени механической обработки исходных порошковых смесей оказывает существенное влияние на их термические свойства, диффузионные процессы в смесях, механизм CBC-реакции, а также на фазовые превращения и выход продуктов реакции.

Ключевые слова: магнийтермическое восстановление, самораспространяющийся высокотемпературный синтез, композит Si—SiC, высокоэнергетическая механическая обработка.

DOI 10.15372/FGV20190111

ВВЕДЕНИЕ

Успешное применение композита Si—SiC в технике обусловлено его термомеханическими свойствами. Высокая твердость композита в сочетании с устойчивостью кремния и его карбида к окислению и коррозии определяют высокую износостойкость композита. Его применяют в областях, где необходимы определенные трибологические свойства, высокая прочность при высокой температуре, низкий коэффициент теплового расширения и высокая устойчивость к термическому шоку [1, 2], — газотурбинные двигатели, теплообменники, уплотнители для насосов и сварочные насадки. Наиболее распространенный промышленный способ синтеза порошка SiC основан на карботермическом восстановлении: в результате нагрева смесей песка или диоксида кремния (SiO₂) с коксом или порошком углерода (C) образуются карбид кремния (SiC) и монооксид углерода (CO). Однако это сложный и энергоемкий процесс [3], поэтому предпочтительнее менее дорогостоящий метод — самораспространяющийся высокотемпературный синтез (CBC).

Процесс СВС может быть использован для получения различных материалов, включая керамику, интерметаллиды, композиты и функционально-градиентные материалы, при температурах выше 4000 К [4, 5]. Для реализации СВС требуется только небольшая энергия для инициирования реакции при комнатной температуре, а далее при горении выделяется тепло и реакция протекает в самоподдерживающемся режиме, ее фронт быстро перемещается через компакт из реагентов. Кроме того, высокая скорость охлаждения позволяет получать материалы с очень малым размером зерна и метастабильным составом [5, 6]. СВС-процесс энергоэффективный, поскольку для его проведения не требуется высокотемпературная печь.

[©] T. Chanadee^{1,3}, S. Singsarothai², 2019.

¹Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand. ²Faculty of Engineering, Thaksin University, Papayom, Pattalung 93210, Thailand. ³Ceramic and Composite Materials Engineering Research Group (CMERG), Center of Excellence in Materials Engineering (CEME), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.

Помимо прочего, это еще и относительно простой и экологически безопасный процесс [5, 7].

Стоимость материалов, получаемых методом СВС, можно уменьшить, если вместо металла применять его оксид в качестве одного из реагентов. При проведении СВС могут быть использованы перспективные металлические восстановители (магний и алюминий) [8]. Реакция протекает в две стадии: сначала восстановление основного оксида металла (так называемая металлотермическая реакция), затем взаимодействие восстановленного металла с неметаллом с последующим образованием соединения [8]. Когда металл восстанавливается магнием, реакция называется магнийтермическим восстановлением; в случае использования алюминия реакция называется алюмотермическим восстановлением. В реакционной системе оксид металла/металлвосстановитель/углерод, приготовленной для синтеза карбидов, углерод участвует как в образовании карбида, так и в восстановлении оксида металла. В результате стадии восстановления в процессе СВС в синтезированном композите присутствуют побочные продукты $(MgO или Al_2O_3)$ [8]. В процессах термического восстановления кремния углеродом для получения in situ SiC и содержащих его композитов методом СВС использовали в качестве исходных различные кремнийсодержащие материалы — сухой порошок диоксида кремния, жидкое стекло, гель и отходы. Следует отметить, что отходы сгорали полностью при высокой температуре [5].

Механическая обработка в высокоэнергетических мельницах позволяет быстро получать сплавы, упрочненные оксидными частицами, интерметаллиды, химические соединения, нанокомпозиты, керамику и другие перспективные материалы, которые трудно получить традиционными способами. Условия механической обработки в высокоэнергетической мельнице можно варьировать путем изменения типа мельницы, а также ряда параметров, таких как скорость вращения барабанов, соотношение массы порошка к массе шаров, тип контейнера для перемешивания, состав среды, в которой осуществляется механическая обработка, тип, размер и распределение по размеру мелющих тел, а также длительность механической обработки. Таким образом, существует широкий диапазон условий обработки, которые можно изменять, с тем чтобы уменьшить размер частиц реагентов до размера, необходимого для полного превращения [9].

