УДК 669.273:622.772:662.346.3

КРИТЕРИИ ОЦЕНКИ ХИМИЧЕСКОЙ УСТОЙЧИВОСТИ МИНЕРАЛОВ

Е. В. Богатырева

Национальный исследовательский технологический университет "МИСиС" e-mail: Helen_Bogatureva@mail.ru, 119049, г. Москва, Россия

Проведен анализ критериев оценки химической устойчивости минералов цветных и редких металлов. Установлено, что на основании энергоплотности, степени однородности связи и силовой характеристики катионов для кислородных соединений возможно качественно прогнозировать их реакционную способность до механоактивации. Предложены зависимости для определения величины структурных изменений в минералах редких металлов при механоактивации, обеспечивающих эффективное вскрытие минералов при последующей гидрометаллургической переработке (при температурах менее 100°С). Выявленные зависимости позволят осуществлять предварительную оценку реакционной способности минералов и целенаправленно рекомендовать эффективные условия механоактивации.

Минерал, цветные и редкие металлы, химическая устойчивость, механоактивация

В связи с исчерпанием природных ресурсов технологии переработки минерального сырья редких и цветных металлов должны обеспечивать ресурсо- и энергосбережение и максимально возможное извлечение всех ценных компонентов.

Энергосбережение обеспечит снижение температуры процессов вскрытия сырья, а ресурсобережение — вовлечение в переработку низкосортного сырья. Однако это требует подбора реагентов и интенсификации процессов вскрытия.

Одним из перспективных направлений интенсификации является предварительная механоактивация (MA)*. Отсутствие методики прогнозирования свойств веществ после MA сдерживает применение этого мощного процесса интенсификации химических и металлургических процессов.

Цель работы — подбор критериев для оценки химической устойчивости минералов цветных и редких металлов до и после МА.

Все попытки оценить стабильность минералов, основанные как на эмпирическом изучении минералов, так и на теоретических рассуждениях, приводят в лучшем случае к установлению некой "средней" стабильности. Многие разногласия в опубликованных результатах стабильности возникают из-за того, что объектами наблюдений были минералы, образовавшиеся в различных природных условиях [1].

<u>№</u> 1

^{*}Предварительная механоактивация не имеет свойственных механохимической обработке недостатков, таких как: снижение эффективности механического воздействия на исходные материалы и значительное повышение энергозатрат по мере накопления продуктов реакции, которые в свою очередь могут тормозить взаимодействие исходных компонентов.

Л. В. Зверев с сотрудниками [2] разработали ряд термодинамической реакционной способности минералов, которая для случаев взаимодействия силикатов с растворами разбавленных кислот измеряется величиной отрицательных значений стандартной свободной энергии реакции кислотного растворения силиката на 1 моль кислорода в силикате. Эту величину указанные авторы рассматривали в качестве теоретического (расчетного) показателя растворимости минералов. Как отмечает М. Г. Бергер [3], этот ряд термодинамической реакционной способности минералов, хотя и имеет некоторые общие черты с известными экспериментальными данными и химической устойчивостью минералов, содержит немало указаний на соотношения устойчивости, диаметрально противоположные реально наблюдаемым.

В работе [3] для оценки химической устойчивости при построении седиментологической системы минералов использована классификация А. Кайе и Ж. Трикара [4]. Как видно из приведенной в табл. 1 химической устойчивости минералов, принимаемые А. Кайе, Ж. Трикаром и М. Г. Бергером оценки данного параметра для многих минералов существенно разнятся [3]. Принимая ту или иную численную оценку величины устойчивости, с учетом условности и относительности этой величины, М. Г. Бергер исходил во всех случаях из необходимости того, чтобы принимаемые на основе этих оценок соотношения между минералами по их химической устойчивости в максимальной мере соответствовали наблюдаемым в природе и установленным экспериментально соотношениям. В систематике А. Кайе и Ж. Трикара это основное требование во многих случаях не выполняется.

Минерал	S_{ch} , y	сл. ед.	Минерал	S_{ch} , yc	л. ед.
	1	2		1	2
Циркон	710		Апатит	220	150
Турмалин	630	600	Андалузит	220	300
Рутил	610		Гематит	200	
Лимонит	600		Альбит	170	
Платина	600		Биотит	160	100
Мусковит	600	450	Ильменит	150	300
Анатаз	550		Олигоклаз	130	
Алмаз	550		Андезит	110	
Лейкоксен	550		Эпидот	110	150
Золото	550		Плагиоклаз средний	100	
Шпинель	550		Лабрадор	80	
Кварц	530		Кордиерит	70	
Брукит	530	400	Тремолит	70	
Корунд	500		Гипс	70	< 10
Халцедон	500		Марказит	70	< 10
Топаз	420		Пиролюзит	70	
Монацит	420	450	Циозит	70	100
Касситерит	420	450	Роговая обманка	70	
Анортоклаз	400	200	Авгит	60	
Ксенотим	400	430	Диопсид	50	
Хлорит	400		Битовнит	40	
Вольфрамит	360	300	Актинолит	40	
Барит	360		Гиперстен	40	
Ортоклаз	350	200	Анортит	30	

ТАБЛИЦА 1. Химическая устойчивость минералов [3]

Силлиманит	330	400	Бронзит	15
Гранат	310	250	Энстантит	15
Микроклин	290	200	Пирит	10
Флюорит	280		Оливин	10
Титанит	280	250	Пирротин	10
Кианит	270	400	Глауконит	10
Магнетит	270	150	Глаукофан	10
Ставролит	270	380		

Окончание табл. 1

Примечание: 1 — по А. Кайеи Ж. Трикару; 2 — по М. Г. Бергеру.

По современным представлениям кристаллохимии [5] энергетическая стабильность минералов, как и неорганических кристаллов, базируется на энергии атомизации (E_{at}), определяемой работой разрыва химических связей соединения с образованием свободных нейтральных составляющих атомов. Для корректного сопоставления энергий атомизации различных простых и сложных по составу минералов необходимо использовать удельные энергии атомизации, отнесенными к единице объема (см³) минерала (E_V) [6]. Параметр E_V по способу вычисления и размерности (энергия/объем) представляет собой удельную объемную концентрацию энергии химических связей вещества — энергоплотность.

В [6] приведено сопоставление обобщенной шкалы относительной химической устойчивости терригенных минералов по М. Г. Бергеру [3] с параметрами энергоплотности (табл. 2).

Оценка	Группа	E_V , кДж/см ³	Эталонные минералы группы
Весьма низкая	Ι	84	Оливин (промежуточного состава)
Низкая	II	87	Гиперстен, роговая обманка, биотит
Средняя	III	90	Эпидот, сфен, ильменит
Высокая	IV	92	Андалузит, кианит, ставролит, ксенотим
Весьма высокая	V	97	Монацит, турмалин, циркон, рутил

ТАБЛИЦА 2. Обобщенная шкала относительной химической устойчивости терригенных минералов в сопоставлении с параметрами энергоплотности [6]

На основании вышеизложенного применение энергоплотности для оценки химической устойчивости минералов более перспективно.

В табл. 3 представлены результаты расчетов энергий атомизации и энергоплотности кислородсодержащих минералов [7–10]. Сопоставление значений энергоплотности минералов с их растворимостью в различных реагентах [11] выявило следующее.

Минералы с E_V менее 80 кДж/см³ в основном растворимы в кислотах, при E_V 80–90 кДж/см³ минералы реагируют с кислотами значительно хуже, а при E_V более 90 кДж/см³ минералы в кислотах не растворимы. Однако из установленного ряда есть исключения — касситерит, брусит, сидерит, смитсонит, периклаз, петалит, эвкриптит, литтиофосфит, анкерит, арагонит, бастнезит, магнезит, родохрозит, микроклин, пирофиллит. Это вызвало необходимость поиска дополнительных критериев оценки химической активности (устойчивости) минералов.

В основе минералогической систематики [12] лежат химические и структурные признаки. К первым прежде всего относятся силовые характеристики (γ) — мера кулоновского взаимодействия отрываемого электрона с ядром. В качестве силовых характеристик для атомов (γ_0) и ионов в свободном состоянии ($\gamma_{0^{n+}}$) и катионов в кристаллах с ионной связью (γ_i) используются соответственно зависимости:

$$\gamma_{\rm o} = \frac{F}{r_{\rm o}},\tag{1}$$

$$\gamma_{0^{n+}} = \frac{I_n}{r_0^{n+}},$$
(2)

$$\gamma_i = \frac{I_n}{r_i},\tag{3}$$

где F — сродство атома к электрону; I_n — n-й потенциал ионизации; r_0 — орбитальный радиус атома; r_0^{n+} — орбитальный радиус иона с валентностью n^+ ; r_i — эффективный радиус катиона с валентностью n^+ в ионном кристалле.

Для выбора зависимости для расчета силовых характеристик рассматриваемых минералов (табл. 3) было определено состояние их связей с применением концепции электроотрицательностей* [13]. В основе метода оценки состояния химической связи в веществах лежит разность ЭО составляющих их элементов. Связь в соединениях, состоящих из предельно различных по величине ЭО элементов, является чисто ионной, в противном случае — чисто ковалентной.

В минеральном мире преобладают кислородные соединения с промежуточной ионноковалетной связью (25–50 % ковалентности) [13]. Другую большую группу природных соединений составляют сульфиды и аналогичные вещества, характеризующиеся промежуточным состоянием химической связи с преобладанием ковалентной составляющей (60–90 % ковалентности).

В связи с изложенным для оценки силовой характеристики кислородсодержащих минералов применена зависимость (3). Результаты приведены в табл. 3.

На основании полученных результатов построены диаграммы устойчивости к кислотам (рис. 1*a*) и изменения энергоплотности (рис. 1*б*) простых и сложных оксидов, гидроксидов и силикатов в зависимости от величины удельной энергии атомизации (E_{at} , кДж/г-ат) и силовой характеристики катионов (γ_i) (рис. 1) [14].

