2014. Том 55, № 5

Сентябрь – октябрь

C. 947 – 955

УДК 549.08:542.63:546.593

ПОЛУЧЕНИЕ, СУПРАМОЛЕКУЛЯРНАЯ САМООРГАНИЗАЦИЯ И ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ГЕТЕРОПОЛИЯДЕРНОГО КОМПЛЕКСА $([H_3O][Au\{S_2CN(CH_2)_6\}_2][Au_2\{S_2CN(CH_2)_6\}_4][ZnCl_4]_2)_n$

О.В. Лосева¹, Т.А. Родина², А.И. Смоленцев³, А.В. Иванов¹

¹Институт геологии и природопользования ДВО РАН, Благовещенск

²Амурский государственный университет, Благовещенск

E-mail: t-rodina@yandex.ru

³Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 11 ноября 2013 г.

Изучено взаимодействие биядерного *цикло*-гексаметилендитиокарбамата пинка [Zn₂{S₂CN(CH₂)₆}₄] с анионами [AuCl₄]⁻ в среде 2М HCl. Результатом гетерогенной реакции, включающей хемосорбционное связывание золота(III) из раствора и частичный ионный обмен, явилось формирование гетерополиядерного золото(III)-цинкового комплекса, как индивидуальной формы связывания золота(III). Кристаллическая и молекуструктура полимерного комплекса состава $([H_3O][Au{S_2CN(CH_2)_6}_2] \times$ лярная × $[Au_2{S_2CN(CH_2)_6}_4][ZnCl_4]_2)_n$ (I) установлена методом PCA. В структуре комплекса присутствуют 3 изомерных комплексных катиона $[Au{S_2CN(CH_2)_6}_2]^+$: центросимметричный, A — с атомом Au(1) и 2 нецентросимметричных, B — Au(2) и C — Au(3). Последние за счет пар несимметричных вторичных взаимодействий Аи…Ѕ невалентного типа образуют биядерный катион $[Au_2{S_2CN(CH_2)_6}_4]^{2+}$ типа $B \cdots C$. Дальнейшая структурная самоорганизация комплекса на супрамолекулярном уровне также идет за счет взаимодействий Au…S между биядерными B…C и моноядерными, A катионами, в результате чего формируются зигзагообразные полимерные цепи $(\cdots [B \cdots C] \cdots A \cdots)_n$. Ион гидроксония участвует в попарном связывании анионов [ZnCl₄]²⁻ посредством водородных связей Cl···O. Многостадийный процесс термической деструкции I включает дегидратацию комплекса, термолиз дитиокарбаматной части и [ZnCl₄]²⁻ (с высвобождением металлического золота, ZnCl₂ и частичным образованием ZnS). Конечными продуктами термических превращений являются металлическое золото и ZnS.

Ключевые слова: диалкилдитиокарбаматы цинка со свойствами хемосорбентов, формы связывания золота из растворов, гетерополиядерные комплексы золота(III)цинка, кристаллическая и супрамолекулярная структура, PCA, MAS ЯМР¹³C, синхронный термический анализ.

Интерес к диалкилдитиокарбаматам цинка [1—13] определяется рядом важных в практическом отношении свойств, среди которых возможность их использования в качестве прекурсоров пленочных и наноразмерных сульфидов цинка [3—6], а также гетерополиметаллических сульфидов [7], биологическая активность (антибактериальная [8], противоопухолевая [9, 10], антидиабетическая [11] и противоглаукомная [12, 13]). Исследования последнего времени, кроме того, позволили установить, что дитиокарбаматы цинка (так же как и ранее изученные комплексы кадмия [14—16]) эффективно связывают золото(III) из кислых растворов, образуя (в качестве индивидуальных форм связывания) гетерополиядерные золото(III)-цинковые ком-

[©] Лосева О.В., Родина Т.А., Смоленцев А.И., Иванов А.В., 2014

плексы состава $[Au_2{S_2CN(CH_3)_2}_4][ZnCl_4]$ [17] и ([H₃O][Au₃{S_2CN(*iso*-C₃H₇)_2}₆][ZnCl₄]₂·H₂O)_n [18] со сложно организованной супрамолекулярной структурой, которые представляют самостоятельный интерес.

