УДК 661.834 + 661.873 + 541.18.053

Синтез LiCoO₂ - катодного материала для литий-ионных аккумуляторов с использованием механической активации

Н. В. КОСОВА¹, В. Ф. АНУФРИЕНКО², Т. В. ЛАРИНА³, Е. Т. ДЕВЯТКИНА¹

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: kosova@solid.nsk.su

²Институт катализа имени Г.К. Борескова Сибирского отделения РАН, проспект Академика Лаврентьева, 5, Новосибирск 630090 (Россия)

³Институт неорганической химии Сибирского отделения РАН, проспект Академика Лаврентьева, 3, Новосибирск 630090 (Россия)

(Поступила 23.01.2001; после доработки 14.03.2001)

Аннотация

Методами рентгенофазового анализа, ИК-спектроскопии и электронной спектроскопии диффузного отражения исследованы фазовый состав и электронное состояние ионов кобальта в промежуточных и конечных продуктах, образующихся в ходе механической обработки смесей LiOH с Co (OH) и СоООН и последующего нагревания при 400-800 °C. Установлено наличие процессов восстановления в активированной смеси LiOH с CoOOH и окисления – в смеси LiOH с Co (OH) Последующего нагревания смесей при 400, 600 и 800 °C в течение 4 ч образуется высокотемпературная модификация LiCoO₂ с менее идеальными октаэдрами Co³⁺O₆, чем в случае LiCoO₂, приготовленного керамическим путем. В низкотемпературных образцах отмечено присутствие небольших количеств ионов [Co²⁺]_{св}, а в высокотемпературных – [Co²⁺]_{ти}.

введение

LiCoO₂ широко исследуется в качестве одного из перспективных катодных материалов для литий-ионных аккумуляторов [1]. Электрохимические свойства LiCoO₂ (удельные разрядные характеристики и эффективность циклирования) существенно зависят от способа приготовления и исходных реагентов.

В зависимости от условий синтеза получают одну из двух модификаций $LiCoO_2$, отличающихся кристаллической структурой и удельной поверхностью: высокотемпературную (HT) или низкотемпературную (LT). HT- $LiCoO_2$ обладает идеальной слоистой структурой а-NaFeO₂ (пространственная группа $R3^{\#}m$) с кислородной упаковкой ABCABC [2]. Ионы кобальта и лития упорядочены в октаэдри-

ческих позициях разных (111) плоскостей. Удельная поверхность $S_{y_{\rm N}}$ £ 1 м²/г. LT-LiCoO₂ имеет шпинелеподобную структуру (пространственная группа Fd3[#]m), в которой ~ 6 % ионов кобальта находятся в позициях лития [3]. $S_{y_{\rm N}}$ составляет 10-20 м²/г. HT-LiCoO₂ циклирует при 4 В, а LT-LiCoO₂ – при 3.4 В. Считается, что HT-LiCoO₂ имеет большую емкость по сравнению с LT-LiCoO₂ и меньшее падение емкости в ходе циклирования [4].

Наблюдаемое падение емкости при циклировании HT-LiCoO₂ связывают с фазовым изменением при деинтеркаляции, появлением двухфазных доменов и моноклинным искажением, происходящим при x(Li) = 0.5 и характеризующимся межслоевым упорядочением вакансий лития [5]. Это указывает на

то, что процессы интеркаляции/деинтеркаляции зависят от кристаллической и электронной структуры катодного материала, т.е. мобильность ионов лития определяется геометрией путей диффузии, а максимальное количество интеркалируемого лития является функцией числа ионных узлов, в которые он может быть внедрен, и электронных мест, способных принять соответствующие электроны. Таким образом, необходимо синтезировать LiCoO₂ с такой кристаллической и электронной структурой, которая могла бы обеспечить проведение процессов интеркаляции/ деинтеркаляции ионов лития без резкого нарушения структуры и дестабилизации зон проводимости, т.е. с более лабильной структурой. Это и привело исследователей к поиску методов создания структур с необычным упорядочением и валентным состоянием ионов кобальта, которые не могут быть получены традиционным керамическим методом. Большое значение для улучшения электрохимических характеристик катодного материала имеют также высокая дисперсность, которая способствует проведению процесса интеркаляции/деинтеркаляции в кинетическом режиме, и повышенная электропроводность (наличие делокализованных электронов), что исключает использование дополнительных электропроводящих добавок (углерода) в катодный материал.

