УДК 532.536

О КАТЯЩИХСЯ УЕДИНЕННЫХ ВОЛНАХ НА НАКЛОННОЙ ПЛОСКОСТИ И ИХ УСТОЙЧИВОСТИ^{*}

Е.М. ШАПАРЬ, Е.Н. КАЛАЙДИН, Е.А. ДЕМЕХИН

Кубанский государственный университет, Краснодар

Представлена система гидравлических уравнений Дресслера для описания трехмерных возмущений. Рассматривалась идея Дресслера об отсутствии сингулярности решений для исследования устойчивости двумерных катящихся волн к двумерным и трехмерным возмущениям, построены спектры. Получен результат об устойчивости стационарных катящихся волн типа солитонов.

Боры или катящиеся волны в каналах и реках существенно меняют динамику русла, и поэтому их исследования важны с практической точки зрения. В 1934 году в работе [1] проводилось наблюдение и описывались катящиеся волны в каналах. Согласно наблюдениям [1], когда вода стекает вниз по наклонному открытому каналу, течение характеризуется квазидвумерными катящимися волнами или борами. Волны двигаются по всей ширине канала и распространяются вниз по течению. Такой тип волн не зависит от поверхностного натяжения и может существовать и в турбулентном, и в ламинарном режимах течения. Для возникновения волн важны два фактора: угол наклона поверхности должен быть достаточно велик для проявления неустойчивости течения; влияние поверхностного натяжения, которое стабилизирует поток, должно быть пренебрежимо малым.

Спустя 15 лет в [2] вывели упрощенную версию гидравлических уравнений, которые описывают катящиеся волны. Исследование катящихся волн можно найти также и в [3]. Несмотря на длинную историю наблюдений за катящимися волнами, остается множество теоретических открытых вопросов. В частности, отсутствуют систематическое исследование двумерных катящихся волн типа уединенных, обобщение системы уравнений и условий на скачке на случай трехмерной задачи, исследования устойчивости катящихся волн к двумерным и трехмерным возмущениям.

1. Используя методологию работ Демехина и Шкадова, легко обобщить систему Сен–Венана для описания трехмерных волн в течении, направленном под углом θ к горизонту. Принимая в качестве базовых величин среднерасходную скорость плоского течения u_0 , его толщину h_0 и плотность жидкости ρ , такую систему можно записать в виде:

^{*} Работа выполнена при финансовой поддержке РФФИ (грант 05-08-33585-а).

[©] Шапарь Е.М., Калайдин Е.Н., Демехин Е.А., 2006

где q и p — расходы жидкости в направлении действия силы тяжести x и нормальному направлению z, h — толщина слоя.

После растяжения временной и пространственной переменных, $t = \kappa \tau$, $x = \kappa \xi$, $\theta \neq 0$, $\kappa = 1/c_f = \text{Fr}^2/\sin \theta$, система имеет только один безразмерный параметр $G = gh_0 \cos \theta/U_0^2 = \cos \theta/\text{Fr}^2$ (G — безразмерная сила тяжести), где число Фруда $\text{Fr}^2 = U_0^2/gh_0$.

Выведем условия на скачке. Для этого предположим, что имеется некоторая кривая f(x, z, t) = 0 или x - r(z, t) = 0, вдоль которой существует разрыв гидродинамических величин. Возьмем малую окрестность Ω некоторой точки M, лежащей на кривой (рис. 1). Обозначим l часть кривой в окрестности M, \vec{n} — нормаль, направленная в сторону движения. Отложим на нормали по обе стороны l сегменты длиной ε . Пусть Σ — кривая вдоль области Ω . Условие сохранения некоторой величины A внутри области Ω описывается уравнением

$$\partial \rho / \partial t + div \dot{A} = 0.$$

Будем двигаться со скоростью D, с которой распространяется разрыв f = 0 в точке M. Тогда данное уравнение примет вид

$$-D(\partial \rho / \partial n) + div \vec{A} = 0.$$

Допустим, что величины \vec{A} и ρ испытывают скачок [A] и $[\rho]$ при переходе через f = 0. Будем обозначать величины перед скачком знаком "–" и за скачком — знаком "+". Проинтегрировав последнее соотношение по области Ω и используя теорему Гаусса, получим:

$$\int_{\Omega} div \vec{A} d\omega = \int_{\Sigma} \vec{A} \vec{n} dl = l(\vec{A}_{-}\vec{n}_{-} + \vec{A}_{+}\vec{n}_{+}) = (\vec{A}_{+} - \vec{A}_{-})\vec{n}l$$
$$\int_{\Omega} (\partial \rho / \partial n) d\omega = \int_{\Sigma} dl \int_{-\varepsilon}^{+\varepsilon} (\partial \rho / \partial n) dn = l(\rho_{+} - \rho_{-}).$$