Наблюдаемые различия на диаграммах (рис. 2), вероятно, возникли из-за того, что объектами были минералы, образовавшиеся в различных природных условиях. Тем не менее на диаграммах можно выделить три основные области минералов по устойчивости к воздействию кислот: І — область минералов с *низкой* устойчивостью (E_V менее 80 кДж/см³) (кальцит, шеелит, эвдиалит, апатит, β-сподумен и др.); II — область минералов со *средней* устойчивостью (E_V 80–90 кДж/см³) (перовскит, ильменит, вольфрамит, лопарит, пирохлор, клинохлор, смитсонит и др.); III — область минералов с *высокой* устойчивостью (E_V более 90 кДж/см³) (бадделеит, циркон, α-сподумен, рутил, фенакит, берилл, корунд и др.).

Если минералы I области хорошо растворимы в кислотах, то минералы области II требуют активации для интенсификации процесса гидрометаллургического вскрытия, тогда как минералы области III чаще всего вскрывают только пирометаллургическими методами.

Эти сведения могут быть использованы при определении режимов селективного извлечения ценных компонентов из минерального сырья.

^{*}Электроотрицательность (ЭО) — энергия притяжения атомом валентных электронов при соединении его с другими атомами [13].

3	Растворимость	12	Не растворим в ки- слотах	Не растворим в ки- слотах) Не растворим в ки- слотах	0 Не растворим в ки- слотах) Не растворим в ки- слотах	0 Не растворим в ки- слотах	3 Разлагается в кисло- тах	3 В кислотах, кроме H ₂ SO ₄ , не растворим) Не растворим в ки- слотах	Не растворим в ки- слотах, в т. ч. в НF	3 Не растворим в ки- слотах	Разлагается H ₂ SO ₄ и НF	Не растворим в ки- слотах	Растворим в HCI
TN	Степень Однороднос	11		l,	3.0	~3.	3.(~3.	44.	61.	1.0	2.5	2.3		1.1	4.9
NT	Степень ковалентнос мязи, %	10	40.7	50.1	38.5	55.7	45.1	52.7	46.7	48.7	39.8	47.2	43.4	47.5	37.4	43.8
80	СХ катионс В (γ)	6	1	ľ	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{\rm C} = 469.6$	$\gamma_{\rm S}=273.8$	$\gamma_{AI} = 49.7$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{AI} = 55.9$ $\gamma_{Si} = 122.3$
X	Средняя С воноптвя (ү) А	8	49.7	49.7	49.7	<i>L</i> .64	49.7	49.7	6.76	6.2	56.7	6'23'6	56.7	56.7	26.4	23.9
ସେ	СХ катиона А (ү)	L	$\gamma_{Al} = 49.7$	$\gamma_{AI} = 49.7$	$\gamma_{AI} = 49.7$	$\gamma_{AI} = 49.7$	$\gamma_{AI} = 49.7$	$\gamma_{Al} = 49.7$	$\gamma_{Ba}=6.76$	$\gamma_{Ba}=6.2$	$\gamma_{Be}=56.7$	$\gamma_{\rm Be} = 56.7$ $\gamma_{\rm AI} = 49.7$	$\gamma_{\mathrm{Be}} = 56.7$	$\gamma_{Be} = 56.7$	$\gamma_{ca} = 10.9$ $\gamma_{AI} = 49.7$	$\gamma_{ca} = 11.0$ $\gamma_{Al} = 49.7$
омизации	кДж/см ³	6	117.8 - 132.9	112.5 - 119.3	98.9 - 104.7	88.7-91.1	94.7 - 97.7	85.0 - 93.0	60.6 - 62.0	56.2	118.0 - 134.8	86.6 – 96.6	112.1 - 115.9	102.4 - 104.8	93.0 - 101.2	80.5 - 86.2
ергия атс	кДж/г-ат	5	616	511	595	516	618	577	568	485	612	617	608	558	612	605
Эн	апом∖жДя	4	3082	2045	5351	17544	4947	11541	2842	2908	4280	178821	4251	9483	12236	11498
	p, r/cm³	ŝ	3.9-4.4	3.3-3.5	3.4 - 3.6	2.6-2.7	3.1 - 3.2	2.65 - 2.90	4.2 - 4.3	4.5	3.5 - 4.0	2.6 - 2.9	2.9 - 3.0	2.57 - 2.63	3.42 - 3.72	2.8 - 3.0
	Минерал	2	⁽⁶⁾ Аl ₂ О ₃ (корунд)	⁽⁶⁾ АlООН (диаспор)	⁽⁶⁾ Al ₂ [⁽⁴⁾ SiO ₄]F ₂ (To- IIa3)	⁽⁶⁾ АІ ₄ [⁽⁴⁾ Sі ₄ О ₁₀](ОН) ₈ (каолин(ит))	⁽⁶⁾ Аl ₂ [⁽⁴⁾ SiO ₄]О (анда- лузит)	⁽⁶⁾ Аl ₂ [⁽⁴⁾ Si ₄ O ₁₀](ОН) ₂ (пирофиллит)	⁽⁹⁾ Ва ⁽³⁾ СО ₃ (витерит)	⁽¹²⁾ Ва ⁽⁴⁾ SO ₄ (барит)	⁽⁴⁾ Ве ⁽⁶⁾ Аl ₂ О ₄ (хризо- берилп)	⁽⁴⁾ Ве ₃ ⁽⁶⁾ Аl ₂ ⁽⁴⁾ Si ₆ O ₁₈) (берилл)	⁽⁴⁾ Ве ₂ ⁽⁴⁾ SiO ₄ (фена- кит)	⁽⁴⁾ Ве ₄ [⁽⁴⁾ Si ₂ O ₇](ОН) ₂ (бертрандит)	⁽⁸⁾ Са ₃ ⁽⁶⁾ Аl ₂ ⁽⁴⁾ Si ₃ O ₁₂ (гроссуляр)	⁽⁷⁾ Са ₂ ⁽⁶⁾ АІ[⁽⁴⁾ АІ ⁽⁴⁾ . ·Si ₃ O ₈] (ОН) ₂ (птенит)
	ш/Ш ōN	-	-	2	m	4	2	6	7	8	6	10	11	12	13	14

-	2	3	4	5	9	7	8	6	10	11	12
15	⁽⁶⁾ Са ⁽⁴⁾ СО ₃ (кальцит)	2.6 - 2.8	2847	569	74.0 – 79.7	$\gamma_{ca} = 11.2$	11.2	$\gamma_{\rm C} = 454.6$	49.7	22.1	В кислотах раство- рим
16	⁽⁹⁾ Са ⁽³⁾ СО ₃ (арагонит)	2.9-3.0	2846	569	82.5 - 85.4	$\gamma_{ca(9)} = 10.7$	10.7	$\gamma_{c} = 469.6$	49.7	38.8	Разлагается в HCl pa36.
17	⁽⁶⁾ Са ⁽⁶⁾ Fe(⁽³⁾ СО ₃) ₂ (ан- керит)	2.9-3.1	5733	573	77.0 - 82.3	$\gamma_{ca} = 11.2$ $\gamma_{Fe} = 47.3$	29.3	$\gamma_{\rm C} = 469.6$	52.8	13.2	В кислотах раство- рим
18	⁽⁸⁾ Ca ₂ ⁽⁶⁾ Mg ₅ [⁽⁴⁾ Si ₄ O ₁₁] ₂ . ·(OH) ₂ (тремолит)	2.9-3.0	23466	572	82.0 - 84.8	$\gamma_{\rm Ca} = 10.9$ $\gamma_{\rm Mg} = 19.4$	17.0	$\gamma_{Si} = 122.3$	42.4	6.8	Не растворим в ки- слотах
19	⁽⁸⁾ Са ⁽⁶⁾ Мg[⁽⁴⁾ Si ₂ O ₆] (диопсид)	3.27 - 3.38	5926	593	89.7 - 92.7	$\gamma_{\rm Ca} = 10.9$ $\gamma_{\rm Mg} = 19.4$	15.2	$\gamma_{Si} = 122.3$	38.8	7.7	Не растворим в ки- слотах
20	⁽⁸⁾ Са ⁽⁴⁾ МоО ₄ (повел- лит)	4.2 – 4.5	3379	563	71.0 – 76.0	$\gamma_{ca} = 10.9$	10.9	$\gamma_{Mo} = 123.0$	37.0	15.2	В кислотах раство- рим
21	⁽⁸⁾ Са ⁽⁶⁾ Nb ₂ O ₆ (фер- смит)	4.7-4.9	6417	713	93.7 – 97.7	$\gamma_{ca} = 10.9$	10.9	$\gamma_{Nb} = 75.2$	36.9	6.1	С трудом растворим в H ₂ SO ₄
22	⁽⁹⁾ Са ₂ ⁽⁷⁾ Са ₃ ⁽⁴⁾ РО ₄) ₃ F (апатит-фтор)	3.2	11786	561	74.8	$\begin{split} \gamma_{\mathrm{ca}(9)} &= 10.7\\ \gamma_{\mathrm{ca}(7)} &= 11.0 \end{split}$	10.9	$\gamma_{\rm P} = 196$	38.0	17.4	Разлагается в кисло- тах
23	⁽⁹⁾ Са ₂ ⁽⁷⁾ Са ₃ ⁽⁴⁾ РО ₄) ₃ . ·(ОН) (апатит- гидроксил)*	2 - 2	11950	543	74.9	$\begin{split} \gamma_{\text{ca}(9)} &= 10.7\\ \gamma_{\text{ca}(7)} &= 11.0 \end{split}$	10.9	$\gamma_{\rm P} = 196$	38.3	17.4	Разлагается в кисло- тах
24	⁽⁸⁾ Са ⁽⁴⁾ SO ₄ (ангидрит)	2.3	4846	404	64.8	$\gamma_{ca} = 10.9$	10.9	$\gamma_{\rm S}=273.8$	51.7	24.5	Растворим в кисло- тах
25	⁽⁸⁾ СаSO ₄ 2H ₂ O (гипс)	2.32	4844	404	65.3	$\gamma_{ca} = 10.9$	10.9	$\gamma_{\rm S}=273.8$	51.7	24.5	Растворим в HCl
26	⁽⁶⁾ Ca ⁽⁴⁾ SiO ₃	2.8 - 2.9	3009	602	72.6 - 75.2	$\gamma_{ca} = 11.2$	11.2	$\gamma_{Si} = 122.3$	36.3	8.3	HCI, HNO ₃
27	⁽¹²⁾ Са ⁽⁶⁾ ТіО ₃ (перов- скит)	3.9-4.1	3058	612	87.7 - 92.2	$\gamma_{\text{ca}}=10.0$	10.0	$\gamma_{\rm TI}=70.9$	35.0	8.7	HF
28	⁽⁷⁾ Са ⁽⁶⁾ ТіО ⁽⁴⁾ SіО ₄ (сфен)*	T	4946	618	88.8	$\gamma_{ca} = 11.0$ $\gamma_{T i} = 70.9$	41.0	$\gamma_{Si} = 122.3$	41.3	3.6	Слабо растворим в H ₂ SO ₄
29	⁽⁸⁾ Са ⁽⁴⁾ WO ₄ (шеелит)	5.8 - 6.2	3665	611	73.8 – 78.9	$\gamma_{ca} = 10.9$	10.9	$\gamma_{W} = 95.4$	31.6	13.7	Растворим в HCl, HNO ₃
30	⁽¹¹⁾ Се ⁽³⁾ СО ₃ F (бастне- зит)	4.9 - 5.2	3772	629	84.4 - 89.6	$\gamma_{Ce} = 15.1$	15.1	$\gamma_{\rm C}=469.6$	47.7	25.8	Растворим в НСІ
31	⁽⁹⁾ Се ⁽⁴⁾ РО ₄ (монацит)	4.9-5.5	3677	613	76.6 - 86.6	$\gamma_{ce}=14.8$	14.8	$\gamma_P = 196$	46.0	14.5	Трудно растворим в кислотах
32	⁽¹²⁾ (Се _{0.36} Nа _{0.4} Са _{0.24}) ⁽⁶⁾ .(Ti _{0.88} Nb _{0.12})О ₃ (ло- парит)	4.6-4.9	3017	603	81.3 - 86.7	$\begin{array}{l} \gamma_{Ce}=14.8\\ \gamma_{ca}=10.0\\ \gamma_{Na}=4.6 \end{array}$	9.6	$\gamma_{\rm TI} = 70.9$ $\gamma_{\rm NIb} = 75.2$	34.8	6.4	В кислотах, кроме НF, не растворим

