УДК 536.8,536.46

НЕПРЕРЫВНАЯ ДЕТОНАЦИЯ В СВЕРХЗВУКОВОМ ПОТОКЕ ВОДОРОДОКИСЛОРОДНОЙ СМЕСИ

С. А. Ждан, А. И. Рыбников

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, zhdan@hydro.nsc.ru

В двумерной нестационарной постановке рассмотрена задача о непрерывной спиновой детонации в сверхзвуковом потоке в проточной кольцевой камере сгорания. Исследована динамика детонационной волны в водородокислородной смеси при изоэнтропическом и ударно-волновом сжатии потока во входном диффузоре. Показано, что при формировании непрерывной спиновой детонации уменьшается расход смеси через камеру сгорания, а на входе в сверхзвуковой диффузор реализуется стационарный режим с «выбитой» ударной волной. В профилированной камере сгорания получено ограничение сверху на число Маха натекающего сверхзвукового потока, при котором реализуется непрерывный детонационный режим.

Ключевые слова: непрерывная спиновая детонация, проточная камера сгорания, поперечные детонационные волны, математическое моделирование.

ВВЕДЕНИЕ

В качестве альтернативы традиционному сжиганию топлив в турбулентном пламени рассматриваются способы детонационного их сжигания в импульсном детонационном режиме |1, 2| и непрерывном спиновом детонационном режиме, впервые реализованном Б. В. Войцеховским [3]. К настоящему времени режимы непрерывной спиновой детонации (НСД) получены и подробно исследованы [4-6] в кольцевых камерах сгорания типа жидкостного ракетного двигателя и в камерах проточного типа для ряда топливно-кислородных и топливновоздушных смесей при дозвуковой скорости подачи окислителя. Вопрос о возможности распространения принципа непрерывно вращающейся детонации на сверхзвуковые прямоточные реактивные двигатели (СПРД) со сверхзвуковой скоростью натекающего потока рассмотрен в работе [7], где при численном моделировании процесса сжигания водородокислородной смеси впервые получено решение с наличием НСД в кольцевой цилиндрической камере сгорания вплоть до числа Маха натекающего потока $M_0 = 3$. Существование НСД в проточной кольцевой камере с учетом предварительного изоэнтропического сжатия

сверхзвукового потока в диффузоре рассмотрено в [8]. Отметим, что параметрический анализ СПРД в режиме НСД вплоть до $M_0 = 5$ в одномерном приближении проведен в [9].

Цель данной работы — обобщить постановку задачи [7, 8] на случай ударно-волнового сжатия натекающего сверхзвукового потока в плоском диффузоре, численно исследовать влияние степени частичного торможения потока в косой ударной волне на область существования и свойства непрерывного детонационного режима, сравнить результаты со случаем предварительного изоэнтропического сжатия потока в диффузоре.

1. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ ПРИ ИЗОЭНТРОПИЧЕСКОМ СЖАТИИ ПОТОКА В ДИФФУЗОРЕ

Сверхзвуковой поток (число Маха потока $M_0 > 1$, давление p_0 , температура T_0 , молекулярная масса μ_0 , показатель адиабаты γ_0), проходя через сверхзвуковой диффузор (входная площадь сечения S_0 , выходная — S_1) и частично затормаживаясь до параметров потока $p_1, T_1, M_1 \ge 1$, поступает в кольцевой цилиндрический канал длиной L_1 , шириной δ , а затем в камеру сгорания кольцевой геометрии. Камера сгорания имеет на входе сопряжение длиной L_2 с линейным расширением кольцевого канала от δ до Δ . Схема кольцевой камеры сгорания, в которой моделируется газодинамическое течение, представлена на рис. 1.

Диаметр камеры d_c , ее длина L_c , ширина

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 13-01-00178) и фонда Президента РФ по государственной поддержке ведущих научных школ (НШ-247.2012.1).

[©] Ждан С. А., Рыбников А. И., 2014.

Рис. 1. Схема диффузора и кольцевой камеры сгорания

кольцевого канала Δ ($\Delta > \delta$), площадь проходного сечения S_2 . На расстоянии L_3 от входа в камеру сгорания цилиндрический канал линейно расширяется до площади проходного сечения на выходе S_{ex} .

Предполагая, что расстояние между стенками трубы по сравнению с ее радиусом мало $(\delta_0 \ll d_c, \, \delta < \Delta \ll d_c)$ и параметры потока в радиальном направлении практически не изменяются, трехмерную задачу, аналогично [7], можно упростить и свести к квазитрехмерной с границами Γ_1 (вход в кольцевую цилиндрическую часть диффузора), Γ_2 (вход в камеру сгорания) и Г₃ (открытый конец камеры, через который вытекают продукты сгорания). Действительно, разрезав кольцевую область и развернув ее в прямоугольную $\Omega = \Omega_1 \cup \Omega_2$ с периодическими граничными условиями вдоль одного координатного направления, задачу о сверхзвуковом течении и детонационном сжигании горючей смеси в кольцевом пространстве камеры можно свести к двумерной в каналовом приближении (рис. 2). Здесь $\Gamma_1 = (x =$ $-L_1, 0 < y < l$, $\Omega_1 = (-L_1 < x < 0, 0 < y < l =$ πd_c), $\Omega_2 = (0 < x < L_c, 0 < y < l), x, y -$ про-

Рис. 2. Область численного решения задачи в случае изоэнтропического сжатия потока в диффузоре

странственные переменные ортогональной системы координат.

Зависимость площади сечения канала S(x) задавалась в виде

$$S(x) = \begin{cases} \delta l, & -L_1 < x < 0, \\ \left[\delta + (\Delta - \delta) \frac{x}{L_2} \right] l, & 0 < x < L_2, \\ \Delta l, & L_2 < x < L_3, \\ \left[\Delta + (\Delta_{ex} - \Delta) \frac{x - L_3}{L - L_3} \right] l, & L_3 < x < L. \end{cases}$$
(1)

Пусть в некоторый момент времени после начала втекания сверхзвукового потока в части области решения мгновенно выделяется энергия, достаточная для инициирования детонации смеси в камере сгорания. В результате инициирования в области Ω_2 может распространяться нестационарная детонационная волна. Требуется определить ее динамику, структуру, а также условия выхода на самоподдерживаюцийся режим НСД в зависимости от определяющих параметров задачи.

