КОМПЕНСАЦИЯ ИСКАЖЕНИЙ
ВРАЩАТЕЛЬНО-ИНВАРИАНТНЫХ СИГНАЛОВ

П. Сю1, Х. Чжан2, К. Коуэн3

1Centre for Communication Systems Research, University of Surrey,
Guildford, Surrey GU2 7XH, United Kingdom
E-mail: p.xiao@surrey.ac.uk

2Department of Information Science & Electronic Engineering, Zhejiang University,
Zhe Road 38, Hangzhou 310027, China

3Institute of Electronics, Communications and Information Technologies,
Queen’s University Belfast,
Queen’s Road, Belfast BT3 9DT, United Kingdom

Представлено несколько алгоритмов эквивалентизации (выравнивания), использующих вращательно-зависимую природу принимаемых сигналов и направленных на подавление нежелательного эффекта межсимвольной интерференции в частотно-селективных каналах. Рассмотрена практическая реализация и применение данных алгоритмов в системе с повторением по времени и пространственно-временным блочным кодированием. Разработан алгоритм быстрого выравнивания для систем, использующих код с коррекцией ошибок. Показана эффективность предложенных эквивалентизаторов и турбокодеров в сравнении с традиционными схемами выравнивания при использовании в широкополосных радиоканалах общего доступа.

Ключевые слова: эквивалентизация, межсимвольная интерференция, вращательно-зависимые сигналы, частотно-селективные каналы.

Введение. Одним из ограничивающих факторов при беспроводной передаче данных является наличие многопаркетного канала между передатчиком и приёмником, в результате чего увеличивается межсимвольная интерференция (МСИ), ухудшается качество и снижается максимальная скорость передачи данных. Эту проблему можно решить с помощью технологии OFDM (Orthogonal Frequency Division Multiplexing) [1], в которой частотно-избирательный канал преобразуется в набор параллельных каналов с амплитудным заширением. Другим эффективным способом решения проблемы, связанной с МСИ, является применение метода выравнивания, предлагаемого в данной работе.

Для комплексного случайного вектора \mathbf{r} моменты второго порядка полностью определяются его автокорреляционной матрицей $\mathbf{C} = E[\mathbf{rr}^H]$ либо псевдоавтокорреляционной матрицей $\hat{\mathbf{C}} = E[\mathbf{r}\mathbf{r}^T]$ [2]. Здесь и далее будем считать, что запись вида $(\cdot)^H$, $(\cdot)^*$, $(\cdot)^T$ обозначает операцию эрмитова сопряжения, сопряжения и транспонирования соответственно. Большинство существующих исследований алгоритмов приёма используют только информацию, содержащуюся в автокорреляционной функции наблюдаемого сигнала. Псевдоавтокорреляционная матрица $\hat{\mathbf{C}}$ обычно не рассматривается и в явной форме полагается равной нулю. Такой подход считается наилучшим при работе с вращательно-инвариантными комплексными случайными процессами (т. е. когда псевдоавтокорреляция \mathbf{C} стремится к нулю) [3], но недостаточно оптимальным в случае, когда передаваемые сигналы и/или результат их взаимодействия являются вращательно-зависимыми комплексными случайными процессами (т. е. $\hat{\mathbf{C}}$ не равна нулю). В последнем случае качество линейного приёмника может быть улучшено с помощью расширенной линейной обработки (РЛО) [4]. В [5] показано, что для систем, предполагающих вещественно-оптимальную конфигурацию с комплексными канальными коэффициентами, желание полностью использовать
информацию о статистиках второго порядка наблюдаемого процесса приводит к необходимости применения расширенной линейной обработки, когда принимаемый и комплексно-сопряжённый сигналы фильтруются раздельно, а конечный результат представляется в виде их линейной комбинации. Наши исследования показывают, что предложенные системы по эффективности превосходят системы, описанные на данный момент в литературе. Подход, рассмотренный в [5], применяется в [6] для получения расширенной линейной (РЛ) схемы выравнивания.