Продолжение табл. 3

Продс	олжение табл. 3										
1	2	3	4	5	6	7	8	6	10	11	12
33	⁽²⁾ Си ₂ О (куприт)	5.8 - 6.2	1096	365	44.1 – 47.2	$\gamma_{Cu} = 9.1$	9.1		29.3	ľ	Разлагается в кисло- тах
34	⁽⁴⁾ СиО (тенорит)	5.8 - 6.4	743	372	53.9 - 59.4	$\gamma_{Cu} = 30.3$	30.3	Ĩ	44.7		Растворим в НС1
35	⁽⁴⁾ Си ₃ (³⁾ СО ₃) ₂ (ОН) ₂ (азурит)	3.7-3.9	6498	433	69.5 <i>- 7</i> 3.2	$\gamma_{Cu} = 30.9$	30.9	$\gamma_{\rm C} = 469.6$	63.8	8.2	Разлагается в кисло- тах
36	⁽⁶⁾ Си ₂ ⁽³⁾ СО ₃ (ОН) ₂ (ма- лахит)	3.9-4.1	4120	412	75.1	$\gamma_{Cu} = 29.0$	29.0	$\gamma_{\rm C}=469.6$	64.2	14.1	Растворим в НС1
37	⁽⁴⁾ Сu ⁽⁴⁾ SiO ₃ H ₂ O (ди- оптаз)	3.28 - 3.35	3580	448	74.3 – 75.9	$\gamma_{Cu} = 30.9$	30.9	$\gamma_{Si}=122.3$	49.4	3.1	В кислотах раство- рим
38	⁽⁶⁾ Fe ⁽³⁾ СО ₃ (сидерит)	3.9	2632	526	88.5	$\gamma_{Fe}=19.2$	19.2	$\gamma_{c} = 469.6$	56.0	16.3	Разлагается в кисло- тах
39	⁽⁴⁾ Fe ⁽⁶⁾ FeO ₃ (магге- мит)	4.7 – 4.9	2405	481	70.7 - 73.7	$\gamma_{\mathrm{Fe}(4)} = 50.3$ $\gamma_{\mathrm{Fe}(6)} = 47.3$	48.8	N	39.4		Разлагается в HCl при нагреве
40	⁽⁶⁾ (Fe, Mn) ⁽⁶⁾ Nb ₂ O ₆ (колумбит)	5.00 - 6.35	5673	630	76.2 – 96.8	$\gamma_{Fe} = 19.2$ $\gamma_{Mn} = 15.9$	19.2 - 15.9	$\gamma_{\rm Nb} = 75.2$	40.5	3.3	В кислотах, кроме НF, не растворим
41	⁽⁶⁾ Fe ₂ O ₃ (гематит)	5.3	2405	481	79.7	$\gamma_{Fe}=47.3$	47.3		47.4	Ĩ	Разлагается в HCl конц.
42	⁽⁶⁾ FeOOH (гетит)	4.3	1690	423	81.7	$\gamma_{Fe}=47.3$	47.3	Î	56.7	ľ	Разлагается в HCl медленно
43	⁽⁶⁾ Fe ₂ ⁽⁴⁾ SiO ₄ (фаялит)*	I	3761	537	81.1	$\gamma_{Fe}=19.2$	19.2	$\gamma_{Si}=122.3$	38.9	6.1	Растворим в кисло- тах
44	⁽⁶⁾ (Fe.Mn) ⁽⁶⁾ Та ₂ О ₆ (танталит)	6.35 - 8.15	5799	644	71.8 – 92.1	$\gamma_{Fe} = 19.2$ $\gamma_{Mn} = 15.9$	19.2 - 15.9	$\gamma_{Ta} = 68.2$	35.2	3.3	В кислотах, кроме НF, не растворим
45	⁽⁶⁾ Fe ⁽⁶⁾ Ta ₂ O ₆ (тапио- лит)	7.0 – 7.8	5798	644	79.0-88.0	$\gamma_{\mathrm{Fe}(6)}=19.2$	19.2	$\gamma_{Ta}=68.2$	35.8	3.1	Не растворим в ки- слотах
46	⁽⁶⁾ Fe ⁽⁶⁾ ТіО ₃ (ильме- нит)	4.6 - 4.8	2870	574	86.9 - 90.6	$\gamma_{Fe}=19.2$	19.2	$\gamma_{Ti}=70.9$	41.4	2.7	Растворяется в конц. кислотах с трудом
47	⁽⁶⁾ Fe ₂ ⁽⁶⁾ Ti ₃ O ₉ (аризо- нит)	4.55	8130	581	92.5	$\gamma_{Fe}=47.3$	47.3	$\gamma_{\mathrm{TI}} = 70.9$	49.8	1.4	Разлагается H ₂ SO ₄ конц.
48	⁽⁶⁾ (Fe, Mn) ⁽⁶⁾ WO ₄ (вольфрамит)	6.7 - 7.5	3451	573	76.1 - 85.1	$\gamma_{Fe}=19.2$	19.2	$\gamma_{W} = 89.7$	37.0	7.2	Растворяется в конц. кислотах с трудом
49	⁽¹²⁾ К ⁽⁶⁾ Аl ₃ (SO ₄) ₂ (OH) ₆ (алунит)	2. – 2.8	11613	447	72.9 - 78.5	$\gamma_{K}=2.9$ $\gamma_{AI}=49.7$	38.0	$\gamma_{\rm S} = 273.8$	58.1	8.2	Растворим в HCl, H ₂ SO ₄ и КОН
50	⁽¹²)Қ ⁽⁶⁾ Аl ₂ [⁽⁶⁾ Аl ⁽⁴⁾ . ·Si ₃ O ₁₀](OH) ₂ (муско- вит)	2.76-3.10	11801	562	81.8 - 91.9	$\gamma_K = 2.9$ $\gamma_{AI} = 49.7$	34.1	$\gamma_{Al} = 49.7$ $\gamma_{Si} = 122.3$	45.0	3.9	Не растворим в ки- слотах