Течение смеси в области решения Ω описывалось системой уравнений нестационарной газовой динамики в квазитрехмерном каналовом приближении [7], дополненной моделью химической кинетики [10] для реагирующих смесей H₂—O₂ с переменным тепловыделением в зоне реакции.

Граничные условия

Параметры натекающего сверхзвукового потока известны: M_0 , p_0 , T_0 , μ_0 , γ_0 . Предполагая изоэнтропичность сжатия газа в сужающейся части сверхзвукового диффузора, при заданном отношении площадей $S_0/S_1 = \delta_0/\delta$ из соотношения

$$\frac{\mathrm{M}_1}{\mathrm{M}_0} \left[\frac{1 + 0.5(\gamma_0 - 1)\mathrm{M}_0^2}{1 + 0.5(\gamma_0 - 1)\mathrm{M}_1^2} \right]^{(\gamma_0 + 1)/[2(\gamma_0 - 1)]} = \frac{S_0}{S_1}$$
(2)

находим число Маха M_1 (при $x = -L_1$), что позволяет определить остальные параметры сверхзвукового потока, поступающего в цилиндрическую часть канала:

$$T_1 = T_0 \frac{1 + 0.5(\gamma_0 - 1)M_0^2}{1 + 0.5(\gamma_0 - 1)M_1^2}, \quad c_1 = c_0 \left(\frac{T_1}{T_0}\right)^{1/2},$$
(3)

$$\rho_1 = \frac{S_0}{S_1} \frac{\rho_0 c_0 \mathcal{M}_0}{c_1 \mathcal{M}_1}, \quad p_1 = p_0 \frac{T_1}{T_0} \frac{\rho_1}{\rho_0}.$$

Таким образом,

а) на границе области решения Γ_1 ($x = -L_1; 0 \leq y \leq l$) задаем постоянные параметры сверхзвукового потока ($M_1 > 1$):

$$p(-L_1, y, t) = p_1, \ u(-L_1, y, t) = M_1 c_1, \ v = 0,$$

$$\rho(-L_1, y, t) = \rho_1, \ T(-L_1, y, t) = T_1;$$
(4)

б) на границе Γ_2 (x = 0; $0 \leq y \leq l$), где имеет место переход из кольцевой щели диффузора в камеру сгорания, выставляем приближенное условие

$$Y = 1, \ \mu = \mu_0,$$
 (5)

обеспечивающее инертность газового потока в диффузоре ($-L_1 \leq x \leq 0$), поскольку в экспериментах с камерами проточного типа [4–6] вдув топлива осуществлялся на входе в камеру сгорания;

в) на выходе из камеры (граница Γ_3 : $x = L, 0 \leq y \leq l$) при истечении струи продуктов сгорания в пространство с достаточно низким противодавлением происходит переход через скорость звука, поэтому вдоль всей границы Γ_3 осевая составляющая вектора скорости uне меньше местной скорости звука c. Поэтому условие свободного истечения продуктов представимо в виде

$$u(L, y, t) \ge c(L, y, t); \tag{6}$$

г) на левой и правой границах области Ω задаем условие периодичности решения. В силу периодичности (с периодом l) течения по координате y любая газодинамическая функция F(x, y, t) удовлетворяет условию

$$F(x,0,t) = F(x,l,t), \quad -L_1 \leqslant x \leqslant L.$$
(7)

Начальные условия

В качестве начальных данных (t = 0) в области решения Ω задавали постоянные параметры:

$$p(x, y, 0) = p_1, \ u(x, y, 0) = M_1 c_1, \ v = 0,$$

 $\rho(x, y, 0) = \rho_1, \ Y = 1, \ \mu = \mu_0.$

В момент времени t = 0 в части области решения $\Omega_3 = (0 < x < x_* < L_c, 0 < y < y_* < l)$ производился мгновенный энергоподвод с объемной плотностью энергии Q, достаточный для инициирования детонации. При t > 0по области $\Omega_2 \cap \Omega_3$ начинает распространяться нестационарная поперечная детонационная волна (ПДВ) с энерговыделением за ее фронтом.

При заданных термодинамических свойствах газовой смеси, обезразмеривая, аналогично [11], в уравнениях и граничных условиях искомые функции, координаты и время p/p_0 , $\rho/\rho_0, T/T_0, \mu/\mu_0, u/u_0, v/u_0, x/l, y/l, t/t_0$ otносительно параметров p_0 , ρ_0 , T_0 , μ_0 , $u_0 =$ $\sqrt{p_0/\rho_0}$, *l*, $t_0 = l/u_0$, получаем, что решение задачи о непрерывной спиновой детонационной волне в натекающем сверхзвуковом потоке заданной смеси зависит от следующих определяющих параметров: невозмущенных параметров сверхзвукового потока — числа Маха М₀, давления p_0 , температуры T_0 , молекулярной массы μ_0 ; отношения площадей поперечных сечений — на входе и выходе сверхзвукового диффузора S_0/S_1 , кольцевых каналов диффузора и камеры $S_1/S_2 = \delta/\Delta$, на выходе и входе в камеру $S_{ex}/S_2 = \Delta_{ex}/\Delta$; пяти масштабных размеров — длины цилиндрической части диффузора L_1 , длины начального участка расширения камеры L_2 , длины участка камеры постоянной ширины L_3 , общей длины камеры L_c и перио- $\pi a l.$

2. ОБОБЩЕНИЕ МАТЕМАТИЧЕСКОЙ ПОСТАНОВКИ ЗАДАЧИ НА СЛУЧАЙ УДАРНО-ВОЛНОВОГО СЖАТИЯ ПОТОКА В ДИФФУЗОРЕ

Известно [12], что при сверхзвуковом течении в сужающейся части диффузора образуются косые ударные волны (УВ), в результате течение газа на его выходе будет неизоэнтропическим. Отказ от сформулированного выше упрощающего предположения об изоэнтропичности сверхзвукового течения в сужающейся части диффузора приводит к необходимости обобщения сформулированной в п. 1 задачи, включающей в себя определение газодинамических параметров в сверхзвуковом диффузоре при ударно-волновом сжатии потока.