Целью настоящей работы являлось исследование магнийтермического восстановления в смеси порошков $SiO_2/C/Mg$ в процессе in situ CBC композиционных порошков Si— SiC. Особое внимание уделено изучению влияния продолжительности механической обработки ($60 \div 150$ мин) на термические характеристики порошковой смеси, а также на фазовый состав и морфологию полученных продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

В качестве исходных реагентов использовали диоксид кремния (SiO₂), полученный из золы листьев бамбука золь-гель методом, описанным в работе [10], активированный углерод (С, Ајах Finechem, 99 %) и магний (Mg, Riedel-de Haën, 99 %). Для приготовления инициирующей смеси использовали алюминий (Al, Himedia Laboratories, 93 %) и оксид железа (Fe₂O₃, Riedel-de Haën, 97 %).

Описание эксперимента

В данной работе синтез основан на следующей химической реакции:

$$0.5 \mathrm{SiO}_2(\mathrm{s}) + 0.4 \mathrm{C}(\mathrm{s}) + \mathrm{Mg}(\mathrm{s}) \rightarrow$$
$$\rightarrow 0.1 \mathrm{Si}(\mathrm{s}) + 0.4 \mathrm{SiC}(\mathrm{s}) + \mathrm{MgO}(\mathrm{s}). \tag{1}$$

Навески порошков готовили в соответствии с требуемой стехиометрией. Затем реагенты перемешивали в шаровой мельнице (нейлоновый контейнер и циркониевые шары) в течение 120 мин для достижения их равномерного распределения в смеси. Полученные смеси обрабатывали в высокоэнергетической шаровой мельнице Fritsch GmbH, Pulverisette 6 (контейнеры и шары из твердого сплава WC—Со; скорость вращения барабанов 250 об/мин, время обработки 60, 90, 120 и 150 мин). После механической обработки порошковые смеси прессовали под давлением 62 МПа в цилиндрические компакты диаметром 25.4 мм.

Адиабатическая температура горения смеси (T_{ad}) была рассчитана с использованием программного обеспечения HSC® согласно следующему уравнению [11]:

Рис. 1. Фотография экспериментальной установки (a) и характерный внешний вид конечного продукта (δ)

$$\Delta H = \int_{298}^{T_m} c_{p,s} dT + \Delta H_f + \int_{T_m}^{T_{ad}} c_{p,l} dT, \quad (2)$$

где ΔH — энтальпия реакции, ΔH_f — энтальпия превращения, c_p — удельная теплоемкость, T — текущая температура, T_m — температура плавления.

Рассчитанная адиабатическая температура реакции (1) составила $T_{ad} = 2162$ °C, чего, скорее всего, недостаточно для полного превращения реакционной смеси [3]. Поэтому для повышения температуры процесса дополнительно использовали высокоэнтальпийную систему Fe₂O₃/Al [12]. Компакт Fe₂O₃/Al массой 3 г в молярном соотношении компонентов 1:2 помещали на спрессованный компакт из реагентов и с его помощью инициировали горение смеси. После этого образец помещали в графитовый контейнер для предотвращения выброса материала в процессе СВС-реакции и переносили его в СВС-реактор, заполненный аргоном до давления 0.5 МПа (схема СВС-реактора приведена в нашей работе [8]). Экспериментальная установка, использованная в данной работе, представлена на рис. 1,а.

Реакцию CBC инициировали поджигом верхней части инициатора с помощью вольфрамовой нити, нагреваемой электрическим током. Тепло, генерируемое в инициирующей смеси экзотермической реакцией, быстро передавалось расположенным ниже слоям, в результате чего проходил разогрев компакта вплоть до его противоположного конца.