12	Растворим в HCl	Не растворим в ки- слотах	Растворим в H ₂ SO ₄	Разлагается в НСІ	Разлагается в HCl	Не растворим в ки- слотах	Не растворим в ки- слотах	Растворим в H ₂ SO ₄	Разлагается в кисло- тах	Разлагается в HCl	Не растворим в ки- слотах	Не растворим в ки- слотах и щелочах	Разлагается в H ₂ SO ₄ конц. при кипячении	Разлагается в кисло- тах	Разлагается в кисло- тах	Разлагается в кисло- тах	Разлагается в H ₂ SO ₄
11	45.8	41.5	6.7	8.9	13.1	3.1	2.5	I	13.4	24.9	1.2	5.4	3.5	15.5	l	l	5.8
10	39.4	42.3	35.4	51.9	36.7	45.4	41.1	41.1	38.0	28.5	36.7	41.2	47.0	54.7	28.8	47.4	37.2
6	$\gamma_{AI} = 52.9$ $\gamma_{Si} = 122.3$	$\gamma_{AI} = 52.9$ $\gamma_{Si} = 122.3$	$\gamma_{AI} = 52.9$ $\gamma_{Si} = 122.3$	$\gamma_{\rm S}=273.8$	$\gamma_{AI} = 52.9$ $\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{Si}=122.3$	$\gamma_P = 196$	$\gamma_{\rm P} = 196$	$\gamma_{AI} = 49.7$	$\gamma_{Si} = 122.3$	$\gamma_{Si} = 122.3$	$\gamma_{\rm C}=469.6$		Ι	$\gamma_{Si} = 122.3$
8	2.9	3.0	15.3	36.2	7.3	30.1	28.2	28.2	13.05	7.3	20.6	31.2	29.5	20.1	20.1	20.1	19.4
7	$\gamma_{\rm K} = 2.9$	$\gamma_{\rm K} = 3.0$	$\gamma_{\rm K}=2.9$ $\gamma_{\rm Mg}=19.4$	$\gamma_{\rm K} = 2.9$ $\gamma_{\rm Fe} = 47.3$	$\gamma_{\rm Li} = 7.3$	$\gamma_{Li} = 7.3$ $\gamma_{Al} = 52.9$	$\gamma_{\rm Li} = 6.7$ $\gamma_{\rm Al} = 49.7$	$\gamma_{\rm Li} = 6.7$ $\gamma_{\rm Al} = 49.7$	$\gamma_{\rm Li} = 6.9$ $\gamma_{\rm Fe} = 19.2$	$\gamma_{Li}=7.3$	$\gamma_{Mg} = 20.6$	$\gamma_{Mg} = 18.8$ $\gamma_{AI} = 49.7$	$\gamma_{Mg} = 20.1$ $\gamma_{AI} = 52.9$	γ_{Mg} =20.1	$\gamma_{Mg} = 20.1$	$\gamma_{Mgi} = 20.1$	$\gamma_{Mg}=20.1$
6	65.6 - 66.9	71.4	72.2 – 76.2	69.7 - 74.2	83.6 - 86.8	76.0 – 79.1	100.4	74	72.2 – 78.8	84.8	85.5 - 97.4	102.5 - 109.5	84.0 - 90.4	93.4 - 99.8	89.7 - 97.2	81.7	90.0
5	583	594	562	434	579	605	593	593	494	486	482	287	497	541	499	395	559
4	5834	7722	11229	9107	4051	9683	5931	5931	3456	3885	3373	117401	17893	2704	7997	1973	3912
ŝ	2.45 - 2.5	2.57	2.70-2.85	3.1 – 3.3	2.6 – 2.7	2.4 – 2.5	3.147	2.307	3.3 – 3.6	Ĺ	3.6-4.1	3.51 - 3.75	2.6 – 2.8	2.9 - 3.1	3.6-3.9	2.4	3.22
2	(1 ⁽¹²⁾ Қ[⁽⁴⁾ А] ⁽⁴⁾ Si ₂ O ₆] (лейцит)	2 ⁽¹⁰⁾ Қ[⁽⁴⁾ Аl ⁽⁴⁾ Si ₃ O ₈] (микроклин)	.3 ⁽¹²⁾ К ⁶⁰ Мg ₃ [⁽⁴⁾ Al ⁽⁴⁾ Si ₃ . ·O ₁₀]F (флогопит)	(4 ⁽¹²⁾ К ⁽⁶⁾ Fe ₃ ⁽⁴⁾ SO ₄ (OH) ₆ (ярозит)	5 ⁽⁴⁾ Li[⁽⁴⁾ Al ⁽⁴⁾ SiO ₄] (эв- криптит)	(б ⁽⁴⁾ Li ⁽⁴⁾ Si ₄ O ₁₀ (пе- талит)	(7 α. ^{-⁽⁸⁾Li⁽⁶⁾Al[⁽⁴⁾Si₂O₆] (α-сподумен)}	.8 β- ⁽⁸⁾ Li ⁽⁶⁾ Al[⁽⁴⁾ Si ₂ O ₆] (β-сподумен)	.9 ⁽⁶⁾ Li ⁽⁶⁾ Fe ⁽⁴⁾ PO ₄ (трифи- лит)	(0 ⁽⁴⁾ Li ₃ ⁽⁴⁾ PO ₄ (литтио- фосфит)*	i1 ⁽⁴⁾ Мg ⁽⁶⁾ Аl ₂ О ₄ (шпи- нель)	,2 ⁽⁸⁾ Мg ₃ ⁽⁶⁾ Аl ₂ [⁽⁴⁾ SiO ₄] ₃ (пироп)	13 ⁽⁶⁾ Мg ₅ ⁽⁴⁾ Al ₂ Si ₃ O ₁₀ [.] (ОН) ₈ (клинохлор)	.4 ⁽⁶⁾ Мg ⁽³⁾ СО ₃ (магнезит)	(5 ⁽⁶⁾ МgO (периклаз)	66 ⁽⁶⁾ Mg(OH) ₂ (6pycur)	(7 ⁽⁶⁾ Мg ₂ ⁽⁴⁾ SiO ₄ (форсте- рит)

T

ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ ФТПРПИ, № 1, 2013

160

Продолжение табл. 3

Продо	лтжение табл. 3										
-	2	ũ	4	5	6	7	8	6	10	11	12
68	⁽⁶ Мg ₃ [⁽⁴⁾ Si ₄ O ₁₀](ОН) ₂ (тальк)	2.78	11590	552	80.5 - 88.1	$\gamma_{Mg}=19.4$	19.4	$\gamma_{Si}=122.3$	46.3	5.8	Не растворим в ки- слотах
69	⁽⁶⁾ МпО ₂ (пиролюзит)	5.0 - 5.1	1301	434	74.8 – 76.3	$\gamma_{Mn}=102.6$	102.6	-	64.7	Ι	Разлагается в HCl конц., H ₂ SO4 конц.
70	⁽⁶⁾ Мп ⁽³⁾ СО ₃ (родохро- зит)	3.6-3.7	2638	528	82.6 - 84.9	$\gamma_{\rm Mn} = 15.9$	15.9	$\gamma_{\rm C}=469.6$	54.0	18.2	Разлагается в HCl
71	⁽⁸⁾ Мп ⁽⁶⁾ Мп ₆ SiO ₁₂ (браунит)	4.7-4.9	8617	431	66.9 - 69.8	1	1	$\gamma_{Si}=122.3$	44.7	Ι	Растворим в НС1
72	⁽⁶⁾ Мп ⁽⁴⁾ SiO ₃ (родонит)	3.4 – 3.75	2801	560	72.7 - 84.5	$\gamma_{\mathrm{Mn}} = 15.9$	15.9	$\gamma_{Si} = 122.3$	40.7	6.8	В кислотах раство- рим
73	⁽⁶⁾ Мп ₂ ⁽⁴⁾ SiO ₄ (тефроит)	3.87-4.03	3742	535	71.7 – 74.7	$\gamma_{\rm Mn} = 15.9$	15.9	$\gamma_{Si} = 122.3$	36.3	6.8	В кислотах раство- рим
74	⁽⁸⁾ Na ⁽⁶⁾ AlSi ₂ O ₆ (жаде- ит)	3.3 – 3.4	5853	585	95.6 - 98.5	$\gamma_{Na} = 4.6$ $\gamma_{AI} = 49.7$	27.2	$\gamma_{Si} = 122.3$	40.6	5.4	Не растворим в ки- слотах
75	⁽⁸⁾ Na[⁽⁴⁾ Al ⁽⁴⁾ SiO ₄] (не- фелин)	2.6	3982	569	72.9	$\gamma_{Na}=4.6$	4.6	$\gamma_{AI} = 52.9$ $\gamma_{Si} = 122.3$	36.1	22.9	Разлагается в кисло- тах
76	⁽⁸⁾ Na ⁽⁴⁾ Be ⁽⁴⁾ PO ₄ (бе- риллонит)	2.8	3560	509	78.5	$\gamma_{\rm Na} = 4.6$ $\gamma_{\rm Be} = 56.7$	30.7	$\gamma_P = 196$	39.6	6.3	Растворяется в ки- слотах медленно
77	⁽⁶⁾ Na ₁₂ ⁽⁶⁾ Ca ₆ ⁽⁴⁾ Fe ₃ ⁽⁶⁾ Zr ₃ . ·[⁽⁴⁾ Si ₃ O ₉] ₂ [Si ₉ O ₂₄ . ·(OH) ₃] ₂ (эвдиалит)	2.8 - 3.1	70675	561	71.0 – 78.6	$\begin{array}{l} \gamma_{\mathrm{Na}}=4.6\\ \gamma_{\mathrm{ca}}=11.2\\ \gamma_{\mathrm{Fe}}=20.4\\ \gamma_{\mathrm{Zr}}=40 \end{array}$	12.7	$\gamma_{\rm Si} = 122.3$	38.4	7.4	Растворяется в ки- слотах
78	⁽⁸⁾ Na ⁽⁸⁾ Ca ⁽⁶⁾ Nb ₂ O ₆ F (пирохлор II)	3.8 – 5.0	6504	592	67.9 - 89.3	$\gamma_{\rm Na} = 5.0$ $\gamma_{\rm ca} = 10.9$	6.5	$\gamma_{\rm Nb} = 75.2$	28.3	6.1	НҒ конц., Н ₂ SO ₄ конц.
79	⁽⁸⁾ Na ⁽⁶⁾ Fe ⁽⁴⁾ Si ₂ O ₆ (эги- рин)	3.4 – 3.6	5504	550	81.0 - 85.8	$\gamma_{\rm Na}=4.6$ $\gamma_{\rm Fe}=47.3$	26.0	$\gamma_{Si}=122.3$	42.3	2.9	Слабо растворим в НСІ
80	⁽¹²⁾ Na ⁽⁶⁾ NbO ₃ (луешит)	4.3 – 4.5	2901	580	76.1 – 79.6	$\gamma_{Na}=4.6$	4.6	$\gamma_{\rm Nb} = 75.2$	29.8	23.9	Слабо растворим в H ₂ SO ₄
81	(4)PbO (rner)	9.3	663	332	27.7	$\gamma_{\rm Pb} = 12.0$	12.0]	27.5	1	Растворим в кисло- тах
82	⁽⁶⁾ РbO ₂ (платтнерит)	9.2 - 9.44	970	323	37.3 – 38.3	$\gamma_{Pb} = 12.0$	12.0	I	47.4	ľ	Растворим в HCl
83	⁽⁹⁾ Рb ⁽³⁾ СО ₃ (церуссит)	6.4 - 6.6	2360	472	56.6 - 58.3	$\gamma_{Pb}=14.6$	14.6	$\gamma_{\rm C} = 469.6$	54.0	38.8	Разлагается в HCl разб., HNO ₃ и KOH
84	⁽⁹⁾ Рb ⁽⁴⁾ СrO ₄ (крокоит)	6.0	2503	417	46.5	$\gamma_{Pb}=10.7$	10.7	$\gamma_{Cr}=157.1$	54.0	25.0	Растворим в HCl
85	^ю РЪ ⁽⁴⁾ МоО ₄ (вульфе- нит)	6.3 – 7.0	2898	483	49.8 - 55.3	$\gamma_{\rm Pb} = 11.0$	11.0	$\gamma_{Mo} = 123.0$	41.4	15.2	В кислотах раство- рим

