2009. Том 50, № 5

Сентябрь – октябрь

C. 911 – 916

УДК 547.245:548.73

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ДВУХ ФАЗ 1-ФТОРСИЛАТРАНА. ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОННОЙ ПЛОТНОСТИ

© 2009 А.А. Корлюков¹, М.Ю. Антипин¹, М.И. Бузин¹, Э.А. Зельбст², Ю.И. Болгова³, О.М. Трофимова³, М.Г. Воронков³*

¹Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва ²Иркутский государственный педагогический университет ³Иркутский институт химии им. А.Е. Фаворского СО РАН

Статья поступила 7 ноября 2008 г.

Методом рентгеновской дифракции установлено существование двух фаз 1-фторсилатрана (FSa) и изучены особенности их пространственной структуры. Фазовый переход происходит при 156—158 К и характеризуется низкой энергией. В низкотемпературной фазе четыре кристаллографически независимых молекулы упорядочены, а в высокотемпературной — в одной из двух независимых молекул разупорядочены β-атомы углерода. Проведен квантово-химический расчет кристаллической упаковки низкотемпературной фазы FSa. Оцененная величина прочности координационной связи N→Si в кристалле составляет 29,2 ккал/моль. Распределение зарядов свидетельствует о локализации валентной электронной плотности в области фрагмента O₃SiF.

Ключевые слова: 1-фторсилатран, молекулярная структура, рентгеновская дифракция, квантово-химический расчет.

Число производных силатрана XSi(OCH₂CH₂)₃N (XSa), молекулярная структура которых определена методом рентгеновской дифракции [1, 2], приближается к сотне. Особое внимание среди них привлек 1-фторсилатран (FSa), содержащий у атома кремния наиболее электроотрицательный заместитель (атом фтора) и очень короткую трансаннулярную координационную связь N→Si (2,04 Å) [3]. Молекулярная структура FSa впервые определена при комнатной температуре группой Л. Паркани четверть века тому назад [3]. Природа этой связи ими впервые была охарактеризована методом сечений функции деформационной электронной плотности. Однако структура FSa оказалась разупорядоченной, что снизило информативность полученных данных о его электронном строении.

Применение мультитемпературного рентгенодифракционного метода и квантово-химических расчетов позволило нам уточнить молекулярную структуру FSa и получить более детальную информацию о его электронном строении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ДЕТАЛИ РАСЧЕТОВ

1-Фторсилатран получен ранее описанным методом [4] взаимодействием 1-этоксисилатрана с концентрированной плавиковой кислотой в 2-пропаноле при комнатной температуре. Многократное экстрагирование из горячего метанола позволило увеличить выход FSa до 60 %.

 $HF + EtOSi(OCH_2CH_2)_3N \rightarrow FSi(OCH_2CH_2)_3N + EtOH.$

^{*} E-mail: voronkov@irioch.irk.ru

Таблица 1

Основные параметры эксперимента и кристаллографические данные двух фаз FSa при 100 и 210 К

Параметр	100 K	210 K
Брутто-формула	C ₆ H ₁₂ FNO ₃ Si	C ₆ H ₁₂ FNO ₃ Si
Молекулярная масса	193,26	193,26
<i>a</i> , <i>b</i> , <i>c</i> , Å	7,1152(6), 21,0557(16), 10,6899(8)	10,7348(13), 7,1685(11), 21,222(3)
β, град.	91,385(2)	90,00
V, Å ³	1601,0(2)	1633,1(4)
$d_{\text{выч}}, \Gamma \cdot \mathrm{cm}^{-3}$	1,603	1,572
Простр. группа, Z	<i>P</i> 2 ₁ , 8	$Pna2_1, 8$
<i>F</i> (000)	816	816
Излучение; 20 _{max} , град.	0,71073; 61,0	0,71073; 63,7
Число измерен. / независ. отражений (R _{int})	24098 / 9628 (0,0454)	14995 / 4902 (0,0381)
Число наблюдаемых отражений с $I > 2\sigma(I)$	5937	4088
Количество уточняемых параметров	433	214
Коэффициент поглощения, см ⁻¹	2,77	2,72
$R_1 \left(I > 2\sigma(I) \right)$	0,0461	0,0405
wR_2 (все отражения)	0,0727	0,1031

Температура плавления, ИК и ЯМР спектры полученного 1-фторсилатрана соответствовали литературным данным [1].

Рентгеноструктурное исследование монокристаллов FSa проведено на дифрактометре APEX II при 100 и 210 К. Основные параметры эксперимента и кристаллографические данные приведены в табл. 1, общий вид молекулы FSa представлен на рис. 1, регистрационные номера в Кембриджском банке структурных данных ССDC 705142 и 705143.