В продолжение этих исследований в настоящей работе изучено взаимодействие биядерного *цикло*-гексаметилендитиокарбамата (HmDtc) цинка $[Zn_2{S_2CN(CH_2)_6}_4]$ с раствором AuCl₃ в 2M HCl. Результатом гетерогенной реакции, включающей хемосорбцию золота(III) из раствора и частичный ионный обмен, явилось формирование полимерного золото(III)-цинкового комплекса ([H₃O][Au{S₂CN(CH₂)₆}₂][Au₂{S₂CN(CH₂)₆}₄][ZnCl₄]₂)_n (I), кристаллическая и супрамолекулярная структура которого установлена методом PCA. Исследование термического поведения I методом CTA позволило выявить многостадийный процесс его термической деструкции, включающий десольватацию, термолиз дитиокарбаматной части комплекса и [ZnCl₄]²⁻ (с высвобождением металлического золота, хлорида цинка и частичным образованием ZnS), а также испарение ZnCl₂. Конечными продуктами термических превращений являются восстановленное золото и ZnS.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Цикло-гексаметилендитиокарбамат натрия, полученный взаимодействием сероуглерода (Merck) и гексаметиленимина (Aldrich) в щелочной среде [19], был использован в синтезе исходного биядерного комплекса [$Zn_2\{S_2CN(CH_2)_6\}_4$] методом осаждения Zn^{2+} из водной фазы [20]. Индивидуальность обоих соединений подтверждена данными MAS ЯМР ¹³С спектроскопии (δ -шкала, измерения изотропных химических сдвигов ¹³С выполнены относительно одной из компонент кристаллического адамантана — 38,48 м.д. по отношению к TMS):

$$\begin{split} &\text{Na}\{\text{S}_2\text{CN}(\text{CH}_2)_6\}\cdot 2\text{H}_2\text{O}: 206,3 \ (\text{--}\text{S}_2\text{CN}=); \ 60,3; \ 55,5 \ (1:1,=\text{NCH}_2--); \\ & 29,8; \ 27,0; \ 26,2; \ 24,9 \ (1:1:1:1,--\text{CH}_2--). \\ &\text{[Zn}_2\{\text{S}_2\text{CN}(\text{CH}_2)_6\}_4]: \ 203,6; \ 201,6 \ (1:1,--\text{S}_2\text{CN}=); \ 57,3; \ 55,9; \ 54,6; \ 54,4 \\ & (1:1:1:1,=\text{NCH}_2--); \ 29,7; \ 28,7; \ 27,7; \ 27,6; \ 26,0 \ (2:2:1:1:2,--\text{CH}_2--). \end{split}$$

Полимерный бис(тетрахлороцинкат) бис[μ -(N,N-*цикло*-гексаметилендитиокарбамато-S,S, S',S')(N,N-*цикло*-гексаметилендитиокарбамато-S,S')]дизолота(III)-бис(N,N-*цикло*-гексаметилендитиокарбамато-S,S')золота(III)-гидроксония ([H₃O][Au{S₂CN(CH₂)₆}₂][Au₂{S₂CN(CH₂)₆}₄] · ·[ZnCl₄]₂)_n получали по реакции между свежеосажденным [Zn₂{S₂CN(CH₂)₆}₄] и раствором AuCl₃ в 2M HCl. К 100 мг свежеосажденного *цикло*-гексаметилендитиокарбамата цинка приливали 10 мл раствора AuCl₃ (в 2M HCl), содержащего 47 мг золота, и перемешивали магнитной мешалкой в течение 60 мин при комнатной температуре. Гетерогенная реакция, включающая хемосорбцию и частичный ионный обмен, может быть представлена следующим образом:

 $3/2[Zn_{2}\{S_{2}CN(CH_{2})_{6}\}_{4}] + 3H[AuCl_{4}] + H_{2}O = [H_{3}O][Au\{S_{2}CN(CH_{2})_{6}\}_{2}]_{3}[ZnCl_{4}]_{2} + ZnCl_{2} + 2HCl.$

Полученный желтый осадок отфильтровывали, промывали водой и высушивали на фильтре. Для дифрактометрического эксперимента светло-желтые прозрачные кристаллы I были выращены из смеси ацетон—этанол (1:1) при комнатной температуре.

По данным элементного анализа найдено, %: С 24,70, Н 3,85, N 4,00, для $C_{44}H_{72}N_6OS_{12}Cl_8Zn_2Au_3$ (M = 2070,04) вычислено, %: С 24,37, Н 3,65, N 4,06.

По данным MAS ЯМР ¹³С (δ, м.д.) для ([H₃O][Au{S₂CN(CH₂)₆}₂]₃[ZnCl₄]₂)_n: 196,7; 196,2; 195,3; 192,3 (1:2:1:2, —S₂CN=); 56,1; 53,8; 53,0; 51,6 (1:2:2:1, =NCH₂—); 29,6; 28,6; 28,0; 27,7; 27,4; 26,9; 26,2; 26,0 (—CH₂—).