-	c	ç	1	2	Š	r	d	c	v •		ç
-	7	S	4	0	0	-	8	У	IU	TT	12
86	⁽¹²⁾ рb ⁽⁴⁾ SO ₄ (англезит)	6.1 - 6.4	2388	398	48.1 - 50.4	$\gamma_{Pb}=10.1$	10.1	$\gamma_{S}=273.8$	56.0	40.8	В кислотах раство- рим
87	⁽⁸⁾ Рb ⁽⁴⁾ WO ₄ (штоль- цит)	7.9 - 8.3	3185	531	55.3 - 58.1	$\gamma_{Pb}=14.6$	14.6	$\gamma_{W}=95.4$	36.1	13.7	Разлагается в HCl
88	⁽⁴⁾ SiO ₂ (кварц)	2.6	1859	620	80.6	$\gamma_{Si}=122.3$	122.3	l	54.0	l	Растворяется в НF
89	⁽⁶⁾ SnO ₂ (касситерит)	6.3 – 7.2	1380	460	57.6-65.8	$\gamma_{\rm Sn} = 55.0$	55.0		44.7	(s)(s)	Реагирует с конц. кислотами
90	$^{(12)}{ m Sr}^{(4)}{ m SO}_4$ (целестин)	3.9-4.0	2905	484	61.6-63.2	$\gamma_{\rm Sr}=7.6$	7.6	$\gamma_{\rm S}=273.8$	50.1	40.8	В кислотах раство- рим
91	⁽⁶⁾ ТіО ₂ (рутил)	4.2 - 4.4	1907	636	100.1 - 104.9	$\gamma_{TI}=70.9$	70.9	19. 1	51.4	1 No	H ₂ SO ₄ конц. НF
92	⁽⁸⁾ ТhО ₂ (торианит)	6.5 – 7.5	2300	767	56.6-65.3	$\gamma_{Th}=25.4$	25.4		27.5		Растворим в HNO ₃ , H ₂ SO ₄
93	⁽⁸⁾ Th[⁽⁴⁾ SiO ₄] (торит)	3.8 - 6.65	4200	700	49.3 - 86.2	$\gamma_{Th} = 25.4$	25.4	$\gamma_{Si}=122.3$	40.7	5.3	Pacтворим в HCl
94	⁽⁸⁾ Y ⁽⁴⁾ NbO ₄ (фергусо- нит)	5.6 - 6.0	4086	681	93.0 - 99.7	$\gamma_{Y} = 18.7$	18.7	$\gamma_{\rm Nb}=80.0$	35.4	6.1	Разлагается в НF
95	$^{(8)}Y^{(4)}PO_4~({ m kcehotnm})$	4.4-4.6	3559	593	85.1-89.0	$\gamma_Y=18.7$	18.7	$\gamma_P = 196$	46.0	10.2	Не растворим в ки- слотах
96	⁽⁴⁾ Zn ⁽⁶⁾ Al ₂ O ₄ (ганит)	4.0 - 4.6	3853	550	84.2 – 96.9	$\gamma_{Zn}=23.1$	23.1	$\gamma_{AI} = 49.7$	39.6	1.1	Не растворим в ки- слотах
76	⁽⁶⁾ Zn ⁽³⁾ CO ₃ (смитсо- нит)	4.1 – 4.5	2408	482	79.0-86.7	$\gamma_{Zn}=21.7$	21.7	$\gamma_{C} = 469.6$	59.1	14.8	Разлагается в кисло- тах
86	⁽⁴⁾ ZnO (цинкит)	5.5 - 5.7	729	365	48.9 - 50.7	$\gamma_{Zn} = 23.1$	23.1	l	37.5		Разлагается в кисло- тах
66	⁽⁴⁾ Zn ₂ ⁽⁴⁾ SiO ₄ (вилле- мит)	3.9 - 4.2	3348	478	58.3 - 62.8	$\gamma_{Zn}=23.1$	23.1	$\gamma_{Si}=122.3$	43.1	3.2	Растворим в НС1
100	⁽⁶⁾ ZrO ₂ (бадделеит)	5.7 - 6.0	2207	736	102.3 - 107.7	$\gamma_{Zr} = 40$	40	ļ	35.4		НF конц.
101	⁽⁸⁾ Zr ⁽⁴⁾ SiO ₄ (циркон)	4.7	4046	674	103.9	$\gamma_{Zr} = 38.9$	38.9	$\gamma_{Si} = 122.3$	44.7	4.1	Частично реагирует с НFконц.
При	мечание: энергоплот.	ность рассчи	гтана с у	четом м	ольных объемс	зв [10].					

Окончание табл. 3

Рис. 1. Диаграммы устойчивости к кислотам (*a*) и энергоплотности (*б*) простых и сложных оксидов, гидроксидов, силикатов

Рис. 2. Дифрактограммы исходных и активированных при различных режимах образцов стандартного (№ 1, 2) и низкосортного (№ 3, 4) вольфрамитовых концентратов, лопаритового (№ 5, 6), шеелитового (№ 7, 8) и аризонитового (№ 9, 10) концентратов (показаны линии фаз гюбнерита, ферберита, лопарита, шеелита, аризонита соответственно)

Большое влияние на свойства минералов оказывает и степень однородности этих связей в кристалле и распределение их в пространстве между атомами.

По степени однородности связи между атомами все кристаллы делятся на две группы — *изодесмические и анизодесмические*. У первых относительная прочность связей между атомами одинакова или очень близка (однородна) во всех направлениях. В анизодесмических соединениях прочности связей между атомами сильно различаются в разных направлениях [13].

Относительная прочность связи атома в любой координации может быть рассчитана по формуле

$$\sigma = K \frac{W_k W_a}{q d^2},\tag{4}$$

где σ — относительная прочность связи в условных единицах; K — коэффициент прочности связи, учитывающий степень ковалентности; W_k и W_a — эффективные валентности различных атомов; q — координационное число электроположительного атома; d — межатомное расстояние. 164 Степень однородности (анизодесмичности) связей (A) в сложных соединениях показывает, во сколько раз больше прочность связи с кислородом одного электроположительного атома по сравнению с другим [13]:

$$A = \frac{\sigma_1}{\sigma_2}.$$
 (5)

В [13] предложена следующая классификация сложных кислородных соединений по степени однородности связей: 1) изодесмические (A = 1-3); 2) слабо анизодесмические (A = 3-8); 3) умеренно анизодесмические (A = 8-20); 4) сильно анизодесмические (A = 20-50); 5) весьма сильно анизодесмические (A > 50).

На основании изложенного определены степени однородности сложных кислородных минералов (табл. 4). Анализ результатов расчетов выявил, что минералы с повышенной устойчивостью к кислотам находятся в области E_V более 80 кДж/см³ и *А* менее 8.

ХИМИЧ	еской связи [13]	
А	Класс	Минералы
1-3	Изодесмические	Группа шпинелей RR ₂ O ₄ , хризоберилл BeAl ₂ O ₄ , псевдобрукит FeTiO ₅ ,