Исследования методом дифференциальной сканирующей калориметрии проводили на приборе Mettler DSC-822e на образце массой ~6 мг, скорость нагревания/охлаждения составляла ±10 град./мин.

Квантово-химические расчеты кристаллической структуры низкотемпературной фазы FSa проведены с помощью программы VASP 4.6.31 [11]. Для описания валентных электронов использовали базисный набор плоских волн с предельной кинетической энергией 680 эВ. Обменный и корреляционный вклад в полную энергию вычислен с помощью функционала PBE. Оптимизацию проводили до тех пор, пока максимальные силы на атомах и величины изменения

Рис. 1. Молекулярная структура FSa в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50 %

Рис. 2. Термограммы ДСК для FSa при первом (1) и повторном (3) нагревании и охлаждении (2)

энергии не превышали 0,01 эВ·Å⁻¹ и 10⁻⁴ эВ соответственно. Параметры элементарной ячейки приняты равными экспериментальным значениям и далее не оптимизировались.

Функция распределения электронной плотности для проведения топологического анализа $\rho(r)$ получена при помощи отдельного расчета оптимизированной кристаллической структуры (сетка 600×168×144 точек для выполнения быстрой трансформации Фурье). Для этого использована программа AIM, часть программного пакета ABINIT [12].

Для анализа природы и прочности связей в координационном узле атома Si использовали топологическую теорию "Атомы в молекулах" Р. Бэйдера [10]. Для оценки энергии связей Si—O, Si—F и N→Si использовали корреляционную схему Эспинозы, Моллинза и Леконта (ЭМЛ) [16]. Согласно данной схеме $E_{связи} = 313,75 \cdot V^e(r)$, $V^e(r)$ — плотность кинетической энергии в KT(3,-1), определяемая из результатов топологического анализа функции распределения электронной плотности.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По данным предварительного рентгеноструктурного исследования монокристалла FSa параметры его элементарной ячейки отличаются от ранее опубликованных [3]. Объем элементарной ячейки при 100 К оказался в 4 раза больше, чем сообщалось ранее при 298 К [3], но пространственная группа совпала ($P2_1$). Это позволило нам предположить наличие полиморфизма или фазовых переходов. Для установления и изучения фазовых переходов в FSa мы использовали метод дифференциальной сканирующей калориметрии (ДСК) и мультитемпературные рентгенодифракционные исследования.

Термограммы ДСК получены для одного монокристалла FSa. Нагревание и охлаждение не приводило к видимым изменениям его формы, огранки и прозрачности. Из рис. 2 следует, что в температурном диапазоне от -110 до -120 °C происходит обратимый фазовый переход FSa. На кривых ДСК при первом и повторном нагревании наблюдается эндо-, а при охлаждении экзотермический пик в области -110 и -114 °C соответственно. Низкое значение энтальпии этого перехода $\Delta H = \pm 0,2$ Дж/г указывает на то, что он вызван конформационными изменениями. Таким образом, метод ДСК позволил найти интервал температур фазового перехода в кристаллическом FSa.

В процессе многотемпературного рентгенодифракционного эксперимента были получены структурные данные для FSa при 100, 150, 156, 158, 160, 170, 210 и 300 К. Здесь мы приводим структурные данные лишь при 100 и 210 К, так как результаты, полученные при этих температурах, оказались наиболее точными. В соответствии с данными ДСК нами установлено, что при 156—158 К резко изменяется сингония кристалла FSa, тогда как параметры *a, b и с* элементарной ячейки и ее объем возрастают при нагревании почти монотонно. При этом мозаичность изученного монокристалла, при охлаждении ниже точки фазового перехода появляется заметное число отражений, не укладывающихся в ячейку при ее уточнении МНК. При нагревании кристалла от точки фазового перехода до 300 К никаких резких изменений кристаллографических параметров не обнаружено. Молекулярная структура FSa при 300 и 158 К идентична. При этом параметры элементарной ячейки высокотемпературной фазы не совпали с опубликованными ранее [3]. Это свидетельствует, что мы получили и исследовали новую полиморфную модификацию 1-фторсилатрана.