РСА призматических монокристаллов I выполнен на дифрактометре Bruker-Nonius X8 Арех CCD (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор) при 150(1) К. Сбор данных проведен по стандартной методике: ϕ и ω сканирование узких фреймов. Поглощение учтено эмпирически с использованием программы SADABS [21]. Структура определена прямым методом и уточнена методом наименьших квадратов (по F^2) в полноматричном анизотропном приближении неводородных атомов. Атомы углерода C(9)—C(11), C(13)—C(15),

Таблица 1

Параметр	Значение				
Брутто-формула	$C_{42}H_{72}N_6S_{12}Cl_8Zn_2Au_3\cdot H_3O$				
Молекулярная масса	2070,04				
Сингония	Орторомбическая				
Пространственная группа	Pnma				
<i>a</i> , <i>b</i> , <i>c</i> , Å	23,874(3), 18,849(2), 16,228(2)				
$V, Å^3$	7302,8(16)				
Ζ	4				
$ρ_{\rm bbiy}$, γ/cm ³	1,883				
μ , mm ⁻¹	7,324				
F(000)	4008				
Размер кристалла, мм	0,46×0,05×0,04				
Область сбора данных по θ, град.	1,86—26,37				
Интервалы индексов отражений	$-29 \le h \le 16, -22 \le k \le 10, -20 \le l \le 18$				
Измерено отражений	21264				
Независимых отражений	7513 ($R_{\rm int} = 0,0697$)				
Отражений с <i>I</i> > 2σ(<i>I</i>)	4296				
Переменных уточнения	355				
GOOF	1,026				
R -факторы по $F^2 > 2\sigma(F^2)$	$R1 = 0,0801, \ wR2 = 0,2169$				
<i>R</i> -факторы по всем отражениям	$R1 = 0,1322, \ wR2 = 0,2459$				
Остаточная электронная плотность (min / max), e/Å ³	-6,888 / 4,660				

Кристаллографические данные, параметры эксперимента и уточнения структуры **I** [H₃O][Au{S₂CN(CH₂)₆]₂]₃[ZnCl₄]₂

С(17)—С(19), С(21)—С(23) в составе циклических гексаметилениминовых фрагментов статистически распределены между двумя позициями A и B с равной заселенностью (связаны операцией симметрии x, 1/2–y, z). Положения атомов водорода рассчитаны геометрически и включены в уточнение в модели "наездника". Атомы водорода в H₃O⁺ не локализованы. Сбор и редактирование данных, уточнение параметров элементарной ячейки проведены по программам APEX2 [21] и SAINT [21]. Расчеты по определению и уточнению структуры выполнены по комплексу программ SHELXTL [21].

Координаты атомов, длины связей и углы депонированы в Кембриджском банке структурных данных (№ 967929; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk). Основные кристаллографические данные и результаты уточнения структуры I приведены в табл. 1, основные длины связей и углы — в табл. 2.

Термическое поведение I изучали методом СТА, включающим одновременную регистрацию кривых термогравиметрии (ТГ) и дифференциальной сканирующей калориметрии (ДСК). Исследование проводили на приборе STA 449C Jupiter (NETZSCH) в корундовых тиглях под крышкой с отверстием, обеспечивающим давление паров при термическом разложении образца в 1 атм. Скорость нагрева составляла 5 град./мин до 1100 °C в атмосфере аргона. Кроме того, для более четкого выявления тепловых эффектов на начальном этапе дополнительно съемку проводили и в алюминиевых тиглях. Масса навесок 2,157—3,675 мг. Точность измерения температуры $\pm 0,7$ °C, изменения массы $\pm 1 \cdot 10^{-4}$ мг. При съемке кривых ТГ и ДСК использовали файл коррекции, а также калибровки по температуре и чувствительности для заданной температурной программы и скорости нагрева. Независимое определение температуры плавления I проводили на приборе ПТП(М) (ОАО "Химлаборприбор").