Одним из методов, обладающих возможностью создания разупорядоченных структур в высокодисперсном состоянии, является механическая активация (МА). В [6] было показано, что LiCoO2 образуется в результате 10часового измельчения смеси Li₂O₂ с CoO в мельнице типа Spex. Отмечены загрязнение LiCoO2 материалом мелющих тел в силу твердости используемых соединений и влияние газовой атмосферы на структуру продукта. В [7] установлено образование LiCoO, после продолжительного (40 ч) измельчения смеси LiOH ×H₂O и Co (OH) , в агатовой мельнице на воздухе. Процесс механохимического синтеза был осложнен частичным разложением LiCoO, с образованием Со304. В [8] была сделана попытка получить разупорядоченный LiCoO, путем его механической обработки. Авторы также столкнулись с высокой неустойчивостью LiCoO2, что в результате привело к получению разупорядоченного, но неоднородного по фазовому составу LiCoO₂. По мнению авторов [7, 8], именно фазовая неоднородность послужила причиной ухудшения электрохимических характеристик LiCoO₂. При этом не было проанализировано изменение электронной структуры LiCoO₂, в частности электронного состояния ионов кобальта.

В данной работе проведено исследование электронного состояния ионов кобальта в LiCoO₂ и промежуточных продуктах его механохимического синтеза с помощью метода электронной спектроскопии диффузного отражения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходными реагентами для синтеза LiCoO₂ были выбраны LiOH, Co (OH)₂ и CoOOH. Выбор исходных реагентов производился с учетом их кристаллической структуры и механических характеристик. Все используемые гидроксиды обладают слоистой структурой и невысокой твердостью, что должно обеспечить эффективность их послойного смешения в результате совместной МА и существенно снизить загрязнение материалами мелющих тел. Механохимическое взаимодействие между гидроксидами лития и кобальта является одним из примеров реакций мягкого механохимического синтеза [9].

LiOH получали из LiOH ×H₂O (квалификации х.ч.) путем нагревания при 350 °С в течение 4 ч в муфельной печи. СоООН был приготовлен окислением Со (OH)₂ (UM, Бельгия) при 105 °С в течение 45 ч в сушильном шкафу по методике, описанной в [10]. В работе использовали LiCoO₂ фирмы "Мерк".

Механическую активацию проводили в центробежно-планетарной мельнице АГО-2 с барабанами и шарами из стали (диаметр 8 мм, 660 об/мин). Мольное отношение Li/Co в исходных смесях соответствовало стехиометрии LiCoO₂. Отношение массы материала к массе шаров составляло 1/40. Время МА варьировалось от 1 до 10 мин. Активированные порошкообразные образцы нагревали при 400, 600 и 800 ℃ в течение 4 ч на воздухе.

За структурными изменениями наблюдали с помощью рентгеновской дифракции и инфракрасной спектроскопии. Дифрактограммы были получены на дифрактометре ДРОН-3.0 (Си K_a -излучение), ИК-спектры – на FTIRспектрометре фирмы Brucker в диапазоне 200-4000 см⁻¹. Электронное состояние ионов кобальта изучали с помощью электронной спектроскопии диффузного отражения (ЭСДО). Спектры ЭСДО снимали на спектрофотометре фирмы Shimadzu в диапазоне 11 000-50 000 см⁻¹.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Взаимодействие компонентов в исходных смесях должно осуществляться по уравнениям

4 LiOH + 4 Co (OH) $_2$ + O $_2$	
<pre>® 4 LiCoO₂ + 6 H₂O</pre>	(L)
LiOH + CoOOH ® LiCoO ₂ +	H ₂ O Ø

согласно которым вторым продуктом реакции является вода. Основное различие между этими реакциями состоит в наличии или отсутствии окисления-восстановления. Так, при использовании Со (ОН)₂ (степень окисления ионов кобальта равна 2) реакция является окислительно-восстановительной и может протекать только при участии свободного кислорода. Поскольку степень окисления ионов кобальта в СоООН и в LiCoO₂ совпадает и равна 3, стадия окисления-восстановления в этом взаимодействии должна отсутствовать.