В данной работе представлен всесторонний анализ расширенной линейной обработки вращательно-зависимых сигналов: во-первых, обсуждается РЛ-эквализация в системе без копирования; во-вторых, предложенные схемы распространяются на систему с пространственно-временным копированием; в-третьих, приводится вариант РЛЮ, основанный на турбожадеризере, сочетающим в себе РЛ-эквализатор и канальный декодер с программируемыми входом и выходом в интеграторном исполнении.

РЛЮ для систем без копирований. Опишем эквивалентный в основной полосе частот аналог рассматриваемой передающей системы. Сначала информационные биты посредством двойной фазовой манипуляции (ДФМ) преобразуются в символы \(b_n \), которые затем последовательно передаются по частотно-селективному каналу. Канал может быть смоделирован с помощью эквивалентной системы с некодированной передачей, в которой непосредственно передающий фильтр—канал—принимающего фильтра представлена дискретным трансверсальным фильтром из \(T \) ячеек с конечной импульсной характеристикой

\[
h_n = \sum_{t=0}^{T-1} h_t \delta_{n-t},
\]

где \(h_t \) обозначает комплексные канальные коэффициенты. Принимаемый сигнал имеет вид

\[
r_n = \sum_{t=0}^{T-1} h_t b_{n-t} + v_n.
\]

(1)

Передаваемый в момент времени \(n \) символ обозначен как \(b_n \), а \(v_n \) — комплексный аддитивный белый гауссов шум (АБГШ) с нулевым средним и дисперсией \(N_0 \).

Задачей приёмника является обнаружение переданных символов \(b_n \) в принятом потоке \(r_n \). Из (1) следует, что подлежащие обнаружению символы искажаются МСИ и АБГШ. В связи с этим эквализатору необходимо уменьшить процент ошибок. Далее обсуждаются традиционная линейная схема эквализации на основе минимальной среднеквадратической ошибки (МСКО), а также её улучшенная модификация.

Традиционная схема МСКО-выравнивания. Традиционный МСКО-эквализатор (с \(2L + 1 \) ячейками и задержкой детектирования \(d \)) иллюстрируется рис. 1 и проектируется исходя из условия минимизации среднеквадратической ошибки (СКО) между выходом эквализатора \(z_n \) и символом \(b_{n-d} \) [7]:

\[
\epsilon_n = E\{|z_n - b_{n-d}|^2\} = E\{|a^H r_n - b_{n-d}|^2\}.
\]

(2)

Выход \(z_n \) определяется выражением

\[
z_n = \sum_{k=0}^{2L} a_k r_{n-k} = a^H r_n,
\]
где \(r_n = [r_n r_{n-1} \cdots r_{n-2L+1} r_{n-2L}]^T \) и \(a = [a_0 a_1 \cdots a_{2L-1} a_{2L}]^T \). Решение принимается в соответствии с выражением

\[
\hat{b}_{n-d} = \text{sgn}(\text{Re}\{z_n\}) = \text{sgn}(\text{Re}\{a^H r_n\}).
\]

Вектор коэффициентов \(a \) вычисляется как [7]

\[
a = (E[r_n r_n^H])^{-1} E[r_n^H b_{n-d}] = C_{TB}^{-1} C_{TB},
\]

где \(C_{TB} \) — вектор кросскорреляции, а \(C_{TB}^{-1} \) — матрица, обратная автокорреляционной матрице \(C_{TB} \). Они вычисляются по следующим формулам:

\[
C_{TB} = E[r_n r_n^H]; \quad C_{TB} = E[r_n^H b_{n-d}]. \tag{3}
\]

МСКО-компенсатор с РЛЭ. Для расширенного линейного МСКО-эквалайзера целевая функция записывается в виде

\[
c_n' = E\{|z_n' - b_{n-d}|^2\} = E\{|\text{Re}\{a^H r_n\} - b_{n-d}|^2\}. \tag{4}
\]