949

Таблица 2

Катион А		Катион В		Катион С		
Связь	d	Связь	d	Связь	d	
Au(1) - S(11)	2,346(4)	Au(2) - S(21)	2,329(4)	Au(3) - S(31)	2,339(4)	
Au(1) - S(12)	2,335(4)	Au(2) - S(22)	2,332(4)	Au(3) - S(32)	2,333(4)	
$Au(1)\cdots S(31)$	3,446(4)	$Au(2)\cdots S(31)$	3,818(5)	$Au(3)\cdots S(22)$	3,763(5)	
$Au(1)\cdots S(31)^a$	3,446(4)	$Au(2)\cdots S(31)^b$	3,818(5)	$Au(3)\cdots S(22)^b$	3,763(5)	
S(11) - C(1)	1,722(14)	S(21)—C(8)	1,737(15)	S(31)—C(16)	1,721(13)	
S(12) - C(1)	1,708(16)	S(22)—C(12)	1,710(14)	S(32)—C(20)	1,718(14)	
N(1) - C(1)	1,30(2)	N(2)—C(8)	1,29(3)	N(4)—C(16)	1,32(3)	
N(1)—C(2)	1,46(2)	N(2)—C(9A)	1,50(2)	N(4)—C(17A)	1,46(2)	
N(1)—C(7)	1,489(16)	N(3)—C(12)	1,38(3)	N(5)—C(20)	1,32(3)	
		N(3)—C(13A)	1,46(2)	N(5)—C(21A)	1,48(2)	
Угол	ω	Угол	ω	Угол	ω	
S(11)Au(1)S(12)	75,59(13)	S(21)Au(2)S(21) ^b	75,1(2)	S(31)Au(3)S(31) ^b	75,0(2)	
$S(11)Au(1)S(12)^{a}$	104,41(13)	S(21)Au(2)S(22)	104,79(15)	S(31)Au(3)S(32)	104,72(15)	
S(11)Au(1)S(12)	180,0	$S(21)Au(2)S(22)^{b}$	179,9(2)	$S(31)Au(3)S(32)^{b}$	176,61(17)	
Au(1)S(11)C(1)	85,0(5)	$S(22)Au(2)S(22)^{b}$	75,3(2)	$S(32)Au(3)S(32)^{b}$	75,3(2)	
Au(1)S(12)C(1)	85,6(5)	Au(2)S(21)C(8)	87,6(7)	Au(3)S(31)C(16)	86,6(6)	
S(11)C(1)S(12)	113,5(9)	Au(2)S(22)C(12)	85,9(7)	Au(3)S(32)C(20)	86,0(7)	
		$S(21)C(8)S(21)^{b}$	109,7(14)	$S(31)C(16)S(31)^{b}$	111,7(12)	
		$S(22)C(12)S(22)^{b}$	112,8(13)	$S(32)C(20)S(32)^{b}$	112,1(13)	
Анион						
Связь	d	Угол	ω	Угол	ω	
7n(1) C1(1)	2 262(8)	$C_{1}(1)T_{n}(1)C_{1}(2)$	102 4(2)	$C_{1}(2)T_{n}(1)C_{1}(2)$	112 1(2)	
$\frac{2\pi}{1} - CI(1)$	2,203(6)	$C_1(1)Z_1(1)C_1(2)$ $C_1(1)Z_n(1)C_1(2)$	102,4(3)	$C_1(2)Z_1(1)C_1(3)$ $C_1(2)Z_n(1)C_1(4)$	113,1(3) 114.8(2)	
Zn(1)— $Cl(2)$	2,255(6)	Ci(1)Zn(1)Ci(3)	112,6(3)	CI(2)Zn(1)CI(4)	114,8(3)	
Zn(1)— $Cl(3)$	2,251(7)	Cl(1)Zn(1)Cl(4)	105,8(3)	Cl(3)Zn(1)Cl(4)	107,9(3)	
Zn(1)— $Cl(4)$	2,249(7)					

Основные длины связей (d, Å) и валентные углы ($(\omega, град.)$ в структуре ([H₃O][Au{S₂CN(CH₂)₆}₂]₃[ZnCl₄]₂)_n * (I)

* Симметрические преобразования: ^а 1-*x*, -*y*, 1-*z*; ^b *x*, 1/2-*y*, *z*.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При взаимодействии свежеосажденного комплекса [Zn₂{S₂CN(CH₂)₆}₄] с раствором AuCl₃ в 2M HCl отмечается быстрое переформирование осадка хемосорбента с уменьшением размера частиц, изменением цвета с белого на желтый и постепенным его углублением до золотистожелтого, что указывает на образование в исследуемой системе новых соединений. Параллельно отмечается обесцвечивание рабочего раствора золота(III): уже через 20 мин степень связывания золота из раствора достигает ~99 %. При этом сорбционная емкость исходного *цикло*-гексаметилендитиокарбамата цинка, рассчитанная из реакции образования гетерополиядерного золото(III)-цинкового комплекса I, составляет 475,8 мг Au³⁺ на 1 г сорбента.

В MAS ЯМР ¹³С спектре соединения I, выделенного из хемосорбционной системы, присутствуют резонансные сигналы в области групп =NC(S)S—, =NCH₂— и —CH₂— (см. раздел "Синтез"). Пофрагментное моделирование спектра позволило уточнить интегральные интенсивности Рис. 1. Проекция кристаллической структуры комплекса I ($[H_3O][Au\{S_2CN(CH_2)_6\}_2][Au_2 \times \{S_2CN(CH_2)_6\}_4][ZnCl_4]_2)_n$ на плоскость bc. Дитиокарбаматные лиганды даны схематично; фрагменты ($CH_2)_6$ для ясности опущены

сигналов ¹³С (1:2:1:2) от шести групп =NC(S)S—, что указывает на сложную структуру нового соединения, сформированного в исследуемой сорбционной системе. Для проверки этих выводов молекулярная и супрамолекулярная структура комплекса I была разрешена методом PCA.