Структурные изменения в активированных смесях

На рис. 1 представлены дифрактограммы смесей LiOH+Co(OH)₂ и LiOH+CoOOH, активированных в течение 1 и 10 мин, в сравнении с исходными Co(OH)₂ и CoOOH. Наблюдаются рефлексы только соединений кобальта, причем интенсивность их уменьшается, а ширина увеличивается. (Отметим, что оба гидроксида кобальта имеют структуру, подобную структуре LiCoO₂ (пространственная группа $R3^{\ddagger}m$ для CoOOH [11] и $P3^{\ddagger}m1$ для Co(OH)₂ [12]), что существенно затрудняет интерпретацию дифрактограмм.) В обеих смесях рефлексы исходного LiOH отсутствуют вследствие его аморфизации [13] и слабой отражающей способности атомов лития. На дифрак-

Рис. 1. Дифрактограммы смесей LiOH+Co(OH)₂ (a) и LiOH+CoOOH (б), активированных в течение 1 (2) и 10 мин (3), в сравнении с исходными Co(OH)₂ и CoOOH (1). Обозначения: 4 – Co(OH)₂, 5 – CoOOH, 6 – Co₃O₄, 7 – LiCoO₂.

тограммах активированных смесей с Со (OH) $_2$ появляются рефлексы СоООН, свидетельствующие о частичном окислении Со (OH) $_2$ в процессе МА. Наличие Со $_3O_4$ однозначно установить не удалось. Интенсивный рефлекс с q = 22.6° может быть отнесен как к Со $_3O_4$, так и к LiCoO₂, однако в случае Со $_3O_4$ он должен быть мало интенсивным. На дифрактограммах смесей с СоООН остаются интенсивные рефлексы СоООН; в отличие от предыдущей смеси можно однозначно говорить о присутствии Со $_3O_4$. Рефлекс с q = 22.6°, предположительно отнесенный к LiCoO₂, в данном случае является менее интенсивным.

На рис. 2 приведены ИК-спектры активированных смесей в сравнении с исходными Со (OH)₂ и СоООН. В спектре смеси LiOH+ Со (OH)₂ наблюдается резкое понижение интенсивности полос при 307 и 490 см⁻¹, соответствующих валентным колебаниям Co²⁺O₆, а также изолированных гидроксидных групп при 3630 и 3680 см⁻¹, присутствующих в исходных Co (OH)₂ и LiOH соответственно. Отмечено появление новых полос в области 500-700 см⁻¹, соответствующих валентным коле-

Рис. 2. ИК-спектры смесей LiOH+Co (OH) $_{2}$ (a) и LiOH+ CoOOH (б), активированных в течение 1 (2) и 10 мин (3), в сравнении с исходными Co (OH) $_{2}$ и CoOOH (1).

баниям связей Со³⁺О₆ и, вероятно, указывающих на появление зародышей новой фазы – LiCoO₂. Аналогичные полосы, взамен одиночной полосы при 585 см⁻¹ в исходном СоООН, появляются и в активированных смесях LiOH с СоООН. Следует отметить полное исчезновение в данных образцах полос колебаний изолированных ОН-групп исходных соединений. На всех спектрах наблюдается присутствие слабых полос, отвечающих колебаниям протонсодержащих группировок с сильными водородными связями (3200-3600 см⁻¹) и групп CO₃²⁻ (865 см⁻¹).