Как результат, устремляя l и ε к нулю, получим в точке M условие на скачке в трехмерном случае.

$$-D[\rho] + [A\vec{n}] = 0$$

$$\vec{n} = \left(\frac{1}{(1+r_z^2)^{1/2}}, -r_z/(1+r_z^2)^{1/2}\right) = (n_x, n_z), \quad D = r_t/(1+r_z^2)^{1/2}$$

Таким образом, условия на скачке будут иметь вид:

$$\begin{cases} -D[h] + [q]n_x + [p]n_z = 0, \\ -D[q] + \left[q^2/h + 1/2 Gh^2 \right] n_x + [qp/h] n_z = 0, \\ -D[p] + [qp/h]n_x + \left[p^2/h + 1/2 Gh^2 \right] n_z = 0. \end{cases}$$
(2)

Система (1) всегда имееет тривиальное решение h = 1, q = 1, p = 0.

2. Катящиеся стационарные двумерные волны можно рассматривать как цепочку слабо взаимодействующих солитонов, для которых $\partial/\partial z = 0$, p = 0, $\partial/\partial t = -c\partial/\partial x$. Для уединенной волны — $h \to 1$ при $x \to \pm \infty$. Уравнение неразрывности может быть проинтегрировано, q = 1 + c(h - 1). Подстановка этого соотношения в первое уравнение системы (1) дает обыкновенное дифференциальное уравнение первого порядка

$$\frac{dh}{dx} = \frac{h^3 - (ch - c + 1)^2}{G\left[h^3 - \left((c - 1)^2/G\right)\right]},$$
(3)

которое имеет особенность при знаменателе, равном нулю, — $Gh^3 - (c-1)^2 = 0$. Для ее устранения применим известный подход из работы [2]. Разложив числитель и знаменатель на множители:

$$h^{3} - (ch - c + 1)^{2} = (h - 1)(h - h_{1})(h - h_{2}),$$

$$h^{3} - (c - 1)^{2}/G = (h - b)(h^{2} + bh + b^{2}),$$

$$h_{1} = 1/2[c + 1 + \sqrt{(c + 3)(c - 1)}](c - 1),$$
(4)

$$h_2 = \frac{1}{2}[c+1-\sqrt{(c+3)(c-1)}](c-1),$$
(5)

$$b = (c-1)^{2/3} / G^{1/3}$$

при $h_1 = b$ получаем известное решение Дресслера для солитона

$$\frac{1}{2}[c+1+\sqrt{(c+3)(c-1)}](c-1) = (c-1)^{2/3}/G^{1/3}.$$
(6)

Решение этого нелинейного алгебраического уравнения дает зависимость c = c(G), которую можно разрешить относительно c только численно. В пределе $G \rightarrow 0$ можно получить аналитическое разложение

$$c = G^{-1/4} \left(1 - \frac{1}{2} G^{1/4} + \frac{9}{8} G^{1/2} + \dots \right)$$

так, что для вертикального стекания $G \to 0, c \to \infty$. После устранения особенности получим уравнение для солитонов

$$dh/dx = 1/G\Big[(h-1)(h-h_2)/(h^2+bh+b^2)\Big],$$
(7)

решение которого может быть найдено аналитически, x = x(h).

Для определения амплитуды волны используем условие на скачке или так называемое слабое решение:

$$-cq_{\max} + q_{\max}^2 / h_{\max} + 1/2 G h_{\max}^2 + c - 1 - 1/2 G = 0,$$

$$q_{\max} = c h_{\max} - c + 1.$$
(8)

Из этого соотношения получаем квадратное уравнение относительно амплитуды $h_{\rm max}$, решение которого дает

$$h_{\rm max} = -1/2 + \sqrt{1/4 + 2(c-1)^2/G}.$$
 (9)

Профили уединенных волн при разных значениях *G* приведены на рис. 2.