После охлаждения до комнатной температуры побочный продукт Fe/Al₂O₃ (рис. 1, *б*), образовавшийся в результате сгорания иници-

ирующей смеси, механически отделяли от синтезированного образца. Затем для удаления примеси синтезированные материалы обрабатывали в растворах HCl : CH₃COOH (при T =70 °C в течение 30 мин), 2M HCl (при T =70 °C в течение 30 мин) и в HF : H₂O (при T =95 °C в течение 30 мин). Обработку проводили при умеренном перемешивании. В ходе эксперимента соотношение массы синтезированного СВС-продукта к объему раствора составляло 1 г: 60 мл. Чтобы обеспечить полное удаление примесей из синтезированного продукта, каждый этап обработки повторяли минимум три раза. После каждой стадии растворения обработанные порошки отделяли путем фильтрования и промывали дистиллированной водой несколько раз. По окончании обработки порошки высушивали при T = 100 °C.

МЕТОДЫ АНАЛИЗА

Термические свойства механически обработанных порошков исследовали при помощи термического анализа (прибор STA, Jupiter, 449 F3) в режимах дифференциальной сканирующей калориметрии (ДСК) и термогравиметрии (ТГ) со скоростью нагрева 10 °С/мин в диапазоне $T = 30 \div 1300$ °С в среде азота. Фазовый состав и морфологию синтезированных образцов и образцов после обработки кислотой исследовали при помощи метода рентгеновской дифракции (PHILIPS, X'Pert MPD) с использованием соответственно Си K_{α} -излучения и растровой электронной микроскопии (Quanta 400, FEI).

На основании рентгеновских данных для порошков, полученных в результате обработ-

ки кислотой, проведен расчет среднего размера кристаллитов D по уравнению Шеррера [13] и плотности дефектов δ по соотношению Вильямсона — Смоллмена [14]:

$$D = K\lambda/\beta\cos\theta,\tag{3}$$

$$\delta = 1/D^2,\tag{4}$$

где K — коэффициент кристаллической формы (0.9), λ — длина волны рентгеновского излучения Cu K_{α} (1.54 Å), β — полная ширина на полувысоте пика на рентгенограмме, θ — угол Брэгга.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Состав материала на основе SiO₂, полученного из золы листьев бамбука золь-гель методом, был определен методом рентгеновской флюоресценции (XRF, AXIOS, MAX) (табл. 1).

COCTAB	используемого	материала	на	основе	50_{2}

Соединение	Концентрация, % (мас.)	
SiO_2	92.65	
K_2O	4.98	
P_2O_5	0.93	
CaO	0.37	
Al_2O_3	0.28	
Примеси	Баланс	

На рис. 2,*а* представлены кривые ДСК, полученные при постоянной скорости нагрева 10 °С/мин, для смесей порошков SiO₂/C/Mg, подвергнутых механической обработке в высокоэнергетической мельнице в течение различного времени ($t_{\rm MA}$).

Рис. 2. Кривые ДСК (*a*) и ТГ (*б*) порошковых смесей, механически обработанных в течение различного времени (нижняя кривая — смесь, не подвергнутая механической обработке)

Несмотря на то, что все образцы содержат реакционноспособные частицы магния, свидетельства эндотермического процесса, соответствующего плавлению магния при T = 650 °С, отсутствуют. Вместо этого наблюдается экзотермический процесс в диапазоне T = $500 \div 650$ °C, что может быть связано с кристаллизацией MgO. Равномерное распределение активных частиц магния малого размера позволило им вступать в химическую реакцию, что привело к экзотермическому характеру процесса, а не к плавлению [15]. Этот факт означает, что Si и SiC могли образоваться одновременно. Данные ДСК-анализа соотносятся с процессом магнийтермического восстановления, описанного в работе [16], в которой предполагалось, что восстановление происходит по реакции между газообразным магнием и твердым SiO₂. Сначала магний сублимирует, затем реагирует с SiO₂ с образованием свободного кремния и оксида магния MgO. После этого свободный кремний реагирует с углеродом с образованием SiC. Таким образом, можно считать, что ход кривых ДСК на рис. 2, a отражает сублимацию магния и последующее магнийтермическое восстановление.