Нагревание активированных смесей при 400, 600 и 800 $^{\circ}$ приводит, по данным РФА, к завершению химического взаимодействия и образованию продукта – LiCoO₂ (рис. 3, кривые 1-3). С повышением температуры ширина рефлексов уменьшается, а интенсивность увеличивается, что свидетельствует о протекании процесса кристаллизации и роста частиц продукта. Наличие расщепления рефлексов 006 и 012, 018 и 110, а также соотношение параметров решетки c/a = 4.99, указывают на образование НТ-модификации

Рис. 3. Дифрактограммы образцов LiCoO_2 , полученных путем отжига активированной в течение 10 мин смеси LiOH+COOOH при 400 (1), 600 (2) и 800 °C (3), и ком-мерческого LiCoO_2 до (4) и после активации в течение 1 (5) и 10 млн (6); #- Co₃O₄.

LiCoO₂ (для LT-LiCoO₂ расщепление данных рефлексов отсутствует в результате снятия гексагонального искажения, а c/a = 4.90 [3]). На дифрактограммах образцов, отожженных при 800 °C, присутствуют едва заметные рефлексы Co₃O₄.

ИК-спектры отожженных образцов в сравнении с коммерческим LiCoO₂ приведены на рис. 4. В соответствии с теоретико-групповым анализом, число активных колебаний в ИКспектре LiMeO₂ (Ме – переходный металл I ряда) равно 4 [14]. В спектре LiCoO₂ полосы колебаний LiO₆ и CoO₆ в соответствующих слоях проявляются раздельно: полосы колебаний CoO₆ лежат в области 400-700 см⁻¹, а

Рис. 4. ИК-спектры образцов LiCoO₂, полученных путем отжига активированной в течение 10 мин смеси LiOH+ СоООН при 400 (1), 600 (2) и 800 °С (3), и коммерческого LiCoO₂ до (4) и после активации в течение 1 (5) и 10 мин (6).

 LiO_6 – в области 200-400 см⁻¹ [15]. В спектре коммерческого $LiCoO_2$ наблюдаются три интенсивные полосы при 645, 597 и 525 см⁻¹ (CoO₆) и полоса при 272 см⁻¹ (LiO₆). В спектрах синтезированных образцов присутствуют все те же полосы, что и в коммерческом $LiCoO_2$, однако интенсивность их существенно ниже. Появляется дополнительная полоса при 555 см⁻¹, которую трудно выделить в спектре исходного $LiCoO_2$.

Аналогично результатам [7, 8], МА коммерческого LiCoO₂ привела к существенным нарушениям его структуры. Рефлексы на дифрактограммах LiCoO₂, подвергнутого МА, уширяются и становятся менее интенсивными (см. рис. 3, кривые 5, 6). Расщепление рефлексов 006 и 012, 018 и 110 менее заметно, что, возможно, связано с частичным превращением HT- в LT-LiCoO₂ [3].

На ИК-спектрах активированного LiCoO₂ наблюдаются ослабление интенсивности поглощения и уширение полос, соответствующих колебаниям CoO₆ и LiO₆ (см. рис. 4, кривые 5, 6). Уширение полос можно интерпретировать как усиление искажения октаэдров [15]. Следует также отметить появление слабых полос колебаний групп CO_3^{2-} (865 см⁻¹), практически отсутствующих как в коммерческом LiCoO₂, так и в активированных смесях после их нагрева, что вызвано, вероятно, поглощением CO₂ из воздуха свежей поверхностью LiCoO₂, появившейся в результате его диспергирования, с образованием карбоната.

Электронное состояние ионов кобальта в исходных, промежуточных и конечных соединениях

Интерпретация ЭСДО исследуемых соединений была проведена на основе анализа особенностей полос поглощения ионов Со²⁺ и Со³⁺ в различных кислородных кристаллических полях [16].