3. Решение нестационарной линеаризованнной около двумерного солитона задачи может быть представлено как суперпозиция собственных функций задачи на собственные значения. В силу бесконечной области линейного оператора в дополнение к дискретной части спектра добавляется непрерывная часть спектра (см. [5]). Собственные функции

дискретного спректра локализованы около горба волны, в то время, как функции непрерывного спектра ограничены при $x = \pm \infty$, где они ведут себя синусоидально [6].

Из всех этих элементов спектра рассмотрим только дискретные собственные функции и соответствующие им собственные значения, ответственные за устойчивость или неустойчивость катящихся волн.

Предположим, что разрыв расположен при x - ct = 0. Воздействуем на него трехмерным малым возмущением так, что расположение разрыва сместится [7] в $x - ct - \hat{r}(z, t) = 0$; здесь и ниже символом "^" обозначены возмущенные величины. На положительной стороне скачка:

$$q^{+} = q_{\max} + q'_{\max}\hat{r} + \hat{q}^{+}, \quad h^{+} = h_{\max} + h'_{\max}\hat{r} + \hat{h}^{+}, \quad \hat{p}^{+} = \hat{p}^{+},$$

где первый член соответствует невозмущенному решению, второй — возмущению за счет сдвига разрыва, третий — обычной части возмущения.

На отрицательной стороне скачка, где невозмущенные движения плоско-параллельны,

$$p^- = \hat{p}^-, q^- = 1 + \hat{q}^-, h^- = 1 + \hat{h}^-.$$

Теперь можно подсчитать скачки величин:

$$\begin{split} \left[q\right]_{x=0} &= q_{\max} - 1 + ch'_{\max} \, \hat{r} + \hat{q}^+ - \hat{q}^-, \\ \left[p\right]_{x=0} &= \hat{p}^+ - \hat{p}^-, \quad \left[h\right]_{x=0} &= \hat{h}^+ - \hat{h}^-. \end{split}$$

D является возмущенной скоростью *c*, $D = c + \hat{r}_t$. В силу линейности возмущенной системы и того факта, что коэффициенты этой системы не зависят от *t* и *z*, мы можем искать элементарное решение в форме:

$$\hat{r} \to \hat{r}e^{i\beta z + \lambda t}; \quad \hat{h} \to \hat{h}e^{i\beta z + \lambda t}, \quad i\hat{p} = \hat{\pi}.$$

Здесь β — волновое число в направлении *z*, λ — коэффициент роста (затухания), являющийся собственным значением задачи. При $\lambda > 0$ — двумерная

волна неустойчива, в случае $\lambda < 0$ — она устойчива. Условие на скачке для невозмущенного двумерного решения описывается уравнением (11) (см. ниже).

Условия на скачке для трехмерных возмущений этого решения получаются линеаризацией соотношений (2) около двумерного скачка (см. [8, 9]) (11) и имеют вид:

$$-c(\hat{h}^{+} - \hat{h}^{-}) - \lambda \hat{r}(h_{\max} - 1) + (\hat{q}^{+} - \hat{q}^{-}) = 0,$$
(10)
$$-c(\hat{q}^{+} - \hat{q}^{-}) - \lambda c(h_{\max} - 1)\hat{r} - (q_{\max}^{2} / h_{\max}^{2})\hat{h}^{+} + \hat{h}^{-} + (2q_{\max} / h_{\max})\hat{q}^{+} - 2\hat{q}^{-} - ((c-1)^{2} / h_{\max}^{2})h'_{\max}\hat{r} + Gh_{\max}h'_{\max}\hat{r} + Gh_{\max}\hat{h}^{+} - G\hat{h}^{-} = 0,$$
$$-c(\pi^{+} - \pi^{-}) + (q_{\max} / h_{\max})\pi^{+} - \pi^{-} - 1/2\beta Gh_{\max}^{2}\hat{r} = 0.$$