ТАБЛИЦА 4. Классификация сложных кислородных соединений по степени однородности

ролит SnTa ₂ O ₇ , фенакит Be ₂ SiO ₄ , берлинит AlPO ₄ , ильменит FeTiO ₃ , дис- тен Al ₂ OSiO ₄ . 3-8 Слабо анизодес- мические Колумбит (Mn, Fe)(Nb, Ta) ₂ O ₆ , синхалит MgAlBO ₄ , титанит CaTiOSiO ₄ , циркон ZrSiO ₄ , висмутотанталит BiTaO ₄ , вольфрамит (Fe,Mn)WO ₄ , берилл Be ₃ Al ₂ Si ₆ O ₁₈ , виллемит Zn ₂ SiO ₄ , гроссуляр Ca ₃ Al ₂ (SiO ₄) ₃ , форстерит Mg ₂ SiO ₄ , фергусонит Y(Nb,Ta)O ₄ , бериллонит NaBePO ₄ , пухерит BiVO ₄ , мончителлит CaMgSiO ₄ 8-20 Умеренно анизо- десмические Котоит Mg ₃ (BO ₃) ₂ , ларнит Ca ₂ SiO ₄ , перовскит CaTiO ₃ , сподумен LiAlSi ₂ O ₆ , ксенотим YPO ₄ , монацит CePO ₄ , шеелит CaWO ₄ , трифилин Li(Fe,Mn)PO ₄ , смитсонит ZnCO ₃ , повелит CaMoO ₄ , диопсид CaMgSi ₂ O ₆ , магнезит MgCO ₃ , волластонит Ca ₃ Si ₃ O ₉ , родохрозит MnCO ₃ , доломит CaMg(CO ₃) ₂ 20-50 Сильно анизо- десмические Вульфенит Pb[MoO ₄], кальцит Ca[CO ₃], ангидрит Ca[SO ₄], крокоит Pb[CrO ₄], арагонит Ca[CO ₃], стронцианит Sr[CO ₃], ланаркит Pb ₂ O[SO ₄], ви- терит Ba[CO ₃], церуссит Pb[CO ₃] > 50 Весьма сильно анизодесмические Англезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллити и др.	1 - 3	Изодесмические	Группа шпинелей RR ₂ O ₄ , хризоберилл BeAl ₂ O ₄ , псевдобрукит FeTiO ₅ , то-
тен Al ₂ OSiO ₄ . 3-8 Слабо анизодес- мические Колумбит (Mn, Fe)(Nb, Ta) ₂ O ₆ , синхалит MgAlBO ₄ , титанит CaTiOSiO ₄ , циркон ZrSiO ₄ , висмутотанталит BiTaO ₄ , вольфрамит (Fe,Mn)WO ₄ , берилл Be ₃ Al ₂ Si ₆ O ₁₈ , виллемит Zn ₂ SiO ₄ , гроссуляр Ca ₃ Al ₂ (SiO ₄) ₃ , форстерит Mg ₂ SiO ₄ , фергусонит Y(Nb,Ta)O ₄ , бериллонит NaBePO ₄ , пухерит BiVO ₄ , мончителлит CaMgSiO ₄ 8-20 Умеренно анизо- десмические Котоит Mg ₃ (BO ₃) ₂ , ларнит Ca ₂ SiO ₄ , перовскит CaTiO ₃ , сподумен LiAlSi ₂ O ₆ , ксенотим YPO ₄ , монацит CePO ₄ , шеелит CaWO ₄ , трифилин Li(Fe,Mn)PO ₄ , смитсонит ZnCO ₃ , повелит CaMoO ₄ , диопсид CaMgSi ₂ O ₆ , магнезит MgCO ₃ , волластонит Ca ₃ Si ₃ O ₉ , родохрозит MnCO ₃ , доломит CaMg(CO ₃) ₂ 20-50 Сильно анизо- десмические Вульфенит Pb[MoO ₄], кальцит Ca[CO ₃], ангидрит Ca[SO ₄], крокоит Pb[CrO ₄], арагонит Ca[CO ₃], стронцианит Sr[CO ₃], ланаркит Pb ₂ O[SO ₄], ви- терит Ba[CO ₃], церуссит Pb[CO ₃] > 50 Весьма сильно анизодесмические Англезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.			ролит $SnTa_2O_7$, фенакит Be_2SiO_4 , берлинит $AIPO_4$, ильменит $FeTiO_3$, дис-
3-8 Слабо анизодес- мические Колумбит (Mn, Fe)(Nb, Ta) ₂ O ₆ , синхалит MgAlBO ₄ , титанит CaTiOSiO ₄ , циркон ZrSiO ₄ , висмутотанталит BiTaO ₄ , вольфрамит (Fe,Mn)WO ₄ , берилл Be ₃ Al ₂ Si ₆ O ₁₈ , виллемит Zn ₂ SiO ₄ , гроссуляр Ca ₃ Al ₂ (SiO ₄) ₃ , форстерит Mg ₂ SiO ₄ , фергусонит Y(Nb,Ta)O ₄ , бериллонит NaBePO ₄ , пухерит BiVO ₄ , мончителлит CaMgSiO ₄ 8-20 Умеренно анизо- десмические Котоит Mg ₃ (BO ₃) ₂ , ларнит Ca ₂ SiO ₄ , перовскит CaTiO ₃ , сподумен LiAlSi ₂ O ₆ , ксенотим YPO ₄ , монацит CePO ₄ , шеелит CaWO ₄ , трифилин Li(Fe,Mn)PO ₄ , смитсонит ZnCO ₃ , повелит CaMoO ₄ , диопсид CaMgSi ₂ O ₆ , магнезит MgCO ₃ , волластонит Ca ₃ Si ₃ O ₉ , родохрозит MnCO ₃ , доломит CaMg(CO ₃) ₂ 20-50 Сильно анизо- десмические Вульфенит Pb[MoO ₄], кальцит Ca[CO ₃], ангидрит Ca[SO ₄], крокоит Pb[CrO ₄], арагонит Ca[CO ₃], стронцианит Sr[CO ₃], ланаркит Pb ₂ O[SO ₄], ви- терит Ba[CO ₃], церуссит Pb[CO ₃] > 50 Весьма сильно анизодесмические Англезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], итарапакаит K ₂ [CrO ₄], нитронатрит Na[NO ₃], глазерит K ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.			тен Al ₂ OSiO ₄ .
мические циркон ZrSiO ₄ , висмутотанталит BiTaO ₄ , вольфрамит (Fe,Mn)WO ₄ , берилл Be ₃ Al ₂ Si ₆ O ₁₈ , виллемит Zn ₂ SiO ₄ , гроссуляр Ca ₃ Al ₂ (SiO ₄) ₃ , форстерит Mg ₂ SiO ₄ , фергусонит Y(Nb,Ta)O ₄ , бериллонит NaBePO ₄ , пухерит BiVO ₄ , мончителлит CaMgSiO ₄ 8-20 Умеренно анизо- десмические Котоит Mg ₃ (BO ₃) ₂ , ларнит Ca ₂ SiO ₄ , перовскит CaTiO ₃ , сподумен LiAlSi ₂ O ₆ , ксенотим YPO ₄ , монацит CePO ₄ , шеелит CaWO ₄ , трифилин Li(Fe,Mn)PO ₄ , смитсонит ZnCO ₃ , повелит CaMoO ₄ , диопсид CaMgSi ₂ O ₆ , магнезит MgCO ₃ , волластонит Ca ₃ Si ₃ O ₉ , родохрозит MnCO ₃ , доломит CaMg(CO ₃) ₂ 20-50 Сильно анизо- десмические Вульфенит Pb[MoO ₄], кальцит Ca[CO ₃], ангидрит Ca[SO ₄], крокоит Pb[CrO ₄], арагонит Ca[CO ₃], стронцианит Sr[CO ₃], ланаркит Pb ₂ O[SO ₄], ви- терит Ba[CO ₃], церуссит Pb[CO ₃] > 50 Весьма сильно анизодесмические Англезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.	3 - 8	Слабо анизодес-	Колумбит (Mn, Fe)(Nb,Ta) ₂ O ₆ , синхалит MgAlBO ₄ , титанит CaTiOSiO ₄ ,
ВезАl2Si6O18, виллемит Zn2SiO4, гроссуляр Ca3Al2(SiO4)3, форстерит Мg2SiO4, фергусонит Y(Nb,Ta)O4, бериллонит NaBePO4, пухерит BiVO4, мончителлит CaMgSiO4 8-20 Умеренно анизо- десмические Котоит Mg3(BO3)2, ларнит Ca2SiO4, перовскит CaTiO3, сподумен LiAlSi2O6, ксенотим YPO4, монацит CePO4, шеелит CaWO4, трифилин Li(Fe,Mn)PO4, смитсонит ZnCO3, повелит CaMoO4, диопсид CaMgSi2O6, магнезит MgCO3, волластонит Ca3Si3O9, родохрозит MnCO3, доломит CaMg(CO3)2 20-50 Сильно анизо- десмические Вульфенит Pb[MoO4], кальцит Ca[CO3], ангидрит Ca[SO4], крокоит Pb[CrO4], арагонит Ca[CO3], стронцианит Sr[CO3], ланаркит Pb2O[SO4], ви- терит Ba[CO3], церуссит Pb[CO3] > 50 Весьма сильно анизодесмические Англезит Pb[SO4], анортит Ca[Al2Si2O8], барит BaSO4, тенардит Na2[SO4], тарапакаит K2[CrO4], нитронатрит Na[NO3], глазерит K2[SO4], нитрокалит K[NO3], мусковит K[Al2(OH)2AlSi3O10], тальк, пирофиллит и др.		мические	циркон ZrSiO ₄ , висмутотанталит BiTaO ₄ , вольфрамит (Fe,Mn)WO ₄ , берилл
Мд2SiO4, фергусонит Y(Nb,Ta)O4, бериллонит NaBePO4, пухерит BiVO4, мончителлит CaMgSiO4 8-20 Умеренно анизо- десмические Котоит Mg3(BO3)2, ларнит Ca2SiO4, перовскит CaTiO3, сподумен LiAlSi2O6, ксенотим YPO4, монацит CePO4, шеелит CaWO4, трифилин Li(Fe,Mn)PO4, смитсонит ZnCO3, повелит CaMoO4, диопсид CaMgSi2O6, магнезит MgCO3, волластонит Ca3Si3O9, родохрозит MnCO3, доломит CaMg(CO3)2 20-50 Сильно анизо- десмические Вульфенит Pb[MoO4], кальцит Ca[CO3], ангидрит Ca[SO4], крокоит Pb[CrO4], арагонит Ca[CO3], стронцианит Sr[CO3], ланаркит Pb2O[SO4], ви- терит Ba[CO3], церуссит Pb[CO3] > 50 Весьма сильно анизодесмические Англезит Pb[SO4], анортит Ca[Al2Si2O8], барит BaSO4, тенардит Na2[SO4], тарапакаит K2[CrO4], нитронатрит Na[NO3], глазерит K2[SO4], нитрокалит K[NO3], мусковит K[Al2(OH)2AlSi3O10], тальк, пирофиллит и др.			$Be_3Al_2Si_6O_{18}$, виллемит Zn_2SiO_4 , гроссуляр $Ca_3Al_2(SiO_4)_3$, форстерит
мончителлит CaMgSiO4 8-20 Умеренно анизо- десмические Котоит Mg3(BO3)2, ларнит Ca2SiO4, перовскит CaTiO3, сподумен LiAlSi2O6, ксенотим YPO4, монацит CePO4, шеелит CaWO4, трифилин Li(Fe,Mn)PO4, смитсонит ZnCO3, повелит CaMoO4, диопсид CaMgSi2O6, магнезит MgCO3, волластонит Ca3Si3O9, родохрозит MnCO3, доломит CaMg(CO3)2 20-50 Сильно анизо- десмические Вульфенит Pb[MoO4], кальцит Ca[CO3], ангидрит Ca[SO4], крокоит Pb[CrO4], арагонит Ca[CO3], стронцианит Sr[CO3], ланаркит Pb2O[SO4], ви- терит Ba[CO3], церуссит Pb[CO3] > 50 Весьма сильно анизодесмические Англезит Pb[SO4], анортит Ca[Al2Si2O8], барит BaSO4, тенардит Na2[SO4], тарапакаит K2[CrO4], нитронатрит Na[NO3], глазерит K2[SO4], нитрокалит K[NO3], мусковит K[Al2(OH)2AlSi3O10], тальк, пирофиллит и др.			Mg_2SiO_4 , фергусонит Y(Nb,Ta)O ₄ , бериллонит NaBePO ₄ , пухерит BiVO ₄ ,
8-20 Умеренно анизо- десмические Котоит Mg3(BO3)2, ларнит Ca2SiO4, перовскит CaTiO3, сподумен LiAlSi2O6, ксенотим YPO4, монацит CePO4, шеелит CaWO4, трифилин Li(Fe,Mn)PO4, смитсонит ZnCO3, повелит CaMoO4, диопсид CaMgSi2O6, магнезит MgCO3, волластонит Ca3Si3O9, родохрозит MnCO3, доломит CaMg(CO3)2 20-50 Сильно анизо- десмические Вульфенит Pb[MoO4], кальцит Ca[CO3], ангидрит Ca[SO4], крокоит Pb[CrO4], арагонит Ca[CO3], стронцианит Sr[CO3], ланаркит Pb2O[SO4], ви- терит Ba[CO3], церуссит Pb[CO3] > 50 Весьма сильно анизодесмические Англезит Pb[SO4], анортит Ca[Al2Si2O8], барит BaSO4, тенардит Na2[SO4], тарапакаит K2[CrO4], нитронатрит Na[NO3], глазерит K2[SO4], нитрокалит K[NO3], мусковит K[Al2(OH)2AlSi3O10], тальк, пирофиллит и др.			мончителлит CaMgSiO ₄
десмическиексенотим YPO4, монацит CePO4, шеелит CaWO4, трифилин Li(Fe,Mn)PO4, смитсонит ZnCO3, повелит CaMoO4, диопсид CaMgSi2O6, магнезит MgCO3, волластонит Ca3Si3O9, родохрозит MnCO3, доломит CaMg(CO3)2 $20-50$ Сильно анизо- десмическиеВульфенит Pb[MoO4], кальцит Ca[CO3], ангидрит Ca[SO4], крокоит Pb[CrO4], арагонит Ca[CO3], стронцианит Sr[CO3], ланаркит Pb2O[SO4], ви- терит Ba[CO3], церуссит Pb[CO3]> 50Весьма сильно анизодесмическиеАнглезит Pb[SO4], анортит Ca[Al2Si2O8], барит BaSO4, тенардит Na2[SO4], тарапакаит K2[CrO4], нитронатрит Na[NO3], глазерит K2[SO4], нитрокалит K[NO3], мусковит K[Al2(OH)2AlSi3O10], тальк, пирофиллит и др.	8-20	Умеренно анизо-	Котоит $Mg_3(BO_3)_2$, ларнит Ca_2SiO_4 , перовскит $CaTiO_3$, сподумен $LiAlSi_2O_6$,
смитсонит ZnCO3, повелит CaMoO4, диопсид CaMgSi2O6, магнезит MgCO3, волластонит Ca3Si3O9, родохрозит MnCO3, доломит CaMg(CO3)2 20-50 Сильно анизо- десмические Вульфенит Pb[MoO4], кальцит Ca[CO3], ангидрит Ca[SO4], крокоит Pb[CrO4], арагонит Ca[CO3], стронцианит Sr[CO3], ланаркит Pb2O[SO4], ви- терит Ba[CO3], церуссит Pb[CO3] > 50 Весьма сильно анизодесмические Англезит Pb[SO4], анортит Ca[Al2Si2O8], барит BaSO4, тенардит Na2[SO4], тарапакаит K2[CrO4], нитронатрит Na[NO3], глазерит K2[SO4], нитрокалит K[NO3], мусковит K[Al2(OH)2AlSi3O10], тальк, пирофиллит и др.		десмические	ксенотим YPO ₄ , монацит CePO ₄ , шеелит CaWO ₄ , трифилин Li(Fe,Mn)PO ₄ ,
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			смитсонит ZnCO ₃ , повелит CaMoO ₄ , диопсид CaMgSi ₂ O ₆ , магнезит
20-50Сильно анизо- десмическиеВульфенит Рb[MoO ₄], кальцит Ca[CO ₃], ангидрит Ca[SO ₄], крокоит Pb[CrO ₄], арагонит Ca[CO ₃], стронцианит Sr[CO ₃], ланаркит Pb ₂ O[SO ₄], ви- терит Ba[CO ₃], церуссит Pb[CO ₃]> 50Весьма сильно анизодесмическиеАнглезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], тарапакаит K ₂ [CrO ₄], нитронатрит Na[NO ₃], глазерит K ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.			MgCO ₃ , волластонит Ca ₃ Si ₃ O ₉ , родохрозит MnCO ₃ , доломит CaMg(CO ₃) ₂
$\label{eq:converse} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	20 - 50	Сильно анизо-	Вульфенит Pb[MoO ₄], кальцит Ca[CO ₃], ангидрит Ca[SO ₄], крокоит
терит Ba[CO ₃], церуссит Pb[CO ₃]> 50Весьма сильно анизодесмическиеАнглезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], тарапакаит K ₂ [CrO ₄], нитронатрит Na[NO ₃], глазерит K ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.		десмические	Pb[CrO ₄], арагонит Ca[CO ₃], стронцианит Sr[CO ₃], ланаркит Pb ₂ O[SO ₄], ви-
> 50 Весьма сильно анизодесмические Англезит Pb[SO ₄], анортит Ca[Al ₂ Si ₂ O ₈], барит BaSO ₄ , тенардит Na ₂ [SO ₄], тарапакаит K ₂ [CrO ₄], нитронатрит Na[NO ₃], глазерит K ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.			терит Ва[CO ₃], церуссит Рb[CO ₃]
анизодесмические тарапакаит K ₂ [CrO ₄], нитронатрит Na[NO ₃], глазерит K ₂ [SO ₄], нитрокалит K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.	> 50	Весьма сильно	Англезит $Pb[SO_4]$, анортит $Ca[Al_2Si_2O_8]$, барит $BaSO_4$, тенардит $Na_2[SO_4]$,
K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.		анизодесмические	тарапакаит K ₂ [CrO ₄], нитронатрит Na[NO ₃], глазерит K ₂ [SO ₄], нитрокалит
			K[NO ₃], мусковит K[Al ₂ (OH) ₂ AlSi ₃ O ₁₀], тальк, пирофиллит и др.