В независимой части элементарной ячейки низкотемпературной фазы FSa содержится 4 независимых молекулы A, B, C и D, различающихся направлением закрутки "лопастей пропеллера", которыми являются три пятичленных координационных цикла в конформации α -конверта, относительно собственной псевдооси третьего порядка (см. ниже). У молекул B, C и D "лопасти пропеллера" закручены по часовой стрелке, а у молекулы A — в противоположном направлении. Принимая во внимание хиральную пространственную группу $P2_1$ и величину параметра Флэка (-0,06(2)), молекулы A и B, C, D можно рассматривать как энантиомеры, а сам монокристалл как псевдорацемат. Координационный полиэдр атома кремния в этих четырех

Таблица 2

Эксперимент			Расчет РW-РВЕ				
Связь	d	Угол	ω	Связь	d	Угол	ω
$Si \longrightarrow N$ $Si \longrightarrow F$ $Si \longrightarrow O_1$ $Si \longrightarrow O_2$ $Si \longrightarrow O_3$ $O \longrightarrow C$ $N \longrightarrow C$	2,056(3) 1,625(2) 1,654(2) 1,655(2) 1,654(2) 1,423(4) 1,473(4)	NSiF NSiO FSiO OSiO	179,2(1) 86,3(1) 93,7(1) 119,6(1)	$Si \longrightarrow N$ $Si \longrightarrow F$ $Si \longrightarrow O_1$ $Si \longrightarrow O_2$ $Si \longrightarrow O_3$ $O \longrightarrow C$ $N \longrightarrow C$	2,075 1,649 1,680 1,679 1,676 1,429 1,478	NSiF NSiO FSiO OSiO	179,4 86,2 93,3 119,6

Экспериментальные и расчетные средние длины связей d, Å и валентные углы ю, град. в низкотемпературной фазе (100 K) FSa

молекулах FSa — обычная для силатранов искаженная тригональная бипирамида, аксиальный угол NSiF близок к 180°. Экспериментальные и расчетные средние длины связей и валентные углы в низкотемпературной фазе (100 K) FSa приведены в табл. 2.

При 100 К длина связи N \rightarrow Si в молекулах *A* и *B*, *C* и *D* несколько различается — 2,049 и 2,062 Å соответственно. Более короткое межатомное расстояние N \rightarrow Si обнаружено лишь в четырех силатранах XSa с X = F₃C (2,024 Å) [5], Cl (2,023 Å) [6], SCN (2,007 Å) [7], (BF₄)⁻Me₂O⁺ (1,965 Å) [8]. Выход атома кремния из экваториальной плоскости трех окружающих его атомов кислорода во всех независимых молекулах FSa составляет 0,104—0,109 Å, а атома азота из плоскости трех обрамляющих его атомов углерода — 0,373—0,392 Å. Причиной этого различия в геометрии окружения атомов Si и N являются особенности кристаллической упаковки низкотемпературной модификации (100 K) FSa. Молекулы *A* и *B*, *C* и *D* образуют чередующиеся слои, параллельные плоскости *ac* элементарной ячейки (рис. 3), молекулы в этих слоях образуют между собой слабые контакты С—Н…О.

Вторая аксиальная связь F—Si в независимых молекулах FSa при 100 К находится в пределах 1,622—1,628 Å. Это расстояние больше, чем длина связи F—Si в соединениях тетраэдрического кремния, что характерно для всех соединений гипервалентного кремния, содержащих связь F—Si. Длина трех экваториальных связей Si—O в молекулах *A*, *B*, *C* и *D* — 1,64—1,66 Å, в известных силатранах — 1,64—1,67 Å [1, 2]. Длина трех связей O—C находится в пределах 1,41—1,43 Å, как и во всех силатранах (в кислородсодержащих органических соединениях — 1,42 Å). Средняя длина трех связей С—N 1,47—1,48 Å несколько больше, чем в третичных аминах (1,46 Å). Аксиальный валентный угол NSiF во всех четырех независимых молекулах FSa

.1	a	0	Л	И	ц	а	3
----	---	---	---	---	---	---	---

Средние длины связей d, Å и валентные углы ω, град. в высокотемпературной фазе (210 K) FSa

Связь	d	Угол	ω	
$\begin{array}{c} \text{Si} & -\text{N} \\ \text{Si} & -\text{F} \\ \text{Si} & -\text{O}_1 \\ \text{Si} & -\text{O}_2 \\ \text{Si} & -\text{O}_2 \\ \text{Si} & -\text{O}_3 \\ \text{O} & -\text{C} \\ \text{N} & -\text{C} \end{array}$	2,050(2) 1,624(2) 1,653(2) 1,653(2) 1,654(2) 1,416(3) 1,471(5)	NSiF NSiO FSiO OSiO	179,66(9) 86,1(1) 93,9(1) 119,5(1)	

практически линейный (179,1±0,3°), валентные углы NSiO меньше 90°, а FSiO на столько же больше 90°.