Теперь рассмотрим решение в области течения перед разрывом $-\infty < x < 0$. Окончательно решение в этой области описывается системой уравнений (опускаем знак "-") для \hat{q}^+ , $\hat{\pi}^+$ и \hat{h}^+ :

$$\begin{cases} \lambda \hat{q} + \frac{q}{dx} \left(2\frac{q}{h} \hat{q} - \frac{q^2}{h^2} \hat{h} - c\hat{q} \right) + \beta \frac{q}{h} \pi + G(h\hat{h})_x = \hat{h} + \frac{2q^2 \hat{h} - 2qh\hat{q}}{h^3}, \\ \lambda \hat{\pi} + \frac{d}{dx} \left(\frac{q}{h} \hat{\pi} - c\hat{\pi} \right) - \beta Gh\hat{h} = -\frac{\hat{\pi}q}{h^2}, \\ \lambda \hat{h} + \frac{d}{dx} (\hat{q} - c\hat{h}) + \beta \hat{\pi} = 0. \end{cases}$$
(11)

Система для \hat{q}^- , $\hat{\pi}^-$ и \hat{h}^- , при $0 < x < +\infty$ (знак "–" опускаем), является линейной системой с постоянными коэффициентами

$$\begin{cases} h\hat{q} + 2\hat{q} - \hat{h}' - c\hat{q}' + \beta\hat{\pi} + G\hat{h}' = 3\hat{h} - 2\hat{q}, \\ \lambda\hat{\pi} + \hat{\pi}' - c\hat{\pi}' - \beta G\hat{h} = -\hat{\pi}, \\ \lambda\hat{h} + \hat{q}' - c\hat{h}' + \beta\hat{\pi} = 0, \end{cases}$$
(12)

так что ищем решение в форме $\hat{h} = e^{\sigma x}$, $\hat{q} = \hat{Q}e^{\sigma x}$, $\hat{\pi} = \hat{\Pi}e^{\sigma x}$. Исключая \hat{Q} и $\hat{\Pi}$, получаем дисперсионное соотношение

$$(-3c^{2} + G - 1 - cG + 3c + c^{3})\sigma^{3} + (5c + \lambda G - 3\lambda + 6\lambda c - 3 - 3\lambda c^{2} - 2c^{2})\sigma^{2} + (3\lambda^{2}c + 4\lambda c - 3\lambda^{2} + \beta^{2}Gc - 5\lambda - \beta^{2}G)\sigma - 2\lambda^{2} - \beta^{2}G\lambda - \lambda^{3} - 2\beta^{2}G = 0.$$
(13)

Приемлемыми являются только решения, затухающие при $x \to \pm \infty$, и соответствующие им значения σ . Дисперсионное соотношение (13) имеет три корня при фиксированном λ . Мы исследуем детально случай $\lambda < 0$, при $\lambda > 0$ анализ проводится аналогично.

Один из корней σ_k , обозначенный σ_1 , всегда действителен. Другие два корня либо действительны, либо компексно сопряжены, но их действительные части всегда отрицательны при $\lambda < 0$.

$$\sigma_1 > 0$$
, Real $(\sigma_{2,3}) < 0$.

При малых β величины σ_2 и σ_3 действительны, но при достаточно большом $\beta > \beta_*$ они комплексно сопряжены.

Рассмотрим решение в области -∞ < *x* < 0. Введем обозначения:

$$d/dx(q/h) = ((c-1)/h^2)h' \equiv D_1, \quad q/h \equiv D_0,$$

$$d/dx(q^2/h^2) = 2(q(c-1)/h^3)h' \equiv D_2,$$

запишем уравнения (11) в виде:

$$\begin{cases} \lambda \hat{q} + 2D_{1}\hat{q} + 2D_{0}\hat{q} \,\,' - D_{2}\hat{h} - D_{0}^{2}\hat{h} \,\,' - c\hat{q} \,\,' + \\ +\beta D_{0}\hat{\pi} + Gh \,\,'\hat{h} + Gh\hat{h} \,\,' = \hat{h} + 2\frac{q^{2}}{h^{3}}\hat{h} - 2\frac{q}{h^{2}}\hat{q}, \\ \lambda \hat{\pi} + D_{1}\hat{\pi} + D_{0}\hat{\pi} \,\,' - \beta Gh\hat{h} = -\frac{q}{h^{2}}\hat{p}, \\ \lambda \hat{h} + \hat{q} \,\,' - c\hat{h} \,\,' + \beta\hat{\pi} = 0. \end{cases}$$
(14)