Следовательно, на основании сведений о E_V , A и γ_i для кислородных соединений можно качественно прогнозировать их реакционную способность до МА, а для прогнозирования реакционной способности минералов после МА необходимо определить количество энергии, которое обеспечит их эффективное гидрометаллургическое вскрытие.

Анализ данных табл. 3 и рис. 1 показал, что $E_V \sim 80$ кДж/см³ — это особая (пограничная или нулевая) точка, которая определяет границу химической активности минералов в большинстве случаев. При E_V менее 80 кДж/см³ эффективно кислотное вскрытие, а при E_V более 80 кДж/см³ оно затруднено. В связи с этим для расчета количества энергии, которую необходимо усвоить минералу при механоактивации для последующего эффективного гидрометаллургического вскрытия, может быть применена зависимость

$$\Delta E_{eff} = \frac{|E_V - 80|}{\rho} Mr, \qquad (6)$$

где ΔE_{eff} — теоретически необходимое количество энергии, обеспечивающее эффективное вскрытие минерала, кДж/моль; ρ — плотность минерала, г/см³; Mr — молекулярная масса минерала.

Числитель в зависимости (6) взят по модулю, так как это позволит рассчитывать ΔE_{eff} не только для интенсификации кислотного вскрытия упорных минералов, но и вскрытия щелочными реагентами хорошо разлагаемых кислотами минералов. Последнее является рациональным в ряде случаев (из-за сопутствующих минералов в руде или концентрате и т. п.).

В работах [15, 16] приведена методика оценки количества энергии, запасенной при МА, по данным рентгеноструктурного анализа (PCA) и установлено, что наибольшее влияние на реакционную способность минералов в процессе низкотемпературного (менее 100°С) выщелачивания оказывает количество энергии, запасенной в виде свежеобразованной поверхности областей когерентного рассеивания — ОКР ($\Delta E_{S}^{(1)}$) и микродеформаций ($\Delta E_{\varepsilon}^{(2)}$).

Наибольшее влияние этих видов энергии на показатели процесса гидрометаллургического вскрытия можно объяснить низкой температурой химической обработки (менее 100°C), которой недостаточно для эффективной реализации энергии, запасенной в виде изменения межплоскостных расстояний кристаллической решетки ($\Delta E_d^{(3)}$).

В табл. 5 приведены режимы МА⁽⁴⁾, обеспечивающие приемлемые для производства показатели по извлечению ценных компонентов в водные растворы реагентов при последующем низкотемпературном выщелачивании концентратов редких металлов, результаты PCA⁽⁵⁾ (см. рис. 2) фаз минералов редких металлов исходных и активированных концентратов и результаты расчета количества запасенной при MA энергии в виде ΔE_d , ΔE_S и ΔE_{ε} .

Ф п/п	Режим МА-обработки	Период решетки	Размер ОКР	Микроде- формация, %	ΔE_d	ΔE_S	ΔE_{ε}	Режим выщела-	η_{Me}^{p-p} , %
~		Å			ŀ	:Дж/мол	ІЬ	чивания	
	Ст	пандартный	вольфрам	итовый концен	mpam (q	ваза вол	ьфрамин	na)	
1	Исходный – 0.07 + 0.056 мм	a = 4.795; b = 5.736 c = 4.987; $\beta = 90.827$	530 ± 50	0.20 ± 0.01				Т:Ж=1:6; [NaOH]=20 %	W 38.3
2	$M_{\kappa}:M_{III}=1:80;$ $Z_{III}=0.60;$ $\tau_a=2.5$ мин	a = 4.790; b = 5.739; c = 4.990; $\beta = 90.851$	170 ± 50	0.42 ± 0.01	2.15	20.41	2.74	$t = 99^{\circ}C$ $\tau_{\rm B} = 3 \text{ y}$	W 98.1

ТАБЛИЦА 5. Режимы механической и гидрометаллургической обработки и результаты РСА фаз концентратов редких металлов

⁽¹⁾ $\Delta E_S = \overline{6E_{surf}V_{mol}|1/D_i-1/D_0|}$, где E_{surf} — поверхностная энергия; V_{mol} — мольный объем; D_0 , D_0 — размеры ОКР минерала после МА и до обработки соответственно.

⁽²⁾ $\Delta E_{\varepsilon} = 3/2E_Y(\varepsilon_i^2 - \varepsilon_0^2)V_{mol}$, где E_Y — модуль Юнга, ε_i , ε_0 — среднеквадратичная микродеформация минерала после и до МА соответственно. ⁽³⁾ $\Delta E_d = K E_{latt}$, где K — коэффициент относительного изменения объема элементарной ячейки фазы

концентрата, E_{latt} — энергия кристаллической решетки минерала.

⁽⁴⁾Для МА концентратов использовали центробежную планетарную мельницу (ЦПМ) ЛАИР-0.015 с развиваемым ускорением 25g; мелющие тела — стальные шары диаметром 5-8 мм.

⁽⁵⁾Структурные характеристики фаз концентратов редких металлов определяли методом РСА на установке ДРОН-4 с компьютерной расшифровкой дифрактограмм с помощью данных ASTM [17]. 166

Окончание табл. 5.