Кроме того, кривая ДСК исходной смеси порошков имеет выраженный экзотермический пик при $T \approx 650$ °C, в то время как на кривых от порошковых смесей, подвергнутых механической обработке различной продолжительности ($t_{\rm MA} = 60 \div 150$ мин), присутствуют слабые экзотермические пики в диапазоне $T = 550 \div 600$ °C. Сдвиг экзотермических эффектов в сторону более низких температур может быть объяснен уменьшением размеров частиц после механической обработки, изменением структуры исходных частиц (образованием дефектов и уменьшением размеров зерен) и явлениями диффузии [17–19]. Эти изменения позволяют сублимации магния и магнийтермическому восстановлению происходить при более низких температурах [16, 20]. Механическая обработка также привела к снижению температуры горения за счет увеличения числа контактов между частицами в порошке, что способствует диффузии, являющейся основой самоподдерживающегося горения [21]. На кривых ДСК механически обработанных смесей порошков присутствуют небольшие экзотермические пики при $T = 850 \div 870$ °C. Их появление может быть связано с образованием структуры шпинели Mg_2SiO_4 [22].

Данные TГ-анализа порошковых смесей SiO₂/C/Mg показаны на рис. 2, δ . Кривая TГ смеси порошков, не подвергнутой механической обработке, указывает на изменение массы образца в диапазоне $T = 200 \div 600$ °C, в то время как механически обработанные смеси теряют массу в диапазоне $T = 200 \div 450$ °C, что может быть связано с плавлением магния. Эти данные хорошо согласуются с данными ДСК.

На рис. 3 представлены рентгенограммы смеси исходных порошков и порошков после механической обработки в течение различного времени. Во всех образцах обнаружены рефлексы магния (ICDD № 01-078-5053), SiC (ICDD № 01-075-0254) и МдО (ICDD № 01-077-2364). Рефлексы SiO₂ и углерода на рентгенограммах отсутствуют вследствие аморфного состояния данных фаз. Наблюдается образование небольших количеств SiC после $90 \div 150$ мин и MgO после 150 мин механической обработки. Образование данных соединений возможно в силу накопления энергии (высвобождаемая энергия вызывает деформацию образца и мгновенное повышение температуры), которая может превзойти энергию активации [15].

Результаты рентгенофазового анализа (рис. 4) показывают, что продукты синтеза, полученные из смесей порошков, подвергнутых механической обработке, состоят из Si (ICDD № 01-073-6978), MgO (ICDD № 01-077-2364) и менее стабильной фазы Mg₂SiO₄ (ICDD № 01-076-0561). Фазу SiC не удается обна-

I, отн. ед. + Mg \bullet SiC \bullet MgO 150 мин + + + + + + 120 мин 90 мин 60 мин $t_{MA} = 0$ 15 20 25 30 35 40 45 50 55 60 65 70 75 2 θ , град

Рис. 3. Рентгенограммы порошковой смеси, не подвергнутой механической обработке (нижняя линия), и смесей, механически обработанных в течение различного времени

Рис. 4. Рентгенограммы продуктов CBC в порошковой смеси, не подвергнутой механической обработке (нижняя линия), и в порошковых смесях, механически обработанных в течение различного времени (a), а также материалов, полученных посредством обработки продуктов CBC в кислоте (δ)

ружить в присутствии фазы Mg₂SiO₄ (если количество образовавшегося SiC небольшое), что может быть связано с наложением друг на друга рефлекса SiC ($2\theta = 35.66^{\circ}$, параметр решетки a = 4.36 Å) и наиболее интенсивного рефлекса Mg₂SiO₄ ($2\theta = 35.74^{\circ}$, a = 4.75 Å) [23].

Как видно из рис. 4, в синтезированном продукте образуется большое количество Mg_2SiO_4 . Этот результат согласуется с работой [24] и связан с превращением некоторого количества SiO_2 при взаимодействии с MgO в Mg_2SiO_4 в процессе высокоэнергетической механической обработки еще до магнийтермического восстановления в ходе CBC-реакции. Данный эффект подтверждается наличием рефлексов MgO на рентгенограммах механически обработанных смесей порошков (см. рис. 3).