Ионы Co²⁺ в октаэдрическом кристаллическом поле [Co²⁺] ор Основным термом свободного иона Co²⁺ (электронная конфигурация d^7) является 4F , а 4P – первый возбужденный терм. Согласно диаграммам Танабе-Сугано [16], для кислородных октаэдрических комплексов ионов Co2+ в высокоспиновом состоянии возможны три перехода с основного уровня ${}^{4}T_{1g}$: ${}^{4}T_{1g}$ --- ${}^{4}T_{2g}$ (n₁) , ${}^{4}T_{1g}$ --- ${}^{4}A_{2g}$ (n₂) , ${}^{4}T_{_{1\sigma}}(F)$ --- ${}^{4}T_{_{1\sigma}}(P)$ (n₃). Энергия перехода n₁, как правило, мала (менее 10 000 см⁻¹). Переход n_2 является формально двухэлектронным и имеет малую вероятность, а следовательно, и малую экстинкцию (интенсивность). Таким образом, для данного случая наиболее вероятен переход n₃, для которого могут проявляться мультиплетная структура или уширение спектра за счет примешивания возбужденных состояний. Анализ литературных данных показал, что для ионов Co²⁺, стабилизированных в идеальной кислородной октаэдрической координации, например в твердофазном Co_3Si_4 (OH) $_2 \times nH_2O$ [17], наблюдаемый переход n, лежит в области 19 000-20 000 см-1 и является хорошим индикатором для этих ионов. Известно, что интенсивность перехода мала для идеальных структур, однако искажение структуры (присутствие структурных дефектов) и магнитное обменное взаимодействие между катионами приводят к увеличению его интенсивности [16].

Ионы Co²⁺ в тетраэдрическом кристаллическом поле [Co²⁺]_{та}. Для высокоспиновых ионов Co²⁺ в тетраэдрической координации возможны также три перехода с основного уровня ${}^{4}A_{2g}$: ${}^{4}A_{2g}$ --- ${}^{4}T_{2g}$ (n₁), ${}^{4}A_{2g}$ --- ${}^{4}T_{1g}$ (n₂), ${}^{4}A_{2\sigma}(F)$ --- ${}^{4}T_{1\sigma}(P)$ (n₃). При этом для кислородных лигандов переходы n, и n, лежат в низкочастотной области (ниже 10 000 см⁻¹). Хорошим примером ионов Co²⁺ в тетраэдрическом кислородном окружении является CoCr2O4. Для твердофазного CoCr₂O₄ наблюдается переход n, в области 15 000-17 000 см⁻¹ [17]. Известно [16], что для ионов Со²⁺ в тетраэдрической координации экстинкция всех переходов существенно выше, чем для ионов Co²⁺ в октаэдрической координации. Это позволяет легко обнаружить данное состояние ионов кобальта на фоне ионов [Co²⁺]_{он} даже в небольшом количестве.

Ионы Со³⁺ в октаэдрическом кристаллическом поле [Co³⁺]_{оh}. Для свободного иона Co³⁺ (электронная конфигурация d⁶) основным термом является ⁵D. Хорошо известно [18], что для кислородных лигандов, как правило, реализуется низкоспиновое состояние Co³⁺ с низшим ¹А_{1 а} состоянием. В этом случае для кислородных лигандов наблюдаются переходы ${}^{1}A_{1g} - - {}^{3}T_{1g} (n_{1}), {}^{1}A_{1g} - - {}^{3}T_{2g} (n_{2}), {}^{1}A_{1g} - - {}^{1}T_{1g} (n_{3})$ и ${}^{1}A_{1\alpha}$ --- ${}^{1}T_{2\alpha}$ (n₄). Для низкоспиновых ионов Со3+ в октаэдрической координации характерны два перехода с энергиями 16000-17000 см⁻¹ (n₃) и 22000-24000 см⁻¹ (n₄). Для данных ионов возможны также переходы с основного состояния на возбужденные в ультрафиолетовой области (25 000-35 000 см-1).