Итак, течение газа в области плоского диффузора $\Omega_0 = (-L_0 - L_1 < x < -L_1, R(x) < z < \delta_0)$ будем описывать системой двумерных нестационарных уравнений газовой динамики в декартовой системе координат (x, z):

 $\frac{\partial \sigma}{\partial t} + \frac{\partial a}{\partial r} + \frac{\partial b}{\partial z} = 0,$

(8)

 $\langle I \rangle$

где

$$\sigma = \begin{bmatrix} \rho \\ \rho u \\ \rho w \\ \rho E \end{bmatrix}, \quad a = \begin{bmatrix} \rho u \\ p + \rho u^2 \\ \rho u w \\ \rho u \left(E + \frac{p}{\rho} \right) \end{bmatrix},$$
$$b = \begin{bmatrix} \rho w \\ \rho u w \\ p + \rho w^2 \\ \rho w \left(E + \frac{p}{\rho} \right) \end{bmatrix}.$$

Здесь ρ — плотность, p — давление, u и w — составляющие вектора скорости вдоль осей x и z соответственно, $E = U + (u^2 + w^2)/2$, U — внутренняя энергия, R(x) — форма внутренней поверхности сверхзвукового диффузора, которую на входе будем отсчитывать вдоль оси z от нуля, т. е. $R(-L_0 - L_1) = 0$.

Диффузор длиной L_0 с входной площадью сечения S_0 (вертикальный размер δ_0) и выходной S_1 (вертикальный размер δ) зададим в виде плоского клина с постоянным углом наклона α к оси абсцисс x. Тогда уравнение нижней границы R(x) области плоского диффузора Ω_0 представимо в виде

$$R(x) = \begin{cases} (x + L_0 + L_1) \operatorname{tg} \alpha, \\ -L_0 - L_1 < x < -L_0 - L_1 + \frac{\delta_0 - \delta}{\operatorname{tg} \alpha}, \\ \delta_0 - \delta, \quad x \ge -L_0 - L_1 + \frac{\delta_0 - \delta}{\operatorname{tg} \alpha}. \end{cases}$$
(9)

Система уравнений (8) в области Ω_0 при заданных параметрах натекающего сверхзвукового потока M_0 , p_0 , T_0 , μ_0 , γ_0 на входе в диффузор — граница $\Gamma_0 = \{x = -L_0 - L_1, 0 < z < \delta_0\}$ и при условиях непротекания на твердых стенках позволяет получить газодинамические параметры в диффузоре, в том числе и на его выходе — граница $\Gamma_1 = \{x = -L_1, \delta_0 - \delta < z < \delta_0\}$.

В результате решения сформулированной выше задачи о сверхзвуковом газодинамическом течении в диффузоре (область Ω_0) находим распределение параметров сверхзвукового потока на выходе вдоль оси z (граница Γ_1). Затем процедурой осреднения [13], основанной на законах сохранения массы, энтропии (s) и энергии

$$G = \int_{\delta_0 - \delta}^{\delta_0} \rho(z)u(z)dz = \langle \rho \rangle \langle u \rangle \delta = g\delta,$$
$$\langle s \rangle = \frac{1}{G} \int_{\delta_0 - \delta}^{\delta_0} s\rho u dz,$$
$$\frac{\langle p \rangle}{\langle \rho \rangle^{\gamma}} = \frac{p_0}{\rho_0^{\gamma}} \exp \frac{\langle s \rangle - s_0}{c_v}, \tag{10}$$
$$= \frac{1}{G} \int_{\delta_0 - \delta}^{\delta_0} \left(\frac{u^2 + w^2}{2} + \frac{\gamma}{\gamma - 1} \frac{p}{\rho}\right) \rho u dz =$$

 $= \frac{1}{g} \left(\frac{\langle u \rangle^2}{2} + \frac{\gamma}{\gamma - 1} \frac{\langle p \rangle}{\langle \rho \rangle} \right),$

из соотношений (10) находим средние параметры $\langle \rho \rangle$, $\langle u \rangle$, $\langle p \rangle$ одномерного потока, которые дают граничные условия (4) для задачи о НСД в камере сгорания (область $\Omega_1 \cup \Omega_2$). Здесь g — удельный расход, $\langle s \rangle$ — средняя энтропия, $\langle I \rangle$ — средний поток удельного теплосодержания.

Сформулированная в обобщенной постановке задача решалась численно конечноразностным методом Годунова — Колгана [14, 15]. Численное решение проводили в три этапа: а) расчет параметров сверхзвукового потока в плоском диффузоре; б) инициирование поперечной детонационной волны в камере сгорания и распространение УВ в области решения Ω_1 навстречу сверхзвуковому потоку [7]; в) выход УВ в область Ω_0 и ее стабилизация на плоском клине. Ясно, что расчеты этапов а) и в) возможны только в обобщенной постановке задачи (4)–(10), когда проводится численное моделирование ударно-волнового сжатия газа в диффузоре.

							,
M_0	p_*/p_0	T_*, \mathbf{K}	M_{10}	p_{10}/p_{0}	$ ho_{10}/ ho_0$	χ , рад	A_{10}
2.5	17.086	675	2.00 (2.0446)	2.01 (2.0098)	$1.61 \\ (1.6303)$	$\begin{array}{c} 0.59 \\ (0.578) \end{array}$	$\begin{array}{c} 1.0319 \\ (1.0138) \end{array}$
3	36.733	840	2.42 (2.4609)	2.235 (2.2386)	1.73 (1.7517)	$\begin{array}{c} 0.52 \\ (0.499) \end{array}$	$\begin{array}{c} 1.0375 \\ (1.0212) \end{array}$
3.5	76.272	1035	2.81 (2.8560)	2.493 (2.4988)	1.85 (1.8818)	0.45 (0.447)	1.0536 (1.0312)

 ${
m Taблицa}\ 1$ Газодинамические параметры за косой УВ на клине (tglpha= 0.2)

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ ГАЗОДИНАМИЧЕСКИХ ПАРАМЕТРОВ В ДИФФУЗОРЕ

Численное исследование выполнено для стехиометрической водородокислородной газовой смеси (2H₂ + O₂) при следующих значениях констант: $T_0 = 300$ K, $p_0 = 1.013 \cdot 10^5$ Па, $\mu_0 = 12$ кг/кмоль, $\rho_0 = p_0\mu_0/(RT_0)$, $\gamma_0 = 1.4$.