Элементарная ячейка ионного ком-

плекса I включает 4 формульные единицы [H₃O][Au{S₂CN(CH₂)₆}₂]₃[ZnCl₄]₂ (рис. 1). Катионная часть соединения представлена тремя структурно-неэквивалентными комплексными ионами золота(III) [Au{S₂CN(CH₂)₆}₂]⁺ (далее катионы *A* с атомом Au(1), *B* — Au(2), *C* — Au(3)) и ионом гидроксония. В каждом комплексном катионе атом золота S,S'-бидентатно координирует 2 дитиокарбаматных лиганда с образованием хромофоров [AuS₄] (рис. 2). Диагональные углы SAuS в последних равны или близки 180,0° (см. табл. 2), чему соответствует плоскостное строение хромофоров и низкоспиновое внутриорбитальное dsp^2 -гибридное состояние золота.

В составе тетрахлороцинкат(II)-иона $[ZnCl_4]^{2^{-1}}$ комплексообразователь находится в искаженно-тетраэдрическом окружении четырех структурно-неэквивалентных атомов хлора (*sp*³гибридное состояние цинка). Длина связей Zn—Cl лежит в узком диапазоне 2,249—2,263 Å, а значения валентных углов Cl—Zn—Cl заметно отклоняются от идеального значения тетраэдрического угла: 102,4—114,8° (см. табл. 2).

Рассмотрим строение неэквивалентных комплексных катионов A, B и C более подробно. В каждом из них бидентатная координация дитиокарбаматных лигандов к комплексообразователю приводит к формированию двух четырехчленных хелатных циклов [AuS₂C] с общим атомом золота. Плоскостная геометрия обсуждаемых металлоциклов иллюстрируется значениями

Рис. 2. Структура трех изомерных комплексных катионов $[Au{S_2CN(CH_2)_6}_2]^+: A(a), B(\delta)$ и C(e). Эллипсоиды 30%-й вероятности.

Незакрашенными кружками показаны статистически разупорядоченные атомы углерода (б, в). Симметрические преобразования: ^a 1–x, –y, 1–z; ^b x, 1/2–y, z торсионных углов Au—S—S—C и S—Au—C—S, близких к 0 или 180°. На малые размеры циклических фрагментов [AuS₂C] указывают межатомные расстояния Au…C (2,786—2,846 Å) и S…S (2,839—2,868 Å), существенно меньшие сумм ван-дер-ваальсовых радиусов соответствующих пар атомов: 3,36 и 3,60 Å [22, 23]. Таким образом, позиции атомов золота и углерода оказываются существенно сближенными, что может объясняться прямым *mpaнc*-аннулярным взаимодействием между ними (т.е. не через систему связей, а непосредственно через пространство металлоциклов) и высокой концентрацией π -электронной плотности, делокализованной внутри циклов.

Дитиокарбаматные лиганды в центросимметричном комплексном катионе A (см. рис. 2, a) анизобидентатно координированы комплексообразователем: одна из связей S—Au (2,335 Å) несколько короче другой (2,346 Å). Катионы B и C (см. рис. 2, δ , ϵ) включают по 2 структурнонеэквивалентных изобидентатно координированных лиганда; при этом в каждом из них имеется плоскость симметрии (совпадающая с биссекторальной плоскостью), которая перпендикулярна плоскости хромофора [AuS₄] и которой принадлежат атомы углерода и азота групп =NC(S)S— и комплексообразователь. Поэтому длины связей и валентные углы в одной половине обсуждаемых катионов (включая и циклические фрагменты —N(CH₂)₆) полностью совпадают с соответствующими характеристиками во второй половине. Различие в прочности связывания лигандов относительно невелико: длина связей S—Au в катионе B 2,329 и 2,332 Å, в катионе C 2,339 и 2,333 Å (см. табл. 2).

В дитиокарбаматных группах длина связей N—C(S)S лежит в диапазоне 1,29—1,38 Å, что существенно короче связей N—CH₂ (1,46—1,50 Å). Кроме того, геометрия структурного фрагмента C₂NCS₂ практически плоская: торсионные углы C—N—C—S близки к 0 или 180°. (Наибольшие отклонения в 6—8° наблюдаются в катионе C.) Обе эти особенности отражают частично двойной характер формально одинарной связи N—C(S)S, что является следствием примешивания sp^2 - к sp^3 -гибридному состоянию атомов азота и углерода.