Выразим $\hat{\pi}$ из последнего уравнения

$$\hat{\pi} = -(\lambda/\beta)\hat{h} - (1/\beta)\hat{q}' + (c/\beta)\hat{h}'$$

и запишем систему в виде

$$\begin{pmatrix} 2D_0 - c & -D_0^2 + Gh & 0 \\ 1 & -c & 0 \\ 0 & 0 & D_0 - c \end{pmatrix} \begin{pmatrix} \hat{q} \\ \hat{h} \\ \pi \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Прежде всего разрешим систему относительно \hat{h} , \hat{q} и $\hat{\pi}$. Обозначим:

$$b_{1} = \left(-\lambda - 2D_{1} - 2\left(q/h^{2}\right)\right)\hat{q} + \left(D_{2} - Gh' + 1 + 2\left(q^{2}/h^{3}\right)\right)\hat{h} - \beta D_{0}\hat{\pi},$$
(15)

$$b_{2} = -\lambda\hat{h} - \beta\hat{\pi},$$

$$b_{3} = \beta Gh\hat{h} - \lambda\hat{\pi} - D_{1}\hat{\pi},$$

$$A = \begin{bmatrix} 2(ch+1-c)/h-c & -(ch+1-c)^{2}/h^{2} + Gh & 0 \\ 1 & -c & 0 \\ 0 & 0 & (ch+1-c)/h-c \end{bmatrix},$$

$$\Delta = (c-1)\left(Gh^{3} - (c-1)^{2}\right)/h^{3},$$

$$\Delta \hat{q}' = \begin{bmatrix} b_1 & -D_0^2 + Gh & 0 \\ b_2 & -c & 0 \\ b_3 & 0 & D_0 - c \end{bmatrix} = -b_1 c D_0 + b_1 c^2 + b_2 D_0^2 c - b_2 Gh D_0 + b_2 Gh c,$$
$$\Delta h' = \begin{bmatrix} 2D_0 - c & b_1 & 0 \\ 1 & b_2 & 0 \\ 0 & b_3 & D_0 - c \end{bmatrix} = 2b_2 D_0^2 - 3b_2 D_0 c + b_2 c^2 - b_1 D_0 + b_1 c,$$

88

$$\Delta \hat{\pi}' = \begin{bmatrix} 2D_0 - c & -D_0^2 + Gh & b_1 \\ 1 & -c & b_2 \\ 0 & 0 & b_3 \end{bmatrix} = -2cb_3D_0 + c^2b_3 + b_3D_0^2 - b_3Gh.$$

Видно, что система снова имеет особенность при $\Delta = 0$, а именно, при $Gh^3 - (c-1)^2 = 0$. При $x \to -\infty$, $\hat{h} \to 1$, $\hat{h}' \to 0$ и решение линейной системы дифференциальных уравнений описывается дисперсионным соотношением (13). Имеется только одно $\sigma = \sigma_1 > 0$, соответствующее затухающему на минус бесконечности решению:

$$\hat{h}^{+} = \exp\left(\sigma_{1}(x - x_{0})\right),$$

$$\hat{q}^{+} = \left[\beta^{2}G/\sigma_{1}(c\sigma_{1} - \sigma_{1} - \lambda)\right] \exp(\sigma_{1}(x - x_{0})),$$

$$\hat{\pi}^{+} = \beta G/\lambda + \sigma_{1} - c\sigma_{1}\exp(\sigma_{1}(x - x_{0})).$$
(16)