Предварительные расчеты параметров газа в плоском диффузоре и на его выходе проведены при значениях геометрических параметров

$$\frac{S_0}{S_1} = \frac{\delta_0}{\delta} = 2, \ L_0 = 2.8 \text{ cm}, \ \text{tg}\,\alpha = 0.2 \ (11)$$

и числах Маха натекающего сверхзвукового потока $M_0 = 2.5 \div 3.5$. Давление p_* и температура T_* торможения смеси в натекающем сверхзвуковом потоке для ряда значений M_0 приведены в табл. 1.

Газодинамические параметры в области Ω_0 с геометрическими параметрами (11) рассчитывали на равномерной сетке размером 50×200 ячеек. Задача о натекании однородного сверхзвукового потока на плоский клин имеет аналитическое решение [16]. Правильность работы алгоритма, достоверности и точности получаемых результатов проверяли сравнением с точным решением. Результаты расчетов параметров за косой УВ на клине для ряда чисел Маха М₀ представлены в табл. 1. Здесь M_{10} — число Маха, p_{10} — давление и ρ_{10} плотность за косой УВ, χ — угол между скоростью потока до скачка и линией скачка, $A_{10} = (p_{10}/p_0)/(\rho_{10}/\rho_0)^\gamma$ — функция энтропии, в скобках указаны точные данные аналитического решения [16]. Из табл. 1 следует, что в численном решении наибольшая погрешность наблюдается в числах Маха за косой УВ M₁₀ $(\approx 2.2 \%$ при M₀ = 2.5). Причем с увеличением

 M_0 эта погрешность монотонно уменьшается до 1.62 % при $M_0 = 3.5$.

На рис. 3 показана двумерная теневая картина распределения давления в плоском диффузоре с геометрическими параметрами (11) при $M_0 = 2.5$ после установления параметров потока на выходе. Она представляет собой классическую картину взаимодействия УВ со стенками диффузора [12]. Косая УВ (белая линия) на расстоянии 0.5 см от входа в диффузор отражается от верхней стенки. Сверхзвуковой поток, проходя через серию скачков, сжимается и частично затормаживается до $\langle M_1 \rangle \approx 1.554$. Зная из расчета значения газодинамических параметров вдоль вертикальной оси z на выходе из диффузора ($x = -L_1$), находим средние по Л. И. Седову [13] значения плотности $\langle \rho_1 \rangle$, скорости $\langle u_1 \rangle$, давления $\langle p_1 \rangle$. Для данного варианта указанные средние параметры, а также число Маха $\langle M_1 \rangle$ и температура $\langle T_1 \rangle$ приведены в первой строке табл. 2. Заметим, степень неоднородности газодинамического потока по вертикали на выходе из диффузора при $L_0 = 2.8$ см составляет: давление — ± 0.2 %, плотность — ± 2.1 %, число Maxa — ± 3.5 %, функция энтропии $A - \pm 3$ %. Следовательно, средние газодинамические параметры $\langle p_1 \rangle, \langle M_1 \rangle, \langle \rho_1 \rangle, \langle T_1 \rangle$ передаются в область численного решения Ω с указанной выше точностью. Расчетные данные на выходе из диффузора средних газодинамических параметров и функция энтропии

Рис. 3. Распределение давления в плоском диффузоре $\left(M_0 = 2.5 \right)$

Таблица 2 Газодинамические параметры на выходе из диффузора						
M_0	$\langle M_1 \rangle$	$\langle p_1 angle / p_0$	$\langle ho_1 angle / ho_0$	$\langle T_1 \rangle$, K	A	
2.5	$1.554 \\ (1.679)$	$3.958 \\ (3.571)$	$2.608 \\ (2.482)$	$ \begin{array}{c} 455 \\ (432) \end{array} $	$1.034 \\ (1)$	
3	$2.091 \\ (2.261)$	$3.501 \\ (3.122)$	2.344 (2.255)	$448 \\ (415)$	$1.062 \\ (1)$	
3.5	2.507 (2.768)	3.448 (2.952)	2.255 (2.167)	$458 \\ (409)$	$1.106 \\ (1)$	

 $A = (\langle p_1 \rangle / p_0) / (\langle \rho_1 \rangle / \rho_0)^{\gamma}$ для ряда значений M_0 представлены в табл. 2, в скобках указаны значения параметров при изоэнтропическом сжатии потока по формулам (2), (3). Из табл. 2 видно, что с ростом M_0 при ударно-волновом сжатии газа давление, плотность и температура на выходе из диффузора больше, чем при изоэнтропическом сжатии, а число Маха M_1 меньше.

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ НСД В КАМЕРЕ СГОРАНИЯ

Предварительные расчеты задачи о НСД в математической постановке (4)–(10) проведены при следующих значениях геометрических параметров плоского диффузора (11) и камеры сгорания:

$$L_1 = 2 \text{ cm}, \quad L_2 = 0.2 \text{ cm},$$

 $L_3 = L_c = 2 \text{ cm}, \quad \delta/\Delta = 0.5,$
(12)

для периода l = 2.5 см и числа Маха натекающего сверхзвукового потока $M_0 = 2.5$, которому соответствует исходный удельный расход смеси через камеру сгорания $g_0 = (\delta/\Delta)(S_0/S_1)\rho_0c_0M_0 = 657.25 \text{ кг/}(c \cdot M^2).$

В качестве начальных данных в области решения Ω задавали постоянные значения газодинамических параметров, рассчитанные на первом этапе решения задачи в диффузоре (см. табл. 2). Расчеты в областях Ω_1 и Ω_2 проведены на равномерных сетках 200×400 ячеек. В начальный момент времени (t = 0) в части области решения Ω_2 мгновенно выделялась, аналогично [7], энергия, достаточная для инициирования детонации. В результате по камере начинала распространяться ПДВ.

На рис. 4,*a* для варианта с $M_0 = 2.5$ ($M_1 = 1.554$) представлены расчетные зависимости текущего давления $P(t) = p(x_*, y_*, t)/p_0$

Рис. 4. Зависимости текущего (сплошная линия) и среднего за период (штриховая линия) давления (a) в фиксированной точке ($x = x_*, y = 0$) и относительного удельного расхода (δ) от времени ($M_0 = 2.5, l = 2.5$ см)

(сплошная линия) в точке с координатами ($x = x_* = 0.2$ см, $y_* = 0$) от времени t в течение 0.1 мс от момента инициирования ПДВ. Там же для сравнения приведено среднее за период давление на входе в камеру $\langle P \rangle(t) = l$

 $\frac{1}{lp_0} \int_{0}^{0} p(x_*, y, t) dy$ (штриховая линия).