Характер структурных различий между обсуждаемыми неэквивалентными катионами *A*, *B* и *C*, проявляющихся в значениях соответственных длин связей и валентных углов (см. табл. 2), пространственной ориентации циклических фрагментов —N(CH₂)₆ (рис. 3, *a*, *б*) и элементах симметрии, позволяет классифицировать их как конформационные изомеры.

Дальнейшая структурная самоорганизация соединения I на супрамолекулярном уровне обусловлена проявлением относительно слабых взаимодействий Au···S невалентного типа (короткие контакты и вторичные связи*) между изомерными катионами $[Au \{S_2CN(CH_2)_6\}_2]^+$.

Катионы *B* и *C* связаны друг с другом двумя парами симметричных контактов Au(2)…S(31), Au(2)…S(31)^b (3,818 Å) и Au(3)…S(22), Au(3)…S(22)^b (3,763 Å), образуя биядерный катион [Au₂{S₂CN(CH₂)₆}₄]²⁺ типа *B*…*C*. В каждом моноядерном фрагменте последнего пары гексаметилениминовых циклов находятся в *цис*-положениях относительно плоскости хромофоров [AuS₄] и в результате проявления сил межлигандного отталкивания пространственно ориентированы в противоположных направлениях (см. рис. 3, *a*). Напротив, для 7-членных циклов —N(CH₂)₆ в структуре моноядерного катиона *A* характерно проявление *транс*ориентации (см. рис. 3, *б*). Центросимметричные катионы *A*, в свою очередь, образуют с двумя соседними биядерными катионами *B*…*C* вторичные связи Au…S, длина которых (Au(1)…S(31)) и Au(1)…S(31)^b 3,446 Å) несколько меньше суммы ван-дер-ваальсовых радиусов атомов золота и серы (3,46 Å) [22, 23]. Обсуждаемое взаимодействие приводит к формированию зигзагообразных полимерных цепей типа (…*A*…[*B*…*C*]…)_n (см. рис. 3, *б*): значения углов Au(1)…Au(3)…Au(1) и Au(3)…Au(1)…Au(3) составляют 126,82 и 180° соответственно, а межатомное расстояние Au(1)…Au(3) 5,270 Å.

^{*} Концепция вторичных связей ("secondary bonds") впервые была предложена в работе [24] для описания взаимодействий, характеризующихся расстояниями, сопоставимыми с суммами ван-дер-ваальсовых радиусов соответствующих атомов; роль этих взаимодействий в супрамолекулярной организации вещества подробно рассматривается также в [25].

Рис. 3. Нецентросимметричный биядерный катион [Au₂{S₂CN(CH₂)₆}₄]²⁺ В…С (a); фрагмент полимерной цепи …[B…C]…A…[B…C]… вдоль направления [010] (б) (для ясности разупорядочение атомов углерода в циклических гексаметилениминовых фрагментах не приводится; двойным пунктиром показаны короткие контакты и вторичные связи Au…S; симметрические преобразования: ^a 1–x, -y, 1–z; ^b x, 1/2–y, z; ^c 1–x, 1/2+y, 1–z; ^d 1–x, -1/2+y, 1–z)); водородные связи между [ZnCl₄]²⁻ и H₃O⁺ (показаны пунктиром) (в) (эллипсоиды 30%-й вероятности; симметрическое преобразование: ^a x, 1/2–y, z)

Между полимерными цепями локализованы комплексные анионы $[ZnCl_4]^{2-}$ и ионы гидроксония (см. рис. 1 и 3, *в*). При этом 2 соседних аниона $[ZnCl_4]^{2-}$ объединяются за счет водородных связей, образуемых атомами хлора с ионом H_3O^+ (см. рис. 3, *в*). Значения соответствующих межатомных расстояний Cl(1), $Cl(1)^a \cdots O(1)$ 2,873 Å существенно меньше суммы ван-дер-ваальсовых радиусов атомов кислорода и хлора (3,27 Å) [22, 23].