Низкосортный вольфрамитовый концентрат (фаза вольфрамита)									
3	Исходный - 2.00 + 0.071 мм - 93.8 %	a = 4.764; b = 5.721; c = 4.972; $\beta = 90.459$	> 5000	_				T: \mathcal{K} =1:6; [NaOH]=20 % $t = 99^{\circ}C$ $\tau_{B} = 3 \text{ y}$	W 25.4
4	$M_{\kappa}:M_{III}=1:20;$ $Z_{III}=0.15;$ $\tau_{a}=2.5$ мин	a = 4.768; b = 5.729; c = 4.976; $\beta = 90.717$	300 ± 50	0.60 ± 0.1	88.73	16.99	7.25		W 99.9
Лопаритовый концентрат (фаза лопарита)									
5	Исходный - 0.100 + 0.010 мм - 89.9 %	<i>a</i> =5.494; <i>c</i> =7.783	> 5000	0.10	_	_	_	T: \mathcal{K} =1:6; [HNO ₃]=30 % $t = 99^{\circ}C$ $\tau_{\rm B} = 6 \text{ y}$	P3M 1.7
6	$M_{\kappa}:M_{m}=1:80;$ $Z_{m}=0.60;$ $\tau_{a}=2.5$ мин	a = 5.486; c = 7.771	381 ± 20	0.39	74.11	8.12	1.58		P3M 99.9
Шеелитовый концентрат (фаза шеелита)[20]									
7	Исходный - 0.071 мм ~ 90 %	a = 5.224; c = 11.361	806 ± 5	0.007±0.005	_		_	T:Ж=1:12; [Na2CO3] = 250 г/л; t = 99°С т _в = 6 ч	W 52.1
8	$M_{\kappa}:M_{m}=1:80;$ $Z_{m}=0.60;$ $\tau_{a}=1.5$ мин	a = 5.235; c = 11.336	163 ± 2	0.387±0.011	58.65	25.37	2.88		W 97.0
Аризонитовый концентрат (фаза аризонита)[21]									
9	Исходный + 0.100 мм - 98.4 %	a = 2.872; c = 4.595	229 ± 13	0.166±0.047			_	T:Ж=1:6; [HCl]=36 %	Fe 8.5
10	$M_{\kappa}:\overline{M_{\mu}}=1:80;$ $Z_{\mu}=0.60;$ $\tau_{a}=3.0$ мин	a = 2.863; c = 4.583	113 ± 9	0.586 ±0.066	468.62	39.72	10.62	$t = 99^{\circ}C$ $\tau_{\rm B} = 6.5 \text{ y}$	Fe 88.5

П р и м е ч а н и е: М_к:М_ш — соотношение масс концентрата и шаров в барабане мельницы; Z_ш — степень заполнения барабана мельницы шарами; энергия решетки минералов определена методом Ферсмана при допущении, что минералы — коор-динационные оксиды:

— для стандартного вольфрамитового концентрата (40.4 % W; 7.23 % Fe; 10.1 % Mn; 7.35 % Sn; 2.26 % Si) фаза вольфрамита имеет $E_{latt} = 29536.97$ кДж/моль, $E_{surf} = 1.97$ Дж/м² [18], $E_Y = 309.86$ ГПа [18], $V_{mol} = 43.20$ см³/моль. При расчете E_{latt} , E_{surf} , E_Y , V_{mol} учтено, что содержание гюбнерита в вольфрамите стандартного концентрата составляет 67 % (определено по кристаллохимическому параметру *a* [19]); — для низкосортного вольфрамитового концентрата (12.7 % W; 25.2 % Fe; 3.86 % Mn; 9.09 % Sn; 2.83 % Si) фаза вольфрамита имеет $E_{latt} = 29616.26$ кДж/моль, $E_{surf} = 2.04$ Дж/м² [18], $E_Y = 322.83$ ГПа [18], $V_{mol} = 41.56$ см³/моль. При расчете E_{latt} , E_{surf} , E_Y , V_{mol} учтено, что содержание гюбнерита в вольфрамите низкосортного концентрата составляет 30 % (определено по кристаллохимическому параметру *a*[19]); — для лопаритового концентрата (21.67 % Ti; 27.44; РЗЭ; 5.29 % Ca; 5.73 % Nb; 5.12 % Na; 0.49 % Ta) фаза лопарита имеет $E_{latt} = 16675.5$ кДж/моль, $E_{surf} = 1.39$ Дж/м² [18], $E_Y = 199.26$ ГПа [18], $V_{mol} = 37.1$ см³/моль; — для шеелитового концентрата (35.6 % W; 22.3 % Ca; 1.23 % Si) фаза шеелита имеет $E_Y = 266.82$ ГПа [18], $E_{latt} = 29251.95$ кДж/моль, $E_{surf} = 1.74$ Дж/м² [18], $V_{mol} = 49.66$ см³/моль;

— для аризонитового концентрата (40.0 % Ti; 18.9 % Fe; 0.36 % Si; 0.89 % Cr; 1.04 % P; 0.13 % V) фаза аризонита имеет $E_{latt} = 52985.68$ кДж/моль, $E_{surf} = 1.68$ Дж/м² [18], $E_Y = 255.02$ ГПа [18], $V_{mol} = 87.91$ см³/моль.

На основании изложенного предложены зависимости ΔE_S и ($\Delta E_S + \Delta E_{\varepsilon}$), обеспечивающих максимальную степень вскрытия минералов при последующем низкотемпературном выщелачивании, от ΔE_{eff} ⁽⁶⁾ (рис. 3).

Рис. 3. Зависимости энергий ΔE_S и ($\Delta E_S + \Delta E_{\varepsilon}$), запасенных минералами при MA, от ΔE_{eff} для: l — лопарита; 2 — вольфрамита стандартного концентрата; 3 — вольфрамита низкосортного концентрата; 4 — шеелита; 5 — аризонита

На данном этапе исследований зависимости ΔE_S и ($\Delta E_S + \Delta E_{\varepsilon}$) от ΔE_{eff} имеют вид:

$$\Delta E_S = 1.2089 \Delta E_{eff}^{0.5179}, \quad R^2 = 0.9232; \tag{7}$$

$$(\Delta E_S + \Delta E_{\varepsilon}) = 1.4116 \Delta E_{eff}^{0.5267}, \quad R^2 = 0.9680,$$
(8)

где *R* — точность аппроксимации.

выводы

Таким образом, показана эффективность применения для оценки химической устойчивости минералов цветных и редких металлов до и после механоактивации энергоплотности (E_V) и степени однородности связей (A).

Предложены зависимости для определения величины структурных изменений при МА, обеспечивающих эффективное вскрытие минералов при последующей гидрометаллургической переработке (при температурах менее 100°С), от теоретически необходимого количества энергии (ΔE_{eff}).

Выявленные зависимости позволят осуществлять предварительную оценку реакционной способности минералов и целенаправленно рекомендовать эффективные условия механоактивации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Петтиджон Ф. Дж. Осадочные породы. М.: Недра, 1981.
- 2. Методы минералогических исследований. Справочник / под ред. А. И. Гинзбурга. М.: Недра, 1985.

⁽⁶⁾Для вольфрамита стандартного концентрата ΔE_{eff} определяли по MnWO₄, в связи с его преобладанием в минерале, а для вольфрамита низкосортного концентрата — по FeWO₄. При этом ΔE_{eff} составила 183 и 208 кДж/моль соответственно (см. табл. 3).

- **3.** Бергер М. Г. Седиментологическая система минералов и фундаментальные основы терригенной минералогии. М.: ЛЕНАНД, 2009.
- 4. Cailleux A., Tricart J. Initiation a l'ètude des sables et des galets, Paris, 1963.
- 5. Урусов В. С. Энергетическая кристаллохимия. М.: Наука, 1975.
- 6. Зуев В. В. Энергоплотность вещества и свойства минералов // Обогащение руд. 1998. № 1.
- **7.** Лидин Р. А., Андреева Л. Л., Молочко В. А. Константы неорганических веществ: справочник. М.: Дрофа, 2006.
- 8. Куликов Б. Ф., Зуев В. В., Вайншенкер И. А., Митенков Г. А. Минералогический справочник технолога-обогатителя. Л.: Недра, 1985.
- **9.** Зуев В. В. Зависимость энтальпии образования из окислов сложных кристаллов от разности электроотрицательности катионов // Геохимия. 1986. № 5.
- **10.** Булах А. Г., Булах К. Г. Физико-химические свойства минералов и компонентов гидротермальных растворов. Л.: Недра, 1978.
- **11. Вертушков Г. Н., Авдонин В. Н.** Таблицы для определения минералов по физическим и химическим свойствам: справочник. М.: Недра, 1992.
- 12. Годовиков А. А. Минералогия. М.: Недра, 1983.
- 13. Поваренных А. С. Твердость минералов. Киев: Изд-во АН УССР, 1963.
- **14.** Гороновский И. Т., Назаренко Ю. П., Некряч Е.Ф. Краткий справочник по химии. Киев: Издво АН УССР, 1962.
- **15. Богатырева Е. В., Ермилов А. Г., Свиридова Т. А., Савина О. С., Подшибякина К. В.** Влияние продолжительности механоактивации на реакционную способность вольфрамитовых концентратов // Неорг. материалы. 2011. Т. 47. № 6.
- **16.** Богатырева Е. В., Ермилов А. Г. Оценка эффективности механоактивации лопаритового концентрата // Неорг. материалы. 2011. Т. 47. № 9.
- 17. Шелехов Е. В., Свиридова Т. А. Программы для рентгеновского анализа поликристаллов // Ми-ТОМ. — 2000. — № 8.
- **18.** Зуев В. В., Аксенова Г. А., Мочалов Н. А. и др. Исследование величин удельных энергий кристаллических решеток минералов и неорганических кристаллов для оценки их свойств // Обогащение руд. 1999. № 1–2.
- 19. Максимюк И. Е. Кассетериты и вольфрамиты / под ред. С. А. Юшко. М.: Недра, 1973.
- **20.** Богатырева Е. В., Ермилов А. Г. Способ вскрытия шеелитовых концентратов. Заявка на патент, регистрационный номер 2012143267 от 10.10.2012.
- **21.** Богатырева Е. В., Чуб А. В., Ермилов А. Г. Способ переработки аризонитовых и ильменитовых концентратов. Заявка на патент, регистрационный номер 2012112371 от 02.04.2012.

Поступила в редакцию 15/Х 2012