Видно, что давление в фиксированной точке пространства меняется немонотонно пульсирует со временем. Первый пик давления $(P_{\max,1} \approx 44)$ соответствует моменту прихода ПДВ в эту точку первый раз, второй пик давления ($P_{\max,2} \approx 35$) — второй раз и т. д. Причем на ранней стадии процесса $(7 \div 10 \text{ пуль-}$ саций) давление совершает нерегулярные колебания с различной амплитудой, а затем переходит на почти периодические (с периодом $\Delta t \approx 9.57$ мкс) колебания с максимальной амплитудой $P_{\rm max} \approx 95 \pm 5$, минимальной амплитудой $P_{\min} \approx 5$ и отношением амплитуд $P_{\rm max}/P_{\rm min} \approx 18.8$. Об этом свидетельствует выход среднего давления $\langle P \rangle(t)$ (штриховая линия) при t > 0.05 мс на почти постоянное значение $\langle P \rangle(t) \approx 11.2$. Находим среднюю за период скорость ПДВ $\langle D \rangle = l/\Delta t = 2.61 \pm 0.02$ км/с и отношение $\langle D \rangle / D_{\rm CJ} = 0.91$. Здесь $D_{\rm CJ} =$ 2.84 км/с — скорость идеальной детонации Чепмена — Жуге в смеси $2H_2 + O_2$ [17].

Для контроля выхода решения на режим НСД с вращающейся ПДВ в каждый момент времени вычисляли средние за период l значения удельных расходов в двух контрольных сечениях — в диффузоре на расстоянии 0.3 см перед входом в камеру $\langle G_{in} \rangle$ и на выходе из нее $\langle G_{ex} \rangle$:

$$\langle G_{in} \rangle = \frac{1}{l} \int_{0}^{l} \rho(-0.3, y, t) u(-0.3, y, t) dy,$$

$$\langle G_{ex} \rangle = \frac{1}{l} \int_{0}^{l} \rho(L_c, y, t) u(L_c, y, t) dy.$$
(13)

На рис. 4,6 приведена динамика относительных расходов $g_{in} = (\delta/\Delta) \langle G_{in} \rangle / g_0$ и $g_{ex} =$ $\langle G_{ex} \rangle / g_0$. Видно, что относительный расход перед входом в диффузор g_{in} до момента времени t = 0.002 мс, пока в точке диффузора с координатой x = -0.3 см движется невозмущенный сверхзвуковой поток, остается постоянным: $g_{in} = 1$. При t > 0.01 мс он начинает быстро убывать, достигая абсолютного минимума $g_{in} \approx 0.21$ при t = 0.015 мс, а затем, слабо пульсируя, растет и асимптотически выходит при t > 0.07 мс на почти постоянное значение $g_{in} \approx 0.8$. Относительный расход на выходе из камеры gex после серии колебаний с уменьшающейся амплитудой также асимптотически выходит при t > 0.07 мс на значение $g_{ex} \approx 0.8$. То есть время $t \approx 0.1$ мс можно полагать для данного варианта расчета временем выхода НСД на периодический режим с удельным расходом $\langle G \rangle = 0.8 q_0.$

Итак, при формировании НСД с предварительным частичным торможением сверхзвукового потока газа в сужающейся части диффузора наблюдается, аналогично [7, 8], уменьшение расхода газа, втекающего в камеру сгорания, поскольку навстречу сверхзвуковому потоку с числом Маха $M_1 = 1.554$ распространяется УВ со скачком давления $\langle p_{sw} \rangle / p_1 = 3.5$. Подставляя $\langle p_{sw} \rangle$ в известное соотношение на ударном фронте [16]

$$M^{2} = 1 + 0.5(\gamma_{0} + 1) \frac{\langle p_{sw} \rangle / p_{1} - 1}{\gamma_{0}}, \quad (14)$$

находим число Маха потока относительно фронта УВ $M = 1.77 > M_1$. Эта встречная УВ переводит в канале постоянного сечения сверхзвуковой поток с $M_1 = 1.554$ в дозвуковой с $M_2 = 0.44$ и удельным расходом $\langle G \rangle \approx 0.8g_0$.

Одновременно с расходами определяли также удельный импульс на единицу массы смеси $\langle J \rangle$ на выходе из камеры сгорания:

$$\langle J \rangle = \frac{1}{l} \times$$

$$\times \int_{0}^{l} \frac{\left[p(L_c, y, t) + \rho(L_c, y, t)u^2(L_c, y, t) - p_0\right]}{\langle G_{ex} \rangle} dy - c_0 M_0.$$
(15)

При $t \approx 0.1$ мс для варианта с $M_0 = 2.5$ получили в кольцевой цилиндрической камере $\langle J \rangle \approx 1.18$ км/с.

Выход встречной УВ в диффузор

Согласно результатам расчетов встречная УВ к моменту времени $t \approx 0.093$ мс достигала левой границы области Ω_1 ($x = -L_1$) и входила в расчетную область Ω_0 . К моменту времени $t \approx 0.225$ мс она подходила к расширяющейся части диффузора (координата $x = -L_0 - L_1 + (\delta_0 - \delta)/\operatorname{tg} \alpha$), проходила вдоль клина и при $t \approx 0.28$ мс достигала левой границы расчетной области Ω_0 . На этом расчет прекращался, так как с этого момента на входе в диффузор (граница Γ_0) некорректно задавать невозмущенные параметры натекающего сверхзвукового потока M_0 , p_0 , T_0 .