Принцип такой модификации заключается в том, что выход традиционного МСКО-фильтра представляет собой комплекскую величину. Однако в системе с вещественными сигналами для принятия решения имеет значение только вещественная составляющая выхода. Минимизация (4) приводит к лучшим результатам по сравнению с критерием, выражаемым соотношением (2), поскольку \(c_n' < \epsilon_n \) [6]. В соответствии с этой исправленной МСКО-схемой решение принимается согласно выражению

\[
\hat{b}_{n-d} = \text{sgn}(z_n') = \text{sgn}(a^H r_n + a^T r_n^*).
\]

Известно, что

\[
\text{Re}\{a^H r_n\} = \frac{1}{2}[a^H r_n + (a^H r_n)^*] = \frac{1}{2}[a^H r_n + a^T r_n^*]. \tag{5}
\]

Подставляя (5) в (4), получаем

\[
\epsilon_n = E\{|\text{Re}\{a^H r_n\} - b_{n-d}|^2\} = E\left\{|\frac{1}{2}a^H r + \frac{1}{2}a^T r^* - b_{n-d}|^2\right\} =
\]

\[
= E\left\{\left(\frac{1}{2}a^H r + \frac{1}{2}a^T r^* - b_{n-d}\right)\left(\frac{1}{2}a^H r + \frac{1}{2}a^T r^* - b_{n-d}\right)^*\right\} =
\]

![Diagram](image-url)
\[
\begin{align*}
\dot{a} &= \frac{1}{4} a^H C_{rr} a + \frac{1}{4} a^H \hat{C}_{rr} a^* - \frac{1}{2} a^H C_{rb} + \frac{1}{4} a^T \hat{C}_{rb} a + \\
&+ \frac{1}{4} a^T C_{rb} a^* - \frac{1}{2} a^T C_{rb} a - \frac{1}{2} \dot{C}_{rb} a + \frac{1}{2} \dot{C}_{rb} a^* + \sigma_b^2.
\end{align*}
\]

где C_{rr} и C_{rb} определяются из (3), а $C_{rb} = E\{b_n - d^H r_n\}$ и $\hat{C}_{rb} = E\{r_n r_n^T\}$. В случае передачи вещественных данных по каналу с комплексными коэффициентами псевдокорреляционная матрица C_{rr} не равна нулю [6], поэтому использование вращательной зависимости принимающего сигнала r_n обеспечивает лучшее качество приема. Дифференцируя ϵ_n по a и приводя в производную к нулю, получаем

\[
a = (C_{rr} - \hat{C}_{rr} C_{rr}^{-1} \hat{C}_{rr}^H)^{-1} (C_{rb} - \hat{C}_{rb} C_{rr}^{-1} C_{rb}^*).
\]

(6)

Разрешающий эквалайзер с обратной связью и РЛЮ. Рассмотрим, как РЛЮ может применяться в разрешающем эквалайзере с обратной связью (РЭОС). Выход РЛ РЭОС и целевая функция записываются в виде

\[
z_n' = \text{Re}\{a^H r_n\} + g^T \hat{b}_n = \begin{bmatrix} 0.5a^H & 0.5a^T & g^T \end{bmatrix} \begin{bmatrix} r_n \\ r_n^* \\ \hat{b}_n \end{bmatrix} = \alpha_g^H y_n,
\]

(7)

где $g = \begin{bmatrix} g_0 & g_1 & \cdots & g_{M-1} \end{bmatrix}^T$ и $\hat{b}_n = \begin{bmatrix} \hat{b}_{n-1} & \hat{b}_{n-2} & \cdots & \hat{b}_{n-M} \end{bmatrix}^T$ — векторы коэффициентов фильтра с обратной связью и разрешающего фильтра с обратной связью соответственно. Остальные векторы и матрицы определяются в следующем виде:

\[
\alpha_g = \begin{bmatrix} 0.5a & 0.5a^* & g \end{bmatrix}^T; \quad y_n = \begin{bmatrix} r_n & r_n^* & \hat{b}_n \end{bmatrix}^T.
\]