Экспериментальные спектры исходных СоООН, Со (ОН) $_2$ и LiCOO $_2$. В спектре Со (ОН) $_2$ (пространственная группа $P3^{\ddagger}m1$, высокоспиновые ионы Co²⁺ в Oh-позициях [12]) при 19 000-20 000 см⁻¹ наблюдается переход n_3 (${}^4T_{1g}(F) --- {}^4T_{1g}(P)$) (рис. 5, а, кривая 1). Кроме того, в ультрафиолетовой области (выше 32 000 см⁻¹) наблюдается сильная полоса, связанная, по нашему мнению, с переносом заряда лиганд-металл. Вид наблюдаемого спектра указывает на высокую степень однородности октаэдрического окружения ионов [Co²⁺]_{оh} в образце, что приводит к низкой интенсивности спектра.

Большинство ионов кобальта в СоООН (пространственная группа $R3^{\#}m$, ионы Со³⁺ в

Рис. 5. ЭСДО смесей LiOH+CoOH) $_2$ (*a*) и LiOH+CoOOH (*б*), активированных в течение 1 (*2*) и 10 мин (*3*), в сравнении с исходными Co (OH) $_2$ и CoOOH (*1*).

Оh-позициях [11]) находится в низкоспиновом Co^{3+} состоянии с кислородными октаэдрами двух типов, характеризуемых частотами 27 000 и 22 000 см⁻¹ (см. рис. 5, б, кривая 1). Первая, более высокая частота соответствует более идеальному октаэдру, вторая – менее идеальному, в состав которого, скорее всего, входят ОH-группы. Маловероятно, что полоса при 22 000 см⁻¹ соответствует ионам $[Co^{2+}]_{oh}$. Можно предположить наличие следов ионов $[Co^{2+}]_{rd}$ (15 000 см⁻¹⁻), связанных, вероятно, с небольшой примесью Co_3O_4 .

Спектр коммерческого LiCoO₂ (пространственная группа R^{3} #*m*, ионы Co³⁺ в Oh-позициях [2]) имеет относительно низкую интенсивность, как и в случае Co (OH)₂ (рис. 6, кривая 1). Поглощение наблюдается как в низкочастотной (18 000–19 000 и 15 000 см⁻¹), так и в ультрафиолетовой (30 000–35 000 см⁻¹) областях. Первая полоса при 18 000–19 000 см⁻¹ обусловлена переходом n₃ (${}^{4}T_{1g}(F) ---{}^{4}T_{1g}(P)$) ионов [Co²⁺]_{ch}. Полоса поглощения при 15 000 см⁻¹ относится к переходу n₃ (${}^{4}A_{2g}(F) ---{}^{4}T_{1g}(P)$) ионов [Co²⁺]_{тd}, которые присутствуют в образце в виде примесей. Последняя полоса относится к ионам [Co³⁺]_{ch} в практически идеальном октаздре.

Рис. 6. ЭСДО коммерческого LiCoO₂ до (1) и после активации в течение 1 (2) и 10 мин (3).

Ионы кобальта в активированных образцах. На спектрах ЭСДО активированных смесей LiOH+Co (OH)₂ наблюдается повышение общего фона поглощения в области выше 15 000 см⁻¹ по сравнению с исходным Co (OH)₂ за счет процессов частичного окисления ионов Co²⁺ до Co³⁺ с образованием систем Co²⁺-O-Co³⁺ с подвижными (делокализованными) электронами (см. рис. 5, а, кривые 2, 3). Новая полоса при 25 000 см⁻¹ соответствует ионам [Co³⁺]_{оh}. Отметим практически полное отсутствие поглощения в области 15 000 см⁻¹, указывающее на отсутствие в данных смесях ионов [Co²⁺]_{тd}, т.е. отсутствие Со₃O₄ (Co₃O₄ имеет структуру шпинели).