С целью предотвращения выхода встречной УВ на границу Γ_0 в дальнейших расчетах рассматривался вариант двухконтурной

Рис. 5. Распределение давления на входе в двухконтурную камеру ($M_0 = 2.5, \delta_1/\delta = 8$)

камеры. К исходному диффузору (расчетная область Ω_0) добавлялся сверху второй контур (прямоугольная расчетная область $\Omega_3 =$ $(-L_0 - L_1 < x < -L_1, \delta_0 < z < \delta_0 + \delta_1),$ см. рис. 1), отделявшийся по линии $z = \delta_0$ при $x > x_{\rm YB}$ от первого контура диффузора твердой стенкой. (Здесь x_{yB} — координата фронта косой УВ, отраженной от верхней стенки диффузора.) Заметим, что $x_{\rm YB} = 0.434$ см при $M_0 = 2.5$ и значениях геометрических параметров (11). Расчеты для двухконтурной камеры $(\delta_1/\delta = 8)$ показали, что за фронтом встречной УВ при $x < x_{\rm YB}$ происходило истечение газа во второй контур, ослабление встречной УВ и изменение газодинамических параметров втекающего в камеру потока. Непрерывная детонация в камере сгорания подстраивалась к новым входным условиям. После ряда колебаний фронта встречной УВ с затухающей амплитудой к моменту времени $t \approx 1.8$ мс в диффузоре наблюдалась ее стабилизация на расстоянии x = 0.147 см от границы Γ_0 и выход ударно-волновой структуры на устойчивый стационарный режим (рис. 5). Видно, что во втором контуре происходит отражение косой УВ от верхней стенки ($z = \delta_0 + \delta_1$). Ряд характерных параметров установившегося газодинамического процесса при $M_0 = 2.5$ указан в первой строке табл. 3. Итак, при запуске НСД в двухконтурной камере для варианта с $M_0 = 2.5$ к моменту времени $t \approx 1.8$ мс на входе в диффузор реализовывался так называемый стационарный режим с «выбитой» УВ [18].

Структура ПДВ

Рассмотрим структуру установившегося газодинамического течения при распространении ПДВ в проточной камере сгорания ($M_0 =$ 2.5). На рис. 6 представлена двумерная структура течения для l = 2.5 см и L/l = 0.8 в момент времени t = 1.8 мс. Верхняя часть рисунка (при x < 0) относится к газодинамическому течению в части диффузора (Ω_1), нижняя (x > 0) — в камере сгорания (Ω_2). Волна движется слева направо со скоростью ПДВ D =2.58 км/с по треугольной низкотемпературной области, содержащей смесь 2H₂—O₂, поступающую из диффузора. Причем сверху от ПДВ отходит косая УВ, движущаяся по сравнительно холодному ($T \approx 600 \div 660$ K) газу в диффузоре, а снизу от ПДВ — косая УВ (шлейф), движущаяся по горячим ($T \approx 3000 \div 3200 \text{ K}$) продуктам непрерывной детонации в камере. Отметим, что в проточной камере сгорания наблюдается сильное отклонение фронта ПДВ от вертикальной оси, особенно в его верхней части. Высота слоя горючей смеси перед фронтом ПДВ при указанных значениях параметров равна h = 0.425 см. За волной продукты детонации постепенно расширяются и при давлении продуктов, меньшем давления в диффузоре, оттесняются вниз новыми порциями газов. Создаются условия для распространения новой ПДВ на следующем периоде. Изобары (рис. 6, *a*)

Таблица 3

M_0	$\langle G \rangle / g_0$	$\langle p angle / p_0$	$l_{\min},$ см	$\eta = h/l$	$\langle D \rangle$, км/с	$\langle J \rangle$, км/с
2.5	0.5 (0.82)	7.0 (11.4)	2.15 ± 0.05 (1.75 \pm 0.05)	0.17 (0.186)	2.58 (2.61)	1.04 (1.18)
3.0	$\begin{array}{c} 0.66 \\ (0.95) \end{array}$	$ \begin{array}{c} 11.1 \\ (15.0) \end{array} $	1.75 ± 0.05 (1.45 ± 0.05)	$\begin{array}{c} 0.182 \\ (0.2) \end{array}$	2.58 (2.55)	$0.925 \\ (1.01)$
3.5	0.8	16.0	$1.65{\pm}0.05$	0.198	2.56	0.75
4.0	0.95	21.8	$0.85{\pm}0.05$	0.21	2.53	0.55

Параметры НСД $(S_0/S_1=2;$ tglpha=0.2) в кольцевой цилиндрической камере сгорания

Рис. 6. Расчетная двумерная структура НСД в проточной камере: a — изобары (p/p_0), б — изохоры (p/p_0), в — изомахи (M_x = u/c), г — изотермы (T/T_0); M₀ = 2.5, l = 2.5 см, S₀/S₁ = 2, δ/Δ = 0.5

и изохоры (рис. $6, \delta$) показывают быстрый спад давления и плотности за фронтом ПДВ в канале камеры. Заметим, что перед ПДВ газодинамические параметры неоднородны. В расчетах получено, что примыкающая к ПДВ косая УВ, двигаясь вверх по потоку в диффузор, быстро затухает. Если при x = 0 степень неоднородности давления $(P_{\max} - P_{\min})/\langle P \rangle = 2.33$, то в диффузоре на расстоянии, равном размеру ПДВ (x = -h), она в шесть раз меньше: $(P_{\max} - P_{\min})/\langle P \rangle = 0.364$, а при x = -2h меньше в 13 раз: $(P_{\max} - P_{\min})/\langle P \rangle = 0.175$.

На рис. 6, в представлены изомахи для проекции вектора скорости на ось x (M_x = u/c). Видно, что в изображенной части диффузора (-0.4 < x/l < 0) и треугольной области перед фронтом ПДВ $M_x < 1$, т. е. в этой области течения проекция вектора скорости на ось x меньше скорости звука. С удалением от Γ_1 (x = 0) вниз по оси x вплоть до относительного расстояния x/l < 0.2 поток также дозвуковой. При x/l > 0.2 за фронтом шлейфа начинает формироваться расширяющаяся вниз по потоку сверхзвуковая зона, в которой число Маха постепенно увеличивается и достигает значения $M_x = 1.2$. Из рис. 6, в видно, что на нижней границе Γ_2 реализуется в среднем сверхзвуковое газодинамическое течение вдоль оси х. Это означает, что в камере проточного типа с каналом постоянного сечения при распространении ПДВ также реализуется трансзвуковой переход [6, 9]. Поэтому звуковые возмущения на выходе из камеры не могут повлиять на параметры ПДВ. Расчетное поле температуры (см. рис. 6, г) показывает, что в диффузоре и в камере перед фронтом ПДВ газ сравнительно холодный ($T \approx 400 \div 550$ K), а максимальные температуры (больше 3 500 К) наблюдаются за фронтом ПДВ и шлейфом.