Рентгенограммы, представленные на рис. 4, показывают, что порошки, полученные после обработки в кислоте, содержат Si (ICDD № 01-073-6978) и SiC (ICDD № 01-075-0254) в качестве основных фаз. Такой состав материалов обусловлен тем, что побочные продукты и нежелательные фазы были практически полностью удалены при обработке кислотными растворами. Вследствие механической обработки, SiO₂ был в значительной степени восстановлен до Si, поэтому содержание кремния в порошках, подвергнутых механической обработке, было выше, чем в порошках из смеси, не прошедшей механическую обработку.

В процессе CBC возможны следующие химические реакции:

$$SiO_2(s) + 2Mg(l) + C(s) - C(s)$$

$$\rightarrow$$
 SiC(s) + 2MgO(s), (5)

$$SiO_2(s) + 2Mg(l) \rightarrow Si(s) + MgO(s),$$
 (6)

$$Si(l) + C(s) \rightarrow SiC(s),$$
 (7)

$$2MgO(s) + SiO_2(l) \rightarrow Mg_2SiO_4(s),$$
 (8)

$$SiO_2(s) + C(s) \rightarrow SiO(g) + CO(g),$$
 (9)

$$SiO(g) + 2C(s) \rightarrow SiC(s) + CO(g),$$
 (10)

$$SiO_2(s) + CO(g) \rightarrow SiO(g) + CO_2(g), (11)$$

$$CO_2(g) + C(s) \rightarrow 2CO(g).$$
 (12)

Механизм образования соединений в процессе СВС описан в работе [8]. На начальной стадии все реагенты находились в твердом состоянии (реакция (1)). При достижении температуры воспламенения ($T_{ian} \approx 650$ °C) диоксид кремния SiO₂ и углерод сначала оказались в окружении расплавленного магния. Количество SiO₂ значительно снизилось, что связано с экзотермическими реакциями образования кремния (Si), карбида кремния (SiC) и оксида магния (MgO) (реакции (5), (6)). В то же время внезапное высвобождение большого количества тепла в результате двух предыдущих реакций ($T \leq 1400 \div 1700$ °C) привело к плавлению кремния, который затем распределился по поверхности частиц углерода под действием капиллярных сил. После быстрого внедрения кремния в углерод между ними произошла реакция твердое — жидкое (7), в результате которой образовался SiC. Когда температура горения достигла адиабатической температуры реакции, кремний полностью расплавился и углерод, кремний и кислород начали быстро диффундировать, что привело к одновременному образованию MgO и SiC. Если реакция горения не успевала пройти до конца из-за высокой скорости охлаждения, мог образоваться силикат магния Mg_2SiO_4 (реакция (8)). Следует отметить, что газообразные SiO и CO, образующиеся в процессе СВС (реакция (9)), способствуют образованию твердого SiC. Массоперенос SiO осуществлялся через газовую фазу. Кремний мигрировал в виде газа SiO к поверхности твердых частиц углерода и непосредственно участвовал в образовании SiC (реакция (10)). Газообразный СО вступал в реакцию с твердым SiO₂ с образованием дополнительных количеств газообразных SiO и CO_2 (реакция (11)). CO₂, полученный по реакции (11), преобразовывался в равновесный СО (реакция (12)), который затем реагировал с оставшимся твердым SiO₂ с образованием дополнительного количества газообразного SiO. В работе [25] сообщалось, что проведение процесса в потоке аргона способствует получению большого количества газов SiO и CO.

В работе [26] сделано предположение, что высокоэнергетическая механическая обработка значительно влияет на скорость образования газообразного SiO в процессе восстановления SiO₂ (реакция (9)) углеродом вследствие того, что малый размер частиц способствует увеличению площади контакта между SiO₂ и углеродом и тем самым способствует образованию SiO. Однако при высокой температуре ($T \approx$ 1700 °C) твердый MgO, полученный по реакциям (5) и (6), может реагировать с газообразными SiO и CO с образованием соединения Mg₂SiO₄ по следующей реакции из работы [27]:

$$\rm SiO(g) + 2MgO(s) + CO(g) \rightarrow$$

$$\rightarrow Mg_2SiO_4(s) + C(s), (13)$$

что подтверждается термодинамическими расчетами (анализ проведен с использованием программного обеспечения HSC^{\circledast} , результаты представлены на рис. 5). Данный вывод также подтверждается наличием фазы Mg_2SiO_4 на рентгенограммах синтезированных продуктов (см. рис. 4).

