сложных веществ, для которых известны ударные адабаты [1]. Это приводит к смещению оставшихся светлых точек на рис. 1 к расчетной кривой (2). В числе n не включаются только атомы водорода n, например, для воды n=1, а для карбидов вольфрама n=2, хотя по атомным весам W и C отличаются в такое же число раз, как O и H. Как показал анализ большого числа экспериментальных результатов [1], это правило выполняется во всех случаях.

Точки б на рис. 1 для NaCl находятся левее расчетной кривой. Если следовать предложенному правилу нахождения числа n, то получаем, что каждый изон Na в кристалле достаточно точно связан более чем с одним ионом противоположного знака и эффективное значение n>2. Возможно, такое отклонение вызвано фазовыми превращениями в NaCl, которые видны из сравнения экспериментальных и расчетных данных на рис. 2.

На рис. 2 показаны результаты экспериментов и расчетов ударных адабат по формулам (1), (2) для рассмотренных на рис. 1, 1, 2, 4, 5, 7—10, веществ. Поскольку ударные адабаты различных веществ базиса, то на рис. 2 они для наглядности смещены по вертикальной оси. Видно, что обобщенная адабата (1) хорошо описывает экспериментальные данные. Как показала проверка, соотношения (1), (2) можно применять и для расчета ударных адабат смесей, у которых размеры частиц компонентов меньше ширины фронта ударной волны. На рис. 2 приведен характерный пример: буферной 4 обозначены расчетные и экспериментальные [1] данные для сплава 55% W + 45% Cu.

Автор признателен В. М. Титову за внимание к работе.

Поступила в редакцию 18/ll 1989

ЛИТЕРАТУРА

4. В. Ф. Аницикин. ФГВ, 1979, 15, 2.

ВОЗБУЖДЕНИЕ ДЕТОНАЦИИ ПОРОШКОВЫХ ВВ
ВЗРЫВОМ ГАЗОВЫХ СМЕСЕЙ

В. В. Андреев, Л. А. Лукьяновичев, В. В. Митрофанов, В. С. Тесленко
(Новосибирск)

Известны работы [1, 2] по возбуждению детонации жидким ВВ (смесь тетранитротетрагидробензола с нитроглицерином) взрывом стехиометрических смесей водорода и метана с водородом, где рассмотрено нормальное падение инициирующей волны на границу раздела газ — жидкое ВВ. Показано, что начальная давления в газе 0,7 бар, в жидком ВВ возбуждается горение, переходящее в детонацию [2]. Увеличение начального давления в смеси приводит к уменьшению времени преддетонационного развития процесса в жидком ВВ, и для давления выше 12 бар задержка возникновения детонации была в пределах временного разрешения фоторегистратора (скорость развертки — 100 м/с). Оценкой температурного разогрева авторы [2] показали, что волна газовой детонации прогрuevaют слой жидкого ВВ вплоть до образования вспышки, приводящей к возбуждению детонации по классической схеме перехода [3].

Реализация подобного процесса во вторичных твердых конденсированных ВВ согласно [3], требует наличия оболочки заряда, которая поддерживала бы давление ≈10 бар, гарантирующее инициирование детонации волной сжатия. Однако на ряду с переходом горения конденсированных ВВ в детонацию в оболочках высокой прочности, в порошковых вторичных ВВ возможен режим ускоренного перехода горения в детонацию в зарядах с оболочкой значительно меньшей прочности, выдерживающей статическое давление порядка 0,1 бар [4]. Механизм возникновения и развития ускоренного перехода в соответствии [4, 5] заключается в возбуждении в неуплотненном порошковом ВВ (ρ0 ≈ 1 г/см³) конвективного горения со скоростью...

153
Вторичных ВВ. Можно ожидать, что газовая детонация при начальном давлении в несколько бар будет инициировать ускоренный переход горения в детонацию в заряде вторичного порошкового ВВ.

Экспериментальная проверка этого предположения проводилась для зарядов порошкового топлива и гексогена низкой плотности, инициируемых взрывом стехиометрических смесей водорода и ацетилена с кислородом. Детонация инициировалась в устройстве, изображенном на рис. 1. Заряд ВВ 5 в стеклянной трубе 4 фиксировался в обойме 2, соединяемой с системой газоподвода 1. Герметизация устройства допускала вакуумирование заряда и напуск газовой смеси до $p_0 = 6$ бар. Газ подавался высоковольтным синхронимпульсным генератором, на фотоимпульс к которой (через щель 3 вдоль боковой поверхности заряда) проводилась регистрация свечения взрываемого процесса.

В первых опытах использовались заряды полиэдрического типа ($p_0 = 0,9$ г/см3), средний размер частиц ВВ $\Delta \approx 0,3$ мм) в трубках диаметром 3,9 — 6 мм со стенкой толщиной около 1 мм. Инициирование осуществлялось взрывом стехиометрической смеси ацетилена с кислородом, выбор которой обусловлен высокими значениями температуры, давления и скорости продуктов детонации, а также необходимым размером зоны перехода в детонацию при воспламенении [8].