(8)

\[
C_{uu} = E\{y_n y_n^H\} = E\left\{ \begin{bmatrix} r_n \\ r_n^* \\ \hat{b}_n \end{bmatrix} \begin{bmatrix} r_n^H \\ r_n^T \\ \hat{b}_n^H \end{bmatrix} \right\};
\]

\[
C_{uy} = E\{b_n - d^H r_n\} = E\{b_n - d \begin{bmatrix} r_n^H \\ r_n^T \\ \hat{b}_n^H \end{bmatrix} \};
\]

\[
C_{by} = E\{b_n - d^H y_n\} = E\{b_n - d \begin{bmatrix} r_n \\ r_n^* \\ \hat{b}_n \end{bmatrix} \};
\]

\[
C_{yy} = E\{y_n y_n^H\} = E\left\{ b_n - d \begin{bmatrix} r_n \\ r_n^* \\ \hat{b}_n \end{bmatrix} \right\}.
\]

Приравнивая $\partial \epsilon_n / \partial \alpha_g = (C_{uu} \alpha_g)^* - C_{by}$ к нулю, получаем вектор коэффициентов для оптимального фильтра $\alpha_g = C_{uu}^{-1} C_{by}$.
Адаптивный РЛ-эквалайзер. Решение уравнения (7) может быть получено с помощью техник адаптивной фильтрации, например на основе метода наименьших квадратов (МНК) и рекурсивного метода наименьших квадратов (РМНК) [8], приводящих к РЛ МНК- и РЛ РМНК-компенсаторам. Первый из них может быть представлен в виде

$$\alpha_{n+1} = \alpha_n + \mu e_n y_n, \quad e_n = b_{n-d} - \alpha_n^H y_n, \quad y_n = [r_n^* r_n b_n]^T,$$

где μ — величина шага, которая обычно выбирается из условия $0 < \mu < 2/\lambda_{\text{max}}$ (λ_{max} — максимальное собственное значение матрицы C_{yy}).

По сравнению с МНК алгоритм РМНК обладает более быстрой сходимостью за счёт использования данных предыдущих шагов. РЛ РМНК-эквалайзер может быть записан как

$$p_0 = \delta^{-1} I, \quad \alpha_0 = 0, \quad e_n = b_{n-d} - y_n = b_{n-d} - \frac{1}{2} y_{n-1}^H y_n,$$

$$\pi_n = p_{n-1} y_n, \quad k_n = \frac{\pi_n}{\lambda + y_n^H \pi_n},$$

$$p_n = \lambda^{-1} [p_{n-1} - k_n y_n^H p_{n-1}^*], \quad \alpha_n = \alpha_{n-1} + e_n k_n,$$

где δ — малая или большая положительная константа для высокого либо низкого отношения сигнал/шум соответственно.

Заметим, что схемы РЛ-эквалайзера (как схемы РЭОС, так и адаптивные схемы) предполагают наличие фильтра с обратной связью и вещественными коэффициентами, в то время как фильтры в традиционных схемах РЭОС имеют комплексные коэффициенты.

Численные результаты. Приведём результаты экспериментов по оценке эффективности описанных алгоритмов. В моделировании использовался широкополосный фиксированный беспроводной канал (ШФБК) стандарта IEEE 802.16 [9]. В частности, рассматривалась трёхъярусная модель канала SUI-3, созданная в университете г. Стэнфорда (США) и предложенная в [10]. Комплексные коэффициенты в канале меняются при переходе от одного блока данных к другому, но полагаются постоянными при передаче одного блока данных. На каждом шаге моделирования по методу Монте-Карло размер блока устанавливается равным 1000 символов ДФМ, передаваемых через ШФБК-каналы SUI-3. На рис. 2 и 3 графики получены путём усреднения результатов моделирования для 1000 каналных реализаций.