На рис. 6,*a* показаны микрофотографии продуктов, полученных из смесей порошков, подвергнутых высокоэнергетической механической обработке. Образцы имеют пористую

Рис. 5. Графическое представление протекания реакции (13)

микроструктуру и неправильную форму частиц отдельных фаз. Как правило, пористая структура продуктов in situ CBC-реакций обусловлена сначала нарастанием, а затем падением давления внутри компакта при высвобождении газообразных веществ, таких как Mg, SiO, CO и CO₂ [28]. Из рис. 6, а также следует, что микроструктура образцов становится более плотной по мере увеличения времени механической обработки исходных порошков. Это связано с уменьшением размеров частиц порошков в реакционных смесях. Меньшие по размеру частицы имеют более высокую удельную поверхность, и в промежутках между ними могут располагаться другие частицы. Таким образом, частицы реагентов оказываются более плотно упакованными в смеси, что и приводит к более плотной микроструктуре.

На рис. 6, б приведены микрофотографии образцов, полученных из смесей порошков, подвергнутых механическому воздействию и затем обработанных в кислоте. Видно, что порошки имеют форму грубодисперсных агломератов частиц. По мере увеличения времени механического воздействия размер частиц в порошках после обработки кислотой уменьшается. Это происходит вследствие перемешивания фаз в процессе механообработки, которое сопровождается уменьшением размера частиц и увеличением удельной поверхности, что сокращает диффузионные расстояния. Данные структурные изменения приводят к значительному уменьшению времени инициирования самораспространяющегося режима горения, к более низкой температуре горения, более высокой

Рис. 6. Микрофотографии продуктов CBC-реакции, полученных из порошковой смеси, не подвергнутой механической обработке (две верхних фотографии), и порошковых смесей, механически обработанных в течение различного времени (*a*). Микрофотографии материалов, полученных посредством обработки продуктов CBC в кислоте (δ)

Рис. 7. Цифровые моментальные изображения, демонстрирующие последовательность стадий CBC-процесса в образцах порошковых смесей, подвергнутых механической обработке в течение различного времени:

изображения получены через прозрачное окно CBC-установки, реакция завершается, когда интенсивность свечения уменьшается

скорости CBC и большей скорости охлаждения, чем в случае использования смеси порошков, не подвергнутой механической обработке (см. пример на рис. 7). Результатом этого является более быстрое достижение равновесия в образцах из механически обработанных порошков. Таким образом, достижение высокой температуры за более короткий период времени приводит к получению порошков с более тонкой микроструктурой, поскольку зародыши фаз не имеют времени для роста [25]. Эти результаты согласуются с данными на рис. 2,*a*.

Результаты, представленные в табл. 2, показывают, что увеличение времени механической обработки приводит к уменьшению размера кристаллитов и увеличению плотности дефектов в образцах после обработки кислотой. Как отмечалось в работе [14], такое увеличе-

Таблица 2

Структурные изменения					
в синтезированных материалах,					
обработанных в кислоте,					
в зависимости от времени механической активации					

Время механической обработки, мин	Размер кристаллитов, нм	Плотность дефектов, 10^{-4} нм ⁻²
0	21.34	2.19
60	19.62	2.59
90	16.04	3.88
120	14.96	4.46
150	14.84	4.54

ние плотности дефектов (например, дислокаций) может ускорить диффузию за счет уменьшения диффузионных расстояний. Таким образом, данные расчеты подтверждают влияние высокоэнергетической механической обработки на протекание диффузии и, следовательно, CBC-реакции.