Итак, при численном моделировании непрерывной детонации водородокислородной смеси установлено, что в проточной кольцевой камере сгорания с двухконтурным входом при геометрических параметрах (11), (12) и натекающем сверхзвуковом потоке с $M_0 = 2.5$ может распространяться НСД со скоростью $\langle D \rangle = 2.58 \text{ км/с, создавая удельный импульс}$ $\langle J \rangle \approx 1.04$ км/с. Варьированием параметра l в периодической задаче (4)–(10) при фиксированных значениях (11), (12) и числе Маха потока $M_0 = 2.5$ был рассчитан, аналогично [6], «минимальный» период $l_{\min} \approx 2.15$ см. Заметим, что имеющий физический смысл период задачи о НСД [7] должен находиться в интервале $l_{\min} < l < 2l_{\min}$.

Варьирование числа Маха входного потока М₀

Численный анализ, результаты которого изложены выше, позволяет теперь исследовать влияние числа Маха потока M_0 на параметры и структуру газодинамики НСД, а также рассмотреть вопрос об области ее существования по числу Маха. Для этого при фиксированных значениях геометрических параметров задачи (11), (12) для двухконтурной камеры ($\delta_1/\delta = 8$) проведены систематические расчеты, в которых варьировали параметр M₀.

В табл. З для ряда значений M_0 представлены расчетные данные относительного удельного расхода $\langle G \rangle / g_0$, среднего давления $\langle p \rangle$ на входе в камеру сгорания, «минимального» периода l_{\min} , относительного размера ПДВ $\eta = h/l$, скорости непрерывной детонации $\langle D \rangle$ и средней удельной тяги $\langle J \rangle$, в скобках приведены расчетные данные для НСД при изоэнтропическом сжатии сверхзвукового потока (математическая постановка задачи, § 1). Видно, что при увеличении M_0 монотонно растут $\langle G \rangle / g_0$, $\langle p \rangle$ и относительный размер ПДВ, а l_{\min} и $\langle J \rangle$ монотонно уменьшаются. Причем импульс снижается до $\langle J \rangle = 0.55$ км/с при $M_0 = 4.0$.

Попытки получить расчетным путем при M₀ > 4 непрерывные детонационные режимы с ПДВ не увенчались успехом. В этом случае в результате инициирования ПДВ на начальной стадии хотя и формировалась УВ, распространявшаяся по диффузору навстречу потоку, тем не менее со временем ее скорость становилась меньше скорости натекающего сверхзвукового потока. Поэтому сначала УВ сносилась ко входу в камеру сгорания, затем происходил срыв ПДВ, и, наконец, горячие продукты сгорания выносились сверхзвуковым потоком из камеры. То есть для реализации НСД в кольцевой камере сгорания при частичном неизоэнтропическом торможении сверхзвукового потока в косых УВ подтверждено установленное ранее [7] ограничение сверху на число Маха натекающего сверхзвукового потока M₀ < 0.76M_{CJ}. Здесь M_{CJ} = 5.265 — число Маха волны детонации Чепмена — Жуге для стехиометрической смеси $2H_2 + O_2$. Заметим, что этот вывод вступает в противоречие с гипотезой работы [19], где предполагалась возможность реализации НСД в диапазоне чисел M_0 вплоть до M_{CJ} .

Варьирование площади выходного сечения камеры сгорания

Профилированием выходного сечения камеры сгорания определено влияние степени его расширения на удельный импульс в режиме HCД. Для этого при $S_0/S_1 = 2$, tg $\alpha = 0.2$, $\delta/\Delta = 0.5$ и фиксированной общей длине камеры $L_c = 2$ см на расстоянии $L_3 = 1$ см от входа в камеру канал линейно расширялся до значения Δ_{ex} , как показано на рис. 1 ($\Delta_{ex} > \Delta$). Величина Δ_{ex} выбиралась таким образом, чтобы среднее давление на выходе из камеры $\langle p_{ex} \rangle$

параметры пед в профилированной камере сгорания						
M_0	$\langle G \rangle / g_0$	$\langle p angle / p_0$	Δ_{ex}/Δ	$\langle D \rangle$, км/с	$\langle J \rangle$, км/с	
2.5	0.5	7.0	1.82	2.56	1.209	
3.0	0.66	11.1	2.50	2.58	1.230	
3.5	0.8	16.0	3.22	2.56	1.173	
4.0	0.95	21.8	4.03	2.56	1.088	

Таблица 4 Параметры НСД в профилированной камере сгорания

равнялось противодавлению ($\langle p_{ex} \rangle = p_0$), т. е. обеспечивался в среднем расчетный режим истечения из расширяющегося сопла. По формулам (13), (15) определяли расход $\langle G_{ex} \rangle$ и удельный импульс $\langle J \rangle$ на выходе ($x = L_c$) из камеры. Результаты расчетов представлены в табл. 4.

Поскольку с ростом числа Маха входного потока M_0 монотонно повышается среднее давление на входе в камеру сгорания $\langle p \rangle$, то для обеспечения расчетного режима истечения из камеры ($\langle p_{ex} \rangle = p_0$) монотонно увеличивают степень расширения выходного сечения Δ_{ex}/Δ до значения $\Delta_{ex}/\Delta = 4.03$ при $M_0 = 4$. Заметим, что в кольцевой цилиндрической камере (см. табл. 3) удельный импульс при НСД монотонно убывал с ростом числа Маха. В профилированной же камере сгорания с расширяющимся соплом с ростом числа Маха величина $\langle J \rangle$ ведет себя немонотонно, достигая максимума $\langle J \rangle = 1.23$ км/с при $M_0 = 3$.

Представляет интерес сравнить расчетные значения удельных импульсов НСД при изоэнтропическом и ударно-волновом сжатии сверхзвукового потока в диффузоре. На рис. 7 приведены некоторые результаты расчетов удельного импульса НСД при изоэнтропическом сжатии сверхзвукового потока в зависимости от степени сужения диффузора S_1/S_0 при $M_0 = 2$ (кривая 1) и $M_0 = 3$ (кривая 3). Видно, что при фиксированном числе Маха с уменьшением параметра S_1/S_0 удельный импульс НСД монотонно увеличивается, приближаясь к значению удельного импульса идеального ПВРД (точки 2 и 4). Импульс ПВРД для водородокислородной смеси рассчитан также при изоэнтропическом сжатии потока в диффузоре до М = 1, последующем его расширении до параметров торможения, сжигании смеси при постоянном давлении и истечении продуктов из сопла в расчетном режиме по программе [20].