Рис. 2 показывает, что РЛ МСКО-компенсатор работает более эффективно, чем традиционный линейный МСКО-компенсатор. Увеличение показателя качества достигает 1 дБ. РЛ РЭОС превосходит по эффективности традиционный РЭОС. Здесь разница в качестве меньше, чем в случае МСКО-эквалайзера, но по-прежнему существенна. Длина фильтра в наших моделях составляет восемь ячеек для МСКО-эквалайзера и пять ячеек в прямой и три в обратной цепях для РЭОС. На рисунке видно, что использование разрешающей обратной связи улучшает результаты эквалайзации и РЭОС в целом превосходит по качеству МСКО-эквалайзеры при одинаковой длине фильтра.

Различные схемы адаптивной эквалайзации сравниваются на рис. 3. Улучшение качества при использовании РЛК отчётливо прослеживается для МНК. Увеличение показателя качества для РЛ РМНК-компенсатора по сравнению с традиционным МНК может достигать 4 дБ. Для схемы РМНК-эквалайзера рост показателя качества при использовании РЛК достигает 1,5 дБ.
Рис. 2. Эффективность МСКО- и РЭОС-выравнивания для ШФБК-канала: МСКО-компенсатор, 8 ячеек (□); РЛ МСКО-компенсатор, 8 ячеек (○); РЭОС, 5 ячек в прямой и 3 ячейки в обратной цепях (+); РЛ РЭОС, 5 ячек в прямой и 3 ячейки в обратной цепях (*) (BER (Bit Error Rate) — частота появления ошибочных битов)

Рис. 3. Эффективность адаптивного выравнивания для ШФБК-канала: МНК-компенсатор, 5 ячек в прямой и 3 ячейки в обратной цепях (□); РЛ МНК-компенсатор, 5 ячек в прямой и 3 ячейки в обратной цепях (○); РМНК-компенсатор, 5 ячек в прямой и 3 ячейки в обратной цепях (×); РЛ РМНК-компенсатор, 5 ячек в прямой и 3 ячейки в обратной цепях (*)

Наконец, алгоритмы РЛ-компенсации сравниваются на рис. 4. Отчётливо видно, что РЛ МНК-алгоритм показывает наилучший результат, но является самым простым из рассмотриваемых. Алгоритм РЛ РМНК обладает быстрой сходимостью и более приемлемым качеством по сравнению с РЛ МНК, однако он уступает неадаптивным РЛ МСКО- и РЛ РЭОС-компенсаторам при одинаковой длине фильтра. Качество РЛ РЭОС — наилучшее из всех РЛ-компенсаторов.

РЛО для системы с реверсированием по времени и пространственно-временным блочным кодированием (РВ ПВБК). Эффективным решением, удовлетворяющим требованиям высокой скорости и качества передачи данных, является использование подходов пространственно-временного кодирования [11, 12] с применением нескольких
Рис. 4. Эффективность различных РЛ-компенсаторов для ШФБК-канала: РЛ НМК, 5 ячеек в прямой и 3 ячейки в обратной цепях (\(\triangleright\)); РЛ РМНК, 5 ячеек в прямой и 3 ячейки в обратной цепях (\(\times\)); РЛ МСКО, 8 ячек (+); РЛ РЭОС, 5 ячеек в прямой и 3 ячейки в обратной цепях (\(\odot\)).

антенны. Методы пространственно-временного кодирования изначально разрабатывались для каналов с амплитудным замыканием и не учитывали МСИ, возникающую в частотноселективных каналах. В работе [13] схема передачи с разнесением и использованием двух антенн, предложенная в [12], была распространена на частотно-селективные каналы, в которых передаваемые сигналы кодируются в основном поблочно, а не посимвольно. Такой подход относится к РВ ПВБК.