Геометрические параметры высокотемпературной фазы (210 K) FSa (табл. 3) фактически такие же, как у низкотемпературной (100 K). Изменение сингонии и появление новых элементов симметрии приводит лишь к некоторому искажению характера кристаллической упаковки. Молекулы *С* и *В* совмещаются без изменения геометрии силатранового каркаса, а совмещение молекул *А* и *D* приводит к статическому разупорядочению β-атомов углерода. После фазового перехода можно выделить два типа слоев, состоящих из упорядоченных и разупорядоченных молекул соответственно (рис. 4). Их слои объединены в трехмерный каркас за счет слабых контактов С—Н...F и С—Н...О.

Рис. 3. Слои в кристаллической упаковке низкотемпературной фазы FSa. Атомы водорода пропущены для четкости рисунка

Рис. 4. Слои в кристаллической упаковке высокотемпературной фазы FSa

Разупорядочение β -атомов углерода в высокотемпературной фазе FSa не позволяет надежно охарактеризовать его электронную структуру. Для упорядоченной низкотемпературной фазы FSa выполнен квантово-химический расчет с использованием функционала плотности. Это позволило получить функцию распределения электронной плотности ($\rho(r)$) и проанализировать ее с использованием функции локализации электронных пар (ELF) [9] и топологической теории "Атомы в молекулах" (AM) P. Бэйдера [10]. Геометрические параметры, полученные после оптимизации позиций атомов в элементарной ячейке, хорошо согласуются с экспериментальными значениями (см. табл. 3).

Применение безразмерной функции ELF позволило локализовать накопления валентной электронной плотности в области ожидаемых химических связей силатранового каркаса и неподеленных электронных пар атомов О и F. Максимум функции ELF, соответствующий электронной паре атома N на связи N \rightarrow Si (рис. 5), смещен к атому азота и находится на расстоянии 0,7 Å от него. Таким образом, положение электронной пары атома азота на линии связи N \rightarrow Si отличается от установленного ранее с помощью функции динамической деформационной электронной плотности (ДЭП) [3]. По-видимому, различие полученных данных может быть объяс-

нено систематической ошибкой, вносимой в динамическую ДЭП из-за разупорядочения β-атомов углерода, что приводит к перевычету электронной плотности в окрестности атома N и смещению максимума ДЭП в сторону атома Si.

Топологический анализ расчетной электронной плотности в рамках теории Р. Бэйдера указывает на наличие критических точек (КТ)(3,-1) в области всех ожидаемых химических связей, включая и связь N—Si. Кроме того, обнаружены КТ(3,-1), соответствующие большому числу слабых межмолекулярных взаимодействий С—H...F, С—H...O и H...H. Топологические параметры связей атома Si приведены в табл. 4. Величина $\rho(r)$ в КТ(3,-1) в области связи N—Si (0,54 е·Å⁻³) заметно больше,

Рис. 5. Сечение функции ELF в плоскости N₁Si₁O₁. Сплошные изолинии проведены для значений функций, лежащих в интервале 0,5—1 через 0,05

Топологические параметры связей атома кремния в FSa

Связь	$\rho(r),$	$\nabla^2 \rho(r),$	$E^{e}(r),$	$V^{e}(r)$, ат. ед.
	$\mathbf{e} \cdot \mathbf{\mathring{A}}^{-3}$	e · Å ⁻⁵	Хартри · Å ⁻³	(E_{cb} , ккал · моль ⁻¹)
$N_1 \rightarrow Si_1$	0,54	2,37	-0,23	-0,093 (29,2)
$Si_1 \rightarrow F_1$	1,03	23,5	-0,29	-0,329 (103,3)
$Si \rightarrow O$	1,07	19,57	-0,45	-0,336 (105,1)

чем в 1-метилсилатране (0,42 е $\cdot Å^{-3}$). Электронная плотность в КТ(3,-1) связей Si—O (в среднем 1,07 $e \cdot Å^{-3}$) фактически не отличается от значения КТ(3,-1) в соединениях тетракоординированного кремния.