выводы

Методом CBC получен композит Si—SiC из порошковой смеси SiO₂/C/Mg. Увеличение времени механической обработки реакционной смеси в высокоэнергетической мельнице приводит к уменьшению размера частиц и увеличению удельной поверхности. Высокая плотность дефектов в полученных смесях способствует более быстрой диффузии, высоким скоростям распространения горения и охлаждения, а также формированию материала с меньшим размером кристаллитов. В то же время, как показали результаты исследований, продолжительная механическая обработка приводит к образованию нестабильного соединения Mg₂SiO₄ за счет выделения большого количества газообразных SiO и CO, которые могут реагировать c MgO.

Авторы выражают благодарность Т. Suwachatree, J. Sri-Udom, Y. Hemra и N. Radklaochotsatain за ценную помощь при проведении отдельных экспериментов. Авторы также благодарны Т. Д. Койну за тщательную корректировку английского языка рукописи.

ЛИТЕРАТУРА

1. Wilhelm M., Kornfeld M., Wruss W. Development of SiC—Si composites with fine-grained SiC microstructures // J. Eur. Ceram. Soc. — 1999. — V. 19, N 12. — P. 2155–2163.

- Chanadee T., Niyomwas S. Self-propagating high-temperature synthesis of Si—SiC composite powder // Key Eng. Mater. — 2016. — V. 675-676. — P. 623–626.
- 3. Schubert U., Hüsing N. Synthesis of Inorganic Materials. Weinheim: Wiley-VCH, 2012.
- Varma A., Rogachev A., Mukasyan A., Hwang S. Advances in Chemical Engineering. — New York: Academic Press, 1998.
- 5. Yermekova Z., Mansurov Z., Mukasyan A. Influence of precursor morphology on the microstructure of silicon carbide nanopowder produced by combustion syntheses // Ceram. Int. — 2010. — V. 36, N 8. — P. 2297–2305.
- 6. Bansal N., Singh J. Processing and Properties of Advanced Ceramics and Composites. — New Jersey: John Wiley & Sons, Inc., 2009.
- Niyomwas S. In situ synthesis of silicon-silicon carbide composites from SiO₂—C—Mg system via self-propagating high-temperature synthesis // Tech. Rejika. — 2011.
- 8. Chanadee T. Experimental studies on selfpropagating high-temperature synthesis of Si— SiC composite from reactants of SiO₂ derived from corn cob ash/C/Mg // J. Aust. Ceram. Soc. — 2017. — V. 53, N 1. — P. 245–252.
- Ağaoğullari D., Balci Ö., Öveçoğlu L., Duman İ. Microstructural evaluation of ZrB₂/ZrO₂ ceramic powders prepared by milling-assisted magnesiothermic reduction of oxide raw materials // KONA Powder and Particle J. — 2017. — V. 34. — P. 183–196.
- Chanadee T., Chaiyarat S. Preparation and characterization of low cost silica powder from sweet corn cobs (Zea mays saccharata L.) // J. Mater. Environ. Sci. — 2016. — V. 7, N 7. — P. 2369–2374.
- Niyomwas S. Synthesis and characterization of silicon-silicon carbide composites from rice husk ash via self-propagating high temperature synthesis // J. Met. Mater. Miner. — 2009. — V. 19, N 2. — P. 21–25.
- 12. Durães L., Costa B., Santos R., Correia A., Campos J., Portugal A. Fe₂O₃/aluminum thermite reaction intermediate and final products characterization // Mater. Sci. Eng. A. — 2007. — V. 465, N 1-2. — P. 199–210.
- Alexander L., Klug H. Determination of crystallite size with the X-ray spectrometer // J. Appl. Phys. — 1950. — V. 21, N 137. — P. 137–142.
- 14. Setoudeh N., Zamani C., Sajjadnejad M. Mechanochemical synthesis of nanostructured $Mg_xNi_{1-x}O$ compound by Mg—NiO mixture // J. Ultrafine Grained Nanostruct. Mater. — 2017. — V. 50, N 1. — P. 51–59.
- 15. Martinez-Garcia A., Navarro-Mtz A., Aparicio-Saguilan A., Valera-Zaragoza M.,

Avalos-Borja M., Juarez-Arellano E. Determination of the mechanosynthesis conditions of the Mg—MgO reaction region // Inorg. Chem. Ind. J. — 2015. — V. 10, N 2. — P. 34–40.