Фотоизображения свечения, регистрируемого в этих опытах, приведены на рис. 2. Видно, что высокие границы раздела газ — ВВ 2 фиксируются динамика свечения в заряде ВВ: граница зоны 2 — слабого стационарного свечения — движется со скоростью, приблизительно в 1,5 раза меньшей скорости детонации газа в свободном объеме; зона 3 — зажигающее свечение с начальной скоростью около 1 км/с. Во всех опытах ампула с ВВ дробилась, а сохранявшиеся частицы заряда представляли собой охлажденные, спекшиеся конгломераты. Изменение начального давления газовой смеси от 1 до 5 бар и диаметра заряда от 3,9 до 6 мм существенных изменений в наблюдаемую картину явлений не внесло.

Опыты с инициированным порошком одинаковой массы ВВ пористости (рис. 3) показали, что первому фронту соответствует детонация газовой смеси, распространяющейся в порах ВВ, как в иврентной среде. Ампула с инициированным порошком после взрыва не распалась, а ее содержимое представляло собой спекшийся керна с сообщающимися полостями. Второму фронту свечения на рис. 2 соответствует затухающая детонация с малой скоростью ВВ.

С уменьшением размера зерна ВВ при сохранении той же начальной плотности протекание процесса качественно изменяется. Начинается с некоторого характерного размера поры, меньшего среднего размера структурной ячейки фронта газовой детонации в свободном объеме, ударно-волновое инициирование газовой карточной смеси в пористой среде сменяется конвективным. Одновременно скорость процесса резко падает до значений, меньших 1 км/с. При этом в зарядах маломолоткового ВВ реализуется процесс ускоренного перехода горения в детонацию. Развертка такого процесса в зарядах со средним размером частиц $\Delta = 0,5$ мм при $p_0 = 1$ г/см3, инициируемой детонацией ацетилена с кислородом при начальном давлении 3 бар, приведена на рис. 4.

Проведены также эксперименты по инициированию полиэдрического типа ($p_0 = 0,9$ г/см3, $\Delta = 0,3$ мм) детонацией кислородно-водородной смеси, размер детонационной ячейки в которой, при прочих равных условиях, значительно превышает
соответствующий размер для смеси ацетилена — кислорода. Фоторазверка процесса при начальном давлении в газе 2,5 бар приведена на рис. 5. Здесь также фиксируется только один фронт свечения в ВВ, соответствующий развивающемуся ускоренному переходу. Характерные размеры участка разгона соответствуют полученным в работах [4, 5] при других методах возбуждения.

Опыты с гексогеном дали аналогичные зависимости условий возбуждения ускоренного перехода от соотношения между размером зерен ВВ и величиной ячейки детонации газовой смеси. Из проведенных опытов следует, что необходимым условием ускоренного перехода горения в детонацию в пороховом ВВ при возбуждении реакции газовым взрывом является отсутствие в порах порошка газовой детонационной волны, опорожняющей фронт инициальной детонации в самом ВВ.

Можно предполагать, что отрицательное влияние на этот процесс опорожняющей волны газовой детонации связано со следующими факторами. Во-первых, волна, распространяющаяся в порах при исследовавшихся давлениях, не вносит достаточного количества тепла для быстрого развития реакции в ВВ непосредственно за ее фронтом (во всяком случае, вносимое количество тепла в несколько раз меньше того, которое переносится конвективным потоком продуктов горения самого ВВ во фронте инициальной детонации). Газовая детонация обеспечивает лишь разложение тонкого поверхностного слоя ВВ и самых мелких частиц; последующее горение ВВ либо развивается слишком медленно, либо может вообще не возникнуть (при достаточно низких р0).

Во-вторых, за фронтом опорожняющей газовой детонации порохового ВВ ока- зывается фазированованная для последующего развития режима ускоренного перехода по конвективному механизму из-за исчезновения мелких частиц и острый углов, прежде всего поддерживающих реакцию во фронте конвективной волны.

В-третьих, в случае развития медленного горения частиц ВВ за волной газовой детонации возникает поле нарастающих давлений с малыми градиентами, препятствующее развитию последующей конвективной переходной волны и вызывающее прерывистое разрушение оболочки заряда.

Поступила в редакцию 4/11 1980

ЛИТЕРАТУРА

1. Ю. Б. Харитон, Е. В. Рудловская. Докл. АН СССР, 1939, 23.
6. Ю. А. Николаев, М. Е. Тончич. ФГВ, 1977, 43, 3, 393.
7. В. П. Манжелей, В. В. Митрофанов, В. А. Субботин. ФГВ, 1974, 10, 1, 492.