В спектрах активированных смесей LiOH+ СоООН наиболее интенсивной является полоса при 27 000-28 000 см⁻¹, относящаяся к низкоспиновым ионам $[Co^{3+}]_{oh}$ (см. рис. 5, б, кривые 2, 3). Следует отметить ослабление другой полосы при 22 000 см-1, присутствующей в спектре исходного СоООН и характерной для ионов Со³⁺, находящихся в более искаженных октаэдрах (в состав которых входят ОН-группы). Это указывает на превращение ОН-групп в оксидные группы в результате процессов дегидратации или дегидроксилирования при МА и согласуется с данными ИК-спектров (см. рис. 2). Интенсивность полосы, соответствующей высокоспиновым ионам $[Co^{2+}]_{Td}$ (15000 см⁻¹), увеличивается, что вызвано увеличением количества Со304 в образцах (см. данные РФА на рис. 1).

Таким образом, данные ЭСДО позволили получить информацию об изменении электронного состояния ионов кобальта при механохимическом синтезе $LiCoO_2$ и на основании этого сделать однозначный вывод о фазовом составе промежуточных продуктов. В частности, становится очевидным, что в активированных смесях с СоООН происходит частичное восстановление ионов Co³⁺ с образованием Co₃O₄, в то время как в смесях с Co (OH)₂, напротив, идет процесс окисления Co²⁺ до Co³⁺, при этом Co₃O₄ в составе промежуточных продуктов отсутствует.

После нагревания активированных смесей при различных температурах спектры заметно меняются: появляются более четкие полосы поглощения ионов кобальта с локализованными электронами в отличие от систем Со²⁺-О-Со³⁺, в которых возможна делокализация электронов. В спектрах образцов, полученных нагреванием активированной 10 мин смеси LiOH+CoOOH при 400 и 600 ℃, присутствуют полосы поглощения при 28 000, 18 000-22 000 и 15 000-17 000 см⁻¹ (рис. 7), свидетельствующие о наличии ионов [Co³⁺] ор, $[Co^{2+}]_{Oh}$ и $[Co^{2+}]_{Td}$ соответственно. После нагревания при 800 °С полоса поглощения при 18 000-22 000 см⁻¹, соответствующая ионам [Co²⁺]_{ор}, практически исчезает, однако полоса при 15 000-17 000 см⁻¹, относящаяся к ионам [Co²⁺]_{та} и указывающая на примесь Co₃O₄, становится более интенсивной. Следует отметить, что даже после нагревания активированных смесей полоса поглощения, соответствующая ионам [Co³⁺]_{ор}, находится в более низкочастотной области по сравнению с коммерческим LiCoO₂ (см. рис. 6, кривая 1) и указывает на образование менее идеальных октаэдров

Рис. 7. ЭСДО образцов LiCoO₂, полученных путем отжига активированной в течение 10 мин смеси LiOH+CoOOH при 400 (1), 600 (2) и 800 $^{\circ}$ С (3).

Со³⁺О₆. Образцы, приготовленные с предварительной МА, отличаются также более высоким фоном поглощения, что связано с появлением либо полосы межвалентных переносов Со²⁺-О-Со³⁺, либо электронного газа за счет делокализованных электронов. Природа фона поглощения до конца не ясна. Интересно, что, по данным РФА, образцы не имеют столь существенных различий.

МА коммерческого LiCoO₂ приводит к смещению полосы поглощения от 32 000 до 28 000 см⁻¹ и появлению новых полос при 18 000–22 000 (1 мин МА) и 15 000 см⁻¹ (10 мин МА), что вызвано восстановлением существенной части ионов Со³⁺ до Со²⁺ (см. рис. 6, кривые 2, 3). При этом после 1 мин МА ионы Со²⁺ занимают октаэдрические позиции, а после 10 мин – тетраэдрические, т.е. входят в состав Со₃О₄, что указывает на процесс распада LiCoO₂.

Следует обратить особое внимание на изменение интенсивности поглощения образцов LiCoO2 с увеличением времени МА по сравнению с исходным LiCoO2. Так, в спектре образца, активированного 1 мин, возрастает интенсивность полос поглощения ионов кобальта с локализованными электронами, что является следствием усиления процесса локализации электронов в системе. После 10 мин МА наблюдается возрастание общего фона поглощения в области 10 000-50 000 см⁻¹ с одновременным сглаживанием отдельных полос поглощения ионов, что, вероятно, вызвано обратным процессом, т.е. образованием делокализованных электронов, результатом чего должно явиться повышение проводимости системы.