Условия регенерации связанного золота были установлены по результатам изучения термического поведения I методом СТА (параллельная регистрация кривых ТГ и ДСК) в атмосфере аргона. Кривая ТГ отражает многостадийный процесс потери массы исследуемым комплексом (рис. 4, *a*). На начальном этапе термолиза (до ~90 °C) кривая ТГ регистрирует небольшую ступень потери массы в 0,95 %, что соответствует процессу дегидратации комплекса (расчет 0,92 %). На следующий, круто падающий участок кривой ТГ (160—345 °С), приходится основная потеря массы (44,77 %), обусловленная восстановлением металлического золота (по катиону), высвобождением хлорида цинка и частичным его переходом в ZnS* (по аниону). О сложном характере протекающих процессов свидетельствует присутствие нескольких точек перегиба на обсуждаемом участке ТГ. Значительное содержание серы (18,59 %) в составе комплекса, проявляющей высокое сродство к золоту, позволяет предположить, что непосредственным предшественником восстановленного золота является Au₂S (T_{разл} = 240 °C [27]), что косвенно подтверждается соответствующей точкой перегиба на кривой ТГ. Расчетное значение потери массы на втором этапе должно составлять 59,25 %, что на 14,48 % больше экспериментального. Недостающая потеря массы компенсируется на пологом третьем участке кривой ТГ (345-990 °С), который обусловлен плавной десорбцией продуктов термической деструкции, а также испарением образовавшегося $ZnCl_2$ ($T_{nn} = 317$ и $T_{kun} = 733$ °C [27]).

^{*} В работе [26] формирование сульфидов металлов в результате термолиза комплексов, включающих серосодержащие лиганды, обосновывается с позиций термодинамики.

Рис. 4. Кривые ТГ (а) и ДСК (б, в) комплекса I (в — низкотемпературный фрагмент ДСК при съемке в алюминиевом тигле); укрупненный вид дна тигля после завершения термолиза (г)

Остаточная масса при 1100 °C (35,02 % от исходной) превышает ожидаемую для восстановленного золота (расчет 28,54 %) на 6,48 %. Эту избыточную массу следует отнести к ZnS (возгоняется при 1185 °C [27]), для образования которого требуется 68,79 % цинка, имеющегося в составе комплекса. Следовательно, 31,21 % цинка остается в форме ZnCl₂, соответствующее количество которого составляет 4,11 % исходной массы комплекса. Суммарное значение массы ZnCl₂ (4,11 %) и недостающей потери массы на втором этапе (14,48 %) составляет 18,59 %, что практически точно совпадает с экспериментально наблюдаемой потерей массы на третьем участке (345—990 °C) кривой TГ (18,62 %). При вскрытии тигля на дне обнаружены шарики и тончайшие лепестки золота с белым налетом сульфида цинка (см. рис. 4, ϵ).

В низкотемпературной области кривой ДСК присутствует два слабовыраженных эндоэффекта (с экстремумами при 218,1 и 227,4 °С), отвечающие плавлению комплекса с последующим его активным термолизом (см. рис. 4, δ , ϵ). (Независимым определением плавление образца, запрессованного в стеклянном капилляре, установлено при 214 °С.) В высокотемпературной области присутствует эндоэффект плавления золота (см. рис. 4, δ) — экстраполированная $T_{na} = 1062,2$ °С.

Таким образом, из хемосорбционной системы $[Zn_2{S_2CN(CH_2)_6}_4]$ —[AuCl_]^{-/}2M HCl препаративно выделен сложноорганизованный полимерный комплекс золота(III)-цинка-гидроксония состава ([H₃O][Au{S₂CN(CH₂)₆}₂][Au₂{S₂CN(CH₂)₆}₄][ZnCl₄]₂)_n, кристаллическая и супрамолекулярная структура которого разрешена методом PCA. Три изомерных комплексных катиона [Au{S₂CN(CH₂)₆}₂]⁺ выполняют в структуре различные функции: нецентросимметричные (*B* и *C*) за счет двойных коротких контактов Au···S образуют биядерный катион [Au₂{S₂CN(CH₂)₆}₄]²⁺ типа *B*···*C*. Последние, взаимодействуя с моноядерными катионами *A*, за счет вторичных связей Au···S совместно формируют зигзагообразные полимерные цепи ([Au{S₂CN(CH₂)₆]₂][Au₂{S₂CN(CH₂)₆]₄])³⁺, по длине которых чередуются моноядерные и би-ядерные катионы. Ион гидроксония, в свою очередь, участвует в попарном связывании анионов [ZnCl₄]²⁻ за счет водородных связей Cl···O. Изучением термического поведения I установлено, что его термолиз сопровождается восстановлением связанного золота(III) до металла и выделением цинка в форме ZnCl₂ и ZnS.

Работа выполнена при финансовой поддержке программы фундаментальных исследований Президиума РАН "Разработка методов получения химических веществ и создания новых материалов" (проект № 12-І-П8-01) и Президиума Дальневосточного отделения РАН (проект 12-ІІІ-А-04-040).