Все химические связи атома Si характеризуются положительной величиной лапласиана $\rho(r)$ ($\nabla^2 \rho(r)$) и отрицательной величиной плотности локальной энергии

E^e(*r*), что соответствует взаимодействиям промежуточного типа. По данным топологического анализа оценена энергия связей в координационном полиэдре атома Si с помощью схемы ЭМЛ. Связь N→Si в FSa (29,2 ккал/моль) несколько прочнее, чем в MeSa (20,4 ккал/моль) [13], HSa (25,4 ккал/моль) [14] и 1-метил-1-фторквазисилатране (27,7 ккал/моль) [15], оцененная в рамках схемы ЭМЛ. По сравнению с этими молекулами XSa [13-15] в молекуле FSa несколько прочнее и экваториальные связи Si-O. Это, по-видимому, обусловлено кооперативным электроноакцепторным влиянием фрагмента O₃SiF. Влияние окружающих атом кремния четырех высокоэлектроотрицательных атомов кислорода и фтора должно привести к увеличению положительного заряда атома Si и основности фрагмента O₃SiF. Действительно, расчетная величина положительного заряда атома Si, оцененная в рамках теории AM (+2,83 e), оказалась заметно больше, чем в молекулах 1-гидросилатрана и 1-фтор-1-метил-квазисилатрана (2,67 е и 2,69 е соответственно). Вместе с этим отрицательные заряды атомов О (-1,26 е) в FSa фактически такие же, как и в HSa, а отрицательный заряд атома N (-1,12 e) лишь немногим больше (на 0,02 e). Таким образом, увеличение положительного заряда атома Si в FSa по сравнению с HSa можно объяснить влиянием атома фтора, обладающего высоким отрицательным зарядом (-0,84 е).

Использование корреляции ЭМЛ позволило оценить энергию связывания между молекулами в двух типах слоев, образованных молекулами А, В и С, D в 5,5 и 4,2 ккал/моль соответственно, при помощи суммирования энергий всех межмолекулярных взаимодействий. Энергия связывания этих слоев (9,9 ккал/моль) несколько больше, чем взаимодействие между молекулами внутри каждого слоя. Полученные величины согласуются с наблюдаемой устойчивостью слоев в ходе фазового перехода.

Работа выполнена при поддержке Совета по грантам Президента РФ "Ведущие научные школы" (НШ-255.2008.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Pestunovich V., Kirpichenko S., Voronkov M. The Chemistry of Organic Silicon Compounds / Ed. Z. Rap-Poport, Y. Apeloig. – N.Y.: Wiley, 1998. – 2, Pt. 24. – P. 1447 – 1537.
 Cambridge Structural Database System. V 5.29. – Cambridge Crystallographic Data Centre, 2007.
 Párkányi L., Hencsei P., Bihatsi L., Müller T. // J. Organomet. Chem. – 1984. – 269, N 1. – P. 1 – 9.

- 4. Frye C.L., Vincent G.A., Finzel W.A. // J. Amer. Chem. Soc. 1971. 93, N 25. P. 6805 6811.
- 5. Eujen R., Roth A., Brauer D.J. // Monatsh. Chem. 1999. **130**, N 1. S. 109 115.
- 6. Кемме А.А., Блейделис Я.Я., Пестунович В.А. и др. // Докл. АН СССР. 1978. 243, № 3. С. 688 691.
- 7. Narula S.P., Shankar R., Kumar M. et al. // Inorg. Chem. 1997. 36, N 6. P. 1268 1273.
- 8. Garant R.J., Daniels L.M., Das S.K. et al. // J. Amer. Chem. Soc. 1991. 113, N 15. P. 5728 5735.
- 9. Becke A.D., Edgecombe K.E. // J. Chem. Phys. 1990. 92, N 9. P. 5397 5403.
- 10. Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир. 2001. (Bader R.F.W. Atoms in Molecules. A Quantum Theory. - Oxford: Clarendron Press, 1990).
- 11. (a) Kresse G., Hafner J. // Phys. Rev. 1993. 47, N 1. P. 558 561; (b) Kresse G. Thesis, Technische Universitat Wien, 1993; (c) Kresse G., Furthmüller J. // Comput. Mat. Sci. - 1996. - 6, N 1. - P. 15 - 50; (d) Kresse G., Furthmüller J. // Phys. Rev. - 1996. - 54, N 16. - P. 11169 - 11186.
- 12. Gonze X., Beuken J.-M., Caracas R. et al. // Comput. Mat. Sci. 2002. 25, N 3. P. 478 492.
- 13. Korlyukov A.A., Lyssenko K.A., Antipin M.Yu. et al. // Inorg. Chem. 2002. 41, N 20. P. 5043 5051.
- 14. Корлюков А.А., Антипин М.Ю., Болгова Ю.И. и др. // Изв. АН. Сер. хим. 2009. № 1. С. 25 30.
- 15. Korlyukov A.A., Lyssenko K.A., Antipin M.Yu. et al. // J. Organomet. Chem. 2009. 694, N 5. P. 607 -615.
- 16. Espinosa E., Mollins E., Lecomte C. // Chem. Phys. Lett. 1998. 285, N 3-4. P. 170 173.