Поскольку собственная функция определена с точностью до мультипликативной постоянной, выберем $x = -x_0$. В таком случае появляются начальные условия для численного интегрирования системы от $x = -\infty$ (практически, достаточно далеко от горба волны) до x = 0, где расположен скачок. Однако, как было найдено выше, в точке $x = x_1$, в которой $Gh^3 - (c-1)^2 = 0$, система имеет особенность дресслеровского типа. Представим систему в виде, более удобном для дальнейшего исследования, введя новые функции $\hat{\psi}$ и \hat{g} из соотношений:

$$\hat{h} = \hat{\psi}', \quad \hat{g} = c \left(\partial \hat{\psi} / \partial x \right) - \lambda \hat{\psi} - \beta \int \hat{\pi} dx = c \hat{\psi}' - \lambda \hat{\psi} - \beta \int \hat{\pi} dx,$$

$$h[Gh^{3} - (c-1)^{2}] \hat{\psi}'' + \left[Gh^{3} + 2(c-1)^{2} \right] h' + 2\lambda(c-1)h^{2} + 2c(c-1)h - (-h^{3} - 2(c-1)^{2}) \hat{\psi}' + \left[-\lambda^{2}h^{3} - 2\lambda(c-1)hh' - 2\lambda ch^{2} + 2\lambda(c-1)h \right] \hat{\psi} + \beta \left\{ (c-1)h^{2} \hat{g}' + \left[-2(c-1)hh' - \lambda h^{3} + 2(c-1)h - 2ch^{2} \right] \hat{g} \right\} = 0,$$

$$\hat{g}'' + \left\{ \left(-\lambda/(c-1) \right)h - h'/h \right\} \hat{g}' + \beta \left(Gh^{2}/(c-1) \right) \hat{\psi}' = 0.$$

Вблизи $x = x_1$ выполняются соотношения:

$$\begin{cases} 3Gb^3Dh_1(x-x_1)\hat{\psi}'' + a_1\hat{\psi}' + a_0\hat{\psi} + k_1\hat{g}' + s_1\hat{g} = 0, \\ \hat{g}'' + m\hat{g}' + r\hat{\psi}' = 0, \end{cases}$$

или, при перемещении особенности в начало координат, $x - x_1 \rightarrow x$:

$$\begin{cases} x\hat{\psi}'' + a\hat{\psi}' + b\hat{\psi} + k\hat{g}' + s\hat{g} = 0, \\ \hat{g}'' + m\hat{g}' + r\hat{\psi}' = 0. \end{cases}$$

Первое регулярное решение записывается в виде:

$$\hat{\psi} = 1 + A_1 x + A_2 x^2 + \dots,$$

 $A_1 = -b/a, \quad A_{i+1} = -[(i+1)kB_{i+1} + bA_i + sB_i]/(i+1)(a+i),$

$$\hat{g} = B_2 x^2 + B_3 x^3 + \dots,$$

 $B_2 = -rA_1/2; \quad B_{i+1} = -[mB_i + rA_i]/(i+1);$

второе регулярное решение:

$$\begin{split} \hat{\psi} &= A_1 x + A_2 x^2 + \dots, \\ A_1 &= -s/a, \quad A_{i+1} = -(i+1)kB_{i+1} + bA_i + sB_i/(i+1)(a+i), \\ \hat{g} &= 1 + B_2 x^2 + B_3 x^3 + \dots, \\ B_2 &= -rA_1/2; \quad B_{i+1} = -[mB_i + rA_i]/(i+1); \end{split}$$

третье регулярное решение:

$$\begin{split} \hat{\psi} &= A_1 x + A_2 x^2 + \dots, \\ A_1 &= -k/a, \quad A_{i+1} = -(i+1)kB_{i+1} + bA_i + sB_i/(i+1)(a+i), \\ \hat{g} &= x + B_2 x^2 + B_3 x^3 + \dots, \\ B_2 &= -[m+rA_1]/2; \quad B_{i+1} = -[mB_i + rA_i]/(i+1); \end{split}$$

четвертое сингулярное решение:

$$\hat{\psi} = (-x)^{1-a} [A_1 x + A_2 x^2 + ...],$$

$$A_{1} = \left[-b + kB_{1}(a-2)\right]/(2-a); \quad A_{i+1} = \left[-bA_{i} + kB_{i+1}(a-i-2) + sB_{i}\right]/(i+1)(i+2-a),$$

$$\hat{g} = (-x)^{2-a}[B_{1} + B_{2}x + B_{3}x^{2} + ...],$$

$$B_{2} = -r/(a-2); \quad B_{i+1} = rA_{i} + mB_{i}/(a-i-2).$$

Общее решение есть суперпозиция четырех решений

$$\hat{\psi} = c_1(\lambda)\psi_1 + c_2(\lambda)\psi_2 + c_3(\lambda)\psi_3 + c_4(\lambda)\psi_4,$$