Расчетные данные удельных импульсов, полученные при ударно-волновом сжа-

Рис. 7. Зависимость удельного импульса от степени сжатия потока в диффузоре:

1-4 — изоэнтропическое сжатие потока, $M_0 = 2$: 1 — НСД, 2 — ПВРД, $M_0 = 3$: 3 — НСД, 4 — ПВРД; 5, 6 — ударно-волновое сжатие потока: 5 — $M_0 = 3, 6$ — $M_0 = 4$

тии сверхзвукового потока, показывают (см. рис. 7), что удельные импульсы НСД меньше (точка 5 при $M_0 = 3$, $S_1/S_0 = 0.5$; точка 6 при $M_0 = 4$, $S_1/S_0 = 0.5$), чем при изоэнтропическом сжатии. Поскольку на входе в диффузор реализуется стационарный режим с «выбитой» УВ, приводящий к дополнительным энтропийным потерям. Становится понятно, что дальнейшие исследования должны быть направлены на оптимизацию формы входного устройства, обеспечивающего минимальные энтропийные потери при осуществлении сверхзвукового горения в режиме непрерывной спиновой детонации.

выводы

1. Проведено обобщение постановки задачи о непрерывной спиновой детонации в кольцевой камере сгорания, учитывающее предварительное изоэнтропическое или ударноволновое сжатие сверхзвукового потока в диффузоре.

 Для водородокислородной смеси численно получены и исследованы динамика и структура поперечной детонационной волны в зависимости от числа Маха входного потока M₀, степени его сжатия в диффузоре и последующего расширения на выходе из камеры.

3. Численно показана возможность реализации при сверхзвуковой $(1 < M_0 \leq 4)$ скорости потока на входе в плоский диффузор непрерывной детонации в кольцевой камере сгорания.

4. Исследовано влияние степени торможения потока в косой ударной волне на область существования и свойства непрерывной спиновой детонации. Установлено, что при ее формировании уменьшается расход смеси через камеру сгорания, а на входе в сверхзвуковой диффузор реализуется стационарный режим с «выбитой» ударной волной.

5. Обнаружено, что область реализации непрерывной спиновой детонации в кольцевой камере сгорания ограничена сверху по числу Маха натекающего сверхзвукового потока и представима в виде $M_0 < (3/4)M_{CJ}$.

ЛИТЕРАТУРА

- 1. Зельдович Я. Б. К вопросу об энергетическом использовании детонационного горения // Журн. техн. физики. — 1940. — Т. 10, вып. 17. — С. 1453–1461.
- Roy G. D., Frolov S. M., Borisov A. A., Netzer D. W. Pulse detonation propulsion: challenges, current status, and future perspective // Prog. in Energy and Combust. Sci. — 2004. — V. 30. — P. 545–672.
- 3. Войцеховский Б. В. Стационарная детонация // Докл. АН СССР. — 1959. — Т. 129, № 6. — С. 1254–1256.
- Быковский Ф. А., Ждан С. А., Ведерников Е. Ф. Спиновая детонация топливновоздушной смеси в цилиндрической камере // Докл. АН. — 2005. — Т. 400, № 3. — С. 338– 340.
- Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous spin detonations // J. Propulsion and Power. — 2006. — V. 22, N 6. — P. 1204– 1216.
- Быковский Ф. А., Ждан С. А. Непрерывная спиновая детонация. Новосибирск: Издво СО РАН, 2013.
- Ждан С. А. Математическое моделирование непрерывной спиновой детонации в кольцевой камере при сверхзвуковой скорости потока // Физика горения и взрыва. — 2008. — Т. 44, № 6. — С. 83–91.

- 8. Zhdan S. A., Rybnikov A. I. Numerical study of continuous spin detonation with a supersonic flow velocity // Proc. Intern. 22nd ICDERS, Minsk, Belarus, July 27-31, 2009. — CD ROM, ISBN 978-985-6456-65-0. — N 21.
- Braun E. M., Lu F. K., Wilson D. R. Airbreathing rotating detonation engine cycle analysis // AIAA Paper 2010-7039. — (46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. — 25–28 July 2010, Nashville, TN).
- Николаев Ю. А., Зак Д. В. Согласование моделей химических реакций в газах со вторым началом термодинамики // Физика горения и взрыва. — 1988. — Т. 24, № 4. — С. 87–90.
- Ждан С. А., Быковский Ф. А., Ведерников Е. Ф. Математическое моделирование вращающейся волны детонации в водороднокислородной смеси // Физика горения и взрыва. — 2007. — Т. 43, № 4. — С. 90–101.
- 12. Абрамович Г. М. Прикладная газовая динамика. — М.: Наука, 1976.
- Седов Л. И. Механика сплошной среды. М.: Наука, 1970. — Т. 2. — С. 88–92.
- Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин и др. — М.: Наука, 1976.
- 15. Колган В. П. Применение принципа минимальных значений производной к построению конечно-разностных схем для расчета разрывных решений газовой динамики // Учен. зап. ЦАГИ. — 1972. — Т. 3, № 6. — С. 68–77.
- Овсянников Л. В. Лекции по основам газовой динамики. — М.: Наука, 1981.
- Войцеховский Б. В., Митрофанов В. В., Топчиян М. Е. Структура фронта детонации в газах. — Новосибирск: Изд-во СО АН СССР, 1963.
- Горение в сверхзвуковом потоке / В. К. Баев,
 В. И. Головичев, П. К. Третьяков и др. Новосибирск: Наука, 1984.
- Фудживара Т., Хишида М., Киндрацки Ж., Волански П. Стабилизация детонации при любых входящих числах Маха // Физика горения и взрыва. — 2009. — Т. 45, № 5. — С. 108–110.
- Трусов Б. Г. Моделирование химических и фазовых равновесий при высоких температурах // Программный комплекс Астра-4 / рс. МГТУ им. Н. Э. Баумана. — 1991.

Поступила в редакцию 11/IX 2013 г., в окончательном варианте — 3/III 2014 г.