- 16. Cho W., Kim H., Lee H., Seo M., Ra H., Yoon S., Mun T., Kim Y., Kim J., Kim B., Kook J., Yoo C., Lee J., Choi J. 5Lscale magnesio-milling reduction of nanostructured SiO₂ for high capacity silicon anodes in lithium-ion batteries // Nano Lett. — 2016. — V. 16, N 11. — P. 7261–7269.
- Grigorieva T., Kaminsky Y., Sharafutdinov M., Talako T., Vorsina I., Barinova A., Becker K., Šepelák V., Lyakhov N. Mechanical activation assisted self-propagating hightemperature synthesis of Si/Al₂O₃ composites // J. Phys.: Conf. Ser. — 2009. — V. 144. — P. 1–4.
- Григорьева Т. Ф., Талако Т. Л., Шарафутдинов М. Р., Каминский Ю. Д., Ворсина И. А., Цыбуля С. В., Баринова А. П., Ляхов Н. З. Ультрадисперсные композиты Si/Al₂O₃, полученные комбинированием методов механоактивации и самораспространяющегося высокотемпературного синтеза // Физика горения и взрыва. — 2010. — Т. 46, № 1. — С. 43–47.
- Григорьева Т. Ф., Лецко А. И., Талако Т. Л., Цыбуля С. В., Ворсина И. А., Баринова А. П., Ильющенко А. Ф., Ляхов Н. З. Получение композитов Cu/ZrO₂ комбинированием методов механической активации и самораспространяющегося высокотемпературного синтеза // Физика горения и взрыва. — 2011. — Т. 47, № 2. — С. 54–58.
- Seifolazadeh A., Mohammadi S. Synthesis and characterization of nanoboron powders prepared with mechanochemical reaction between B₂O₃ and Mg powders // Bull. Mater. Sci. — 2016. — V. 39, N 2. — P. 479–486.

- Shon I., Ko I., Jun H., Hong K., Oh S., Doh J., Yoon J. Rapid consolidation of nanostuctured MgO—Mg₂SiO₄ composites by high frequency induction heated sintering // J. Ceram. Proc. Res. — 2011. — V. 12, N 3. — P. 314–318.
- Tavangarian F., Emadi R. Synthesis of pure nanocrystalline magnesium silicate powder // Ceram-Silikáty. — 2010. — V. 54, N 2. — P. 122– 127.
- Sugahara Y., Kuroda K., Kato C. Nitridation of sepiolite by carbothermal reduction // J. Mater. Sci. Lett. — 1985. — V. 4, N 7. — P. 928–931.
- Jalaly M., Bafghi M., Tamizifar M., Gotor F. In situ synthesis of a ZrB₂-based composite powder using a mechanochemical reaction for the zircon/magnesium/boron oxide/graphite system // Int. J. Appl. Ceram. Technol. — 2015. — V. 12, N 3. — P. 551–559.
- 25. Meng G., Cui Z., Zhang L., Phillipp F. Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO₂ xerogels containing carbon nanoparticles // J. Cryst. Growth. — 2000. — V. 209, N 4. — P. 801–806.
- Lin Y., Tsang C. The effects of starting precursors on the carbothermal synthesis of SiC powders // Ceram. Int. 2003. V. 29, N 1. P. 69–75.
- Zhu T., Li Y., Sang S., Jin S. The influence of Al and Si additives on the microstructure and mechanical properties of low-carbon MgO—C refractories // J. Ceram. Sci. Technol. — 2016. — V. 7, N 1. — P. 127–134.
- Dehghanzadeh M., Ataie A., Heshmati-Manesh S. Synthesis of nanosize silicon carbide powder by carbothermal reduction of SiO₂ // Int. J. Mod. Phys: Conf. Ser. — 2012. — V. 5. — P. 263–269.

Поступила в редакцию 23/Х 2017 г.