Рассмотрим, как РЛО может применяться для повышения качества РВ ПВБК-систем. На рис. 5 показана схема передачи в исследуемой РВ ПВБК-системе. Информационная последовательность \(\mathbf{b}(t)\) преобразуется в ПВБК-последовательность символов \(\mathbf{s}(t)\). В отличие от схемы из [12], в которой передаются два символа двумя анtenнами в один момент времени, РВ ПВБК-кодер группирует символы в два блока \(\mathbf{S}_0\) и \(\mathbf{S}_1\) для каждой антенны, при этом каждый блок содержит \(N+1\) символов. Два символьных блока синхронно передаются двумя антеннами, при этом данные делятся на два временных кадра. В первом временном кадре передаётся блок \(\mathbf{S}_0 = \{s_0(0), s_0(1), \ldots, s_0(N)\}\) первой антенны и блок \(\mathbf{S}_1 = \{s_1(0), s_1(1), \ldots, s_1(N)\}\) второй антенны. Во втором временном кадре первая антенна передаёт инвертированную по времени комплексно-сопряжённую и знакопеременную версию последовательности \(\mathbf{S}_1\), обозначенную как \(-\mathbf{S}_1\), вторая антенна — инвертированную по времени комплексно-сопряжённую последовательность \(\mathbf{S}_0\), обозначенную как \(\overline{\mathbf{S}_0}\). Задачей приемника является выделение полученной информационной последовательности \(\mathbf{b}(t)\) по принятому наблюдению \(\mathbf{y}(t)\), которое искается МСИ и БГШ-шумом \(\mathbf{n}(t)\).

Рассмотрим случай использования двух передающих и одной принимающей антенн.

Рис. 5. Схема РВ ПВБК-системы
Канал между передающей tx0 и принимающей rx0 антенами может быть представлен в виде дискретно-временного фильтра

\[h(z^{-1}) = \sum_{t=0}^{T-1} h_t z^{-t}; \]

канал между передающей tx1 и принимающей rx0 антенами может быть представлен как

\[c(z^{-1}) = \sum_{t=0}^{T-1} c_t z^{-t}. \]

Коэффициенты канала полагаются постоянными в процессе передачи одного блока данных. Принятые в течение первого и второго временных кадров сигналы \(y_0(t) \) и \(y_1(t) \) записем в виде

\[
\begin{bmatrix}
 y_0(t) \\
 y_1(t)
\end{bmatrix}
=
\begin{bmatrix}
 h(z^{-1}) & c(z^{-1}) \\
 c^*(z) & -h^*(z)
\end{bmatrix}
\begin{bmatrix}
 s_0(t) \\
 s_1(t)
\end{bmatrix}
+
\begin{bmatrix}
 n_0(t) \\
 n_1(t)
\end{bmatrix}.
\]

Схема принимающего алгоритма приведена на рис. 6. Сигнальный вектор \(y(t) \) проpusкается через согласованный фильтр \(H^*(z, z^{-1}) \). Разделённые символные потоки \(r_0(t) \) и \(r_1(t) \) на выходе согласованного фильтра далее независимо обрабатываются компенсатором для получения оценок переданных символьных последовательностей \(\hat{r}_0(t) \) и \(\hat{r}_1(t) \), которые затем объединяются в одну последовательность и демодулируются для получения оценки переданных информационных битов \(\{b_n\} \). Более детальное описание РВ ПВБК-алгоритма и его приложений к ШФБК-системам можно найти в [13, 14].

Собственно алгоритм РВ ПВБК лишь разделяет символные потоки по двум передающим антеннам. При этом не решается задача устранения МСИ в каждом из символных потоков. Кроме того, перед принятием решения о переданных символах и битах необходимо провести позиционирование МСИ компенсатором, разделяющим символные потоки \(r_0(t) \) и \(r_1(t) \). На рис. 7 показано сравнение качества линейного и расширенного линейного МСК-компенсаторов (длина фильтра составляет пять ячеек в обоих случаях). На каждом шаге испытаний по методу Монте-Карло размер блока \(N + 1 \) задаётся равным 250 для последовательностей \(S_0 \) и \(S_1 \), а коэффициент корреляции антенны — 0,4. Модельные кривые получены усреднением результатов по 1000 каналальным реализациям. На рисунке видно, что предложенный РП-компенсатор обладает лучшим качеством по сравнению с традиционным линейным компенсатором в ШФБК-системе с РВ ПВБК. Рост показателя качества может превышать 1 дБ.