Таким образом, в результате неустойчивости LiCoO₂ к механохимической обработке процесс его механохимического синтеза в указанных смесях сопровождается распадом с одновременным восстановлением части ионов кобальта. Процесс распада, по-видимому, усиливается в присутствии воды, выделяющейся в результате взаимодействия гидроксидов по реакциям (1) и (2) или их дегидратации/дегидроксилирования. Аналогичное явление одновременного протекания прямой и обратной реакции наблюдалось нами при исследовании механохимического синтеза Ca₂Fe₂O₅ [19].

ЗАКЛЮЧЕНИЕ

Таким образом, в работе показано, что в результате кратковременной механической активации стехиометрической смеси гидроксида лития с гидроксидом или оксигидроксидом кобальта в энергонапряженных механических активаторах с последующим непродолжительным нагревом образуется однородный LiCoO₂ с параметрами кристаллической решетки, характерными для HT-LiCoO₂. Однако, по данным ЭСДО, он отличается иным электронным состоянием ионов кобальта. Сделан вывод о том, что электронная спектроскопия диффузного отражения является высокочувствительным методом исследования электронной структуры этого соединения.

СПИСОК ЛИТЕРАТУРЫ

- 1 K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, *Mater. Res. Bull.*, 15 (1980) 783.
- 2 H.J. Orman and P.J. Wiseman, Acta Crystallogr., C 40 (1984) 12.
- 3 R.J. Gurmow, D.C. Liles, M.M. Thackeray and W.I.F. David, Mater. Res. Bull., 28 (1993) 1177.
- 4 B. Garcia, J. Farcy, J.P. Pereira-Ramos and N. Baffier, J. Electrochem. Soc., 144 (1997) 1179.
- 5 J.N. Reimers and J.R. Dahn, Ibid., 139 (1992) 2091.
- 6Y.-W. You, H.-Y. Lee, S.-W. Jang et al., J. Mat. Sci. Lett., 17 (1998) 931.
- 7 J.M. Fernandez-Rodriguez, J. Morales and J.L. Tirado, *Reactivity of Solids*, 4 (1987) 163.
- 8 M.N. Obrovac, O. Mao and J.R. Dahn, Solid State Ionics, 112 (1998) 9.
- 9 E.G. Avvakumov and N.V. Kosova, Chem. Rev., Harwood Acad. Publ., Netherlands, 1998, Vol. 23, Pt. 2, p. 285.
- 10 И.В. Пятницкий, Аналитическая химия кобальта, Наука, Москва, 1965.
- 11 W. Feitknecht, Bull. Soc. Chim. Fr., 5 (1949) 31.
- 12 Nat. Bur. Stand. (U.S.) Monogr., 1978, Vol. 25, p. 1529.
- 13 N.V. Kosova, I.P. Asanov, E.T. Devyatkina and E.G. Avvakumov, J. Solid State Chem., 146 (1999) 184.
- 14 R.K. Moore and W.B. White, J. Amer. Ceram. Soc., 53 (1970) 679.
- 15 C. Julien, in Materials for Lithium-Ion Batteries, NATO Sci. Ser. 3. High Technologies, Kluwer Acad. Publ., Dordrecht etc., 2000, Vol. 85, p. 309.
- 16Э. Ливер, Электронная спектроскопия неорганических соединений, Мир, Москва, 1987.
- 17 A.A. Khassin, T.M. Yurieva, G.N. Kustova et al., Mat. Res. Innovation, 4 (2001) 251.
- 18 J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, Cambridge, 1961.
- 19 Н.В. Косова, Е.Т. Девяткина, Е.Г. Аввакумов и др., Неорган. материалы, 34 (1998) 478.