СПИСОК ЛИТЕРАТУРЫ

- 1. Hogarth G. // Prog. Inorg. Chem. 2005. 53. P. 71 561.
- 2. Botelho J.R., Souza A.G., Gondim A.D., Athayde-Filho P., Dunstan P.O., Pinheiro C.D., Longo E., Carvalho L.H. // J. Therm. Anal. Calorim. 2005. 79, N 2. P. 309 312.
- 3. Onwudiwe D.C., Ajibade P.A. // Mater. Lett. 2011. 65, N 21-22. P. 3258 3261.
- 4. Saravanan M., Ramalingam K., Bocelli G., Olla R. // Appl. Organomet. Chem. 2004. 18, N 2. P. 103.
- 5. Onwudiwe D.C., Strydom C., Oluwafemi O.S., Songca S.P. // Mater. Res. Bull. 2012. 47, N 12. P. 4445 4451.
- 6. Srinivasan N., Thirumaran S. // Superlatt. Microstruct. 2012. 51, N 6. P. 912 920.
- Chesman A.S.R., van Embden J., Duffy N.W., Webster N.A.S., Jasieniak J.J. // Cryst. Growth Design. 2013. – 13. – P. 1712 – 1720.
- Mamba S.M., Mishra A.K., Mamba B.B., Njobeh P.B., Dutton M.F., Fosso-Kankeu E. // Spectrochim. Acta A: Mol. Biomol. Spectroscopy. – 2010. – 77. – P. 579 – 587.
- 9. Hogarth G. // Mini-Rev. Med. Chem. 2012. 12, N 12. P. 1202 1215.
- 10. Cvek B., Milacic V., Taraba J., Dou Q.P. // J. Med. Chem. 2008. 51, N 20. P. 6256 6258.
- 11. Yoshikawa Y., Adachi Y., Sakurai H. // Life Sci. 2007. 80, N 8. P. 759 766.
- 12. Monti S.M., Maresca A., Viparelli F., Carta F., Simone G.D., Mühlschlegel F.A., Scozzafava A., Supuran C.T. // Bioorg. Med. Chem. Lett. 2012. 22, N 2. P. 859 862.
- 13. Carta F., Aggarwal M., Maresca A., Scozzafava A., McKenna R., Masini E., Supuran C.T. // J. Med. Chem. 2012. 55, N 4. P. 1721 2130.
- 14. Rodina T.A., Ivanov A.V., Gerasimenko A.V., Loseva O.V., Antzutkin O.N., Sergienko V.I. // Polyhedron. 2012. 40, N 1. P. 53 64.
- 15. Лосева О.В., Родина Т.А., Иванов А.В., Герасименко А.В., Анцуткин О.Н. // Журн. структур. химии. 2013. 54, № 3. С. 544 552. (Loseva O.V., Rodina T.A., Ivanov A.V., Gerasimenko A.V., Antzutkin O.N. // J. Struct. Chem. 2013. 54, N 3. Р. 544 552.)
- 16. Родина Т.А., Филиппова Т.С., Иванов А.В., Заева А.С., Анцуткин О.Н., Лосева О.В. // Журн. неорган. химии. – 2012. – 57, № 11. – С. 1582 – 1587. (Rodina T.A., Ivanov A.V., Zaeva A.S, Antzutkin O.N., Filippova T.S., Loseva O.V. // Russ. J. Inorg. Chem. – 2012. – 57, N 11. – Р. 1490 – 1495.)
- 17. Иванов А.В., Лосева О.В., Родина Т.А., Герасименко А.В., Сергиенко В.И. // Докл. АН. 2013. **452**, № 4. С. 401 407. (Ivanov A.V., Loseva O.V., Rodina T.A., Gerasimenko A.V., Sergienko V.I. // Dokl. Phys. Chem. 2013. **452**, Part 2. P. 223 228.)
- 18. Лосева О.В., Родина Т.А., Иванов А.В. // Координац. химия. 2013. **39**, № 6. С. 361 369. (Loseva O.V., Rodina T.A., Ivanov A.V. // Russ. J. Coord. Chem. – 2013. – **39**, N 6. – Р. 463 – 470.)
- 19. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984.
- 20. Агре В.М., Шугам Е.А. // Журн. структур. химии. 1972. 13, № 4. С. 660 664.
- 21. Bruker, APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, WI, USA, 2004.
- 22. Bondi A. // J. Phys. Chem. 1964. 68, N 3. P. 441 451.
- 23. Bondi A. // J. Phys. Chem. 1966. 70, N 9. P. 3006 3007.
- 24. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. 15. P. 1 58.
- 25. *Haiduc I.* In: Encyclopedia of Supramolecular Chemistry. N.-Y.: Marcel Dekker, Inc, 2004. P. 1215 1224.
- 26. Разуваев Г.А., Алмазов Г.В., Домрачев Г.А., Жилина М.Н., Карякин Н.В.// Докл. АН СССР. 1987. **294**, № 1. С. 141 143.
- 27. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия, 1987.