Расширенный линейный подход к турбоэквализации. Рассмотрим приложение РПО в системах с канальным копированием и предложим новый подход к турбоэквализации.
лизации. Кратко опишем исследуемую передающую систему. Информационная последовательность \(\{ u_n \} \) сворачивается в кодовые биты \(\{ c_n \} \), которые затем перемежаются и преобразуются в ДФМ-символы \(\{ b_n \} \), передаваемые по МСИ-каналу. Схема турбокомпенсатора в приёмнике приведена на рис. 8. Принятый сигнал \(r_n \) поступает на вход компенсатора, в котором вычисляется логарифмическое отношение правдоподобия (ЛОП) величины \(b_n \), обозначенное как \(\lambda(b_n; O) \). Значения ЛОП группируются для получения \(\lambda(c_n; I) \). Основываясь на программируемом вхде \(\lambda(c_n; I) \), канальный декодер SISO (Soft-Input, Soft-Output) вычисляет ЛОП для каждого информационного бита \(\lambda(u_n; O) \) и каждого кодового бита \(\lambda(c_n; O) \). ЛОП информационного бида используется для принятия решения о переданном информационном бите \(u_n \) на последнем шаге, а ЛОП кодовых битов группируются для получения величины \(\lambda(b_n; I) \), поступающей на вход компенсатора на следующем шаге. Записи вида \(\lambda(\cdot; I) \) и \(\lambda(\cdot; O) \) обозначают входной и выходной порты декодера SISO соответственно. При нахождении ЛОП на выходе декодера могут применяться различные SISO-алгоритмы. В данной работе используется алгоритм Log-MAP. Далее алгоритм выравнивания будет описан более детально.

Очищенный от помех принятый вектор запишем в виде

\[
r'_n = r_n - Hb_n = H[b_n - \delta_n] + v_n,
\]

где \(r_n = [r_n \ r_{n+1} \ \ldots \ r_{n+L-1}]^T \), \(v_n = [v_n \ v_{n+1} \ \ldots \ v_{n+L-1}]^T \) обозначают при-
и нятый и шумовой векторы соответственно. Векторы b_n и \tilde{b}_n определяются как
\[
\begin{align*}
\mathbf{b}_n &= \begin{bmatrix} b_{n-L+1} & \ldots & b_n & b_{n+1} & \ldots & b_{n+L-1} \end{bmatrix}^T, \\
\mathbf{\tilde{b}}_n &= \begin{bmatrix} \tilde{b}_{n-L+1} & \ldots & \tilde{b}_n & 0 & \ldots & 0 \end{bmatrix}^T,
\end{align*}
\]
где последний содержит оценку искажённых символов на предыдущем шаге. Процесс получения $\mathbf{\tilde{b}}_n$ будет описан далее. Канальная матрица задаётся в виде
\[
\mathbf{H} = \begin{bmatrix}
\begin{array}{ccccccc}
 h_{L-1} & h_{L-2} & \ldots & h_0 & 0 & 0 & \ldots & 0 \\
 0 & h_{L-1} & \ldots & h_1 & h_0 & 0 & \ldots & 0 \\
 \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \ldots & h_{L-1} & h_{L-2} & \ldots & h_0
\end{array}
\end{bmatrix}.
\]