причем константы c_k есть функции λ , и для конкретного λ они находятся в ходе численного интегрирования. Подберем λ таким образом, чтобы подавить сингулярное решение $c_4(\lambda) = 0$. Это λ и является искомым собственным значением задачи. Нахождение собственного значения λ заканчивается на этом этапе, для нахождения собственной функции необходимо проинтегрировать систему, которая теперь не имеет особенности, до x = 0, затем воспользоваться соотношением на скачке (11), чтобы пересчитать \hat{h}^+ , \hat{q}^+ , $\hat{\pi}^+$ на \hat{h}^- , \hat{q}^- , $\hat{\pi}^-$, которые будут функцией \hat{r} , чтобы в решении на $0 \le x \le +\infty$

$$\hat{h}^{-} = M_1(\hat{r}) \exp(\sigma_1 x) + M_2(\hat{r}) \exp(\sigma_2 x) + M_3(\hat{r}) \exp(\sigma_3 x)$$

подавить единственное растущее на + ∞ решение, $M_1(\hat{r}) = 0$.

Рис. 3. Непрерывный и дискретный спектр при G = 0,1, течение турбулентно.

Рис. 4. Устойчивость к трехмерным возмущениям, G = 0, 1.

На рис. З изображен непрерывный и дискретный спектр для фиксированного значения G. В силу бесконечной области по x весь спектр по λ можно разбить на дискретную и непрерывную части. Дискретный спектр определяет устойчивость горба солитона, а непрерывный спектр Γ отвечает за устойчивость плоского участ-ка солитона.

Построив дискретный спектр (рис. 4), можно судить об устойчивости солитона: если $\lambda < 0$ для всех β , то катящаяся волна устойчива, если имеется хотя бы одно β , для которого $\lambda > 0$, — волна неустойчива. При ненулевом $\beta \neq 0$, увеличивая его от нуля, оба корня начинают сближаться, и при $\beta \approx 5,2$ для G = 0,1 они сливаются и становятся комплексно-сопряженной парой. Но в любом случае $\lambda < 0$. Следовательно, двумерные катящиеся волны типа солитонов устойчивы к трехмерным возмущениям. 4. В работе система гидравлических уравнений Дресслера была обобщена для описания трехмерных возмущений. Идея Дресслера об отсутствии сингулярности решений была обобщена для исследования устойчивости двумерных катящихся волн к двумерным и трехмерным возмущениям, и построены спектры. Получен результат об устойчивости стационарных катящихся волн типа солитонов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cornish V. Ocean waves. Cambridge Univ. Press, 1934. P. 206.
- 2. Dressler R.F. Mathematical solution of the problem of roll waves in inclined open channels // Comm. Pure Appl. Math. 1949. Vol. 2. P. 149–194.
- Ляпидевский В.Ю., Тешуков В.М. Математические модели распространения длинных волн в неоднородной жидкости // Изд. СО РАН, 2000. 420 с.
- 4. Демехин Е.А., Шкадов В.Я. О трехмерных нестационарных волнах в стекающей пленке жидкости // Изв. АН СССР. МЖГ. — 1984. — № 5. — С. 21–27.
- 5. Chang H.-C., Demekhin E.A. Complex wave dynamics on thin films. Elsevier, 2002. P. 402.
- 6. Oh M., Zumburn K. Stability of periodic solutions of conservation laws with viscosity: analysis of the Evans function // Arch. Ration. Mech. Anal. 2003. Vol. 166, No. 2. P. 99–166.
- 7. Jin S., Kim Y.J. On the computation of roll-waves // Math. Model. Numer. Anal. 2001. Vol. 35, No. 3. — P. 463–480.
- 8. Noble P., Travadel S. Non-persistence of roll-waves under viscous perturbations // Disc. Cont. Dynum. Sys.-Ser. 2001. Vol. 1, No. 1. P. 61–70.
- 9. Kranenburg C. On the evolution of roll-waves // J. Fluid Mech. 1992. Vol. 245. P. 249–261.

Статья поступила в редакцию 27 мая 2005 г.