Для дальнейшего подавления остаточных искажений в \mathbf{r}'_n применяется безынерционный линейный МСКО-фильтр, вычисляющий величину $z_n = \mathbf{w}_n^H \mathbf{r}'_n$, где вектор коэффициентов фильтра \mathbf{w}_n выбирается из условия минимизации $e_n^L = E\{[b_n - \mathbf{w}_n^H \mathbf{r}'_n]^2\}$. При использовании РЛО необходимо заменить эту целевую функцию следующей:
\[
e_n^{WL} = E\{[b_n - \operatorname{Re}\{\mathbf{w}_n^H \mathbf{r}'_n\}]^2\}.
\]
В [6] показано, что условие $e_n^{WL} < e_n^L$ обеспечивает улучшение качества компенсатора. Для нахождения решения (9) преобразуем
\[
\operatorname{Re}\{\mathbf{w}_n^H \mathbf{r}'_n\} = \frac{1}{2}[\mathbf{w}_n^H \mathbf{r}'_n + (\mathbf{w}_n^H \mathbf{r}'_n)^*] = \frac{1}{2} \begin{bmatrix} \mathbf{w}_n^H & \mathbf{w}_n^H \end{bmatrix}^H \begin{bmatrix} \mathbf{r}'_n & \mathbf{r}'_n \\
\mathbf{r}'_n^* & \mathbf{r}'_n^*
\end{bmatrix} = \frac{1}{2} \mathbf{H} \mathbf{y}_n
\]
(здесь $\mathbf{y}_n = [\mathbf{w}_n \mathbf{w}_n^*]^T$ и $\mathbf{y}_n = [\mathbf{r}'_n \mathbf{r}'_n]^T$). Подставив полученное выражение в (9), будем иметь
\[
e_n^{WL} = E\{[\operatorname{Re}\{\mathbf{w}_n^H \mathbf{r}'_n\} - b_n]^2\} = E\left\{\left(\frac{1}{2} \mathbf{H} \mathbf{y}_n - b_n\right)\left(\frac{1}{2} \mathbf{H} \mathbf{y}_n - b_n\right)^*\right\} =
\]
\[
= \frac{1}{4} \mathbf{H} \mathbf{C}_{\mathbf{y}} \mathbf{H} \mathbf{y}_n - \frac{1}{2} \mathbf{C}_{\mathbf{y}} \mathbf{H} \mathbf{y}_n - \frac{1}{2} \mathbf{C}_{\mathbf{y}} \mathbf{y}_n + \frac{1}{2} \mathbf{C}_{\mathbf{y}} \mathbf{y}_n + \frac{1}{2} \mathbf{C}_{\mathbf{y}} \mathbf{y}_n + \frac{1}{2} \mathbf{C}_{\mathbf{y}} \mathbf{y}_n
\]
(10)
где
\[
\mathbf{C}_{\mathbf{y}} = E\{\mathbf{y}_n \mathbf{y}_n^H\} = E\left\{\begin{bmatrix} \mathbf{r}'_n \\
\mathbf{r}'_n^*
\end{bmatrix} \begin{bmatrix} \mathbf{r}'_n & \mathbf{r}'_n \end{bmatrix}^T\right\} = \begin{bmatrix} \mathbf{C}_{\mathbf{r}'_n} & \mathbf{\tilde{C}}_{\mathbf{r}'_n} \\
\mathbf{\tilde{C}}_{\mathbf{r}'_n}^* & \mathbf{C}_{\mathbf{r}'_n}^*
\end{bmatrix} =
\]
\[
= \begin{bmatrix} \mathbf{H} \mathbf{V}_n \mathbf{H} + \mathbf{N}_0 \mathbf{I} & \mathbf{H} \mathbf{V}_n \mathbf{H}^T \\
\mathbf{H}^* \mathbf{V}_n \mathbf{H} & \mathbf{H}^* \mathbf{V}_n \mathbf{H}^T + \mathbf{N}_0 \mathbf{I}
\end{bmatrix};
\]
\[
\mathbf{C}_{\mathbf{y}^b} = \mathbf{C}_{\mathbf{y}^b}^H = E\{\mathbf{y}_n b_n\} = \begin{bmatrix} \mathbf{C}_{\mathbf{r}'_n b} \\
\mathbf{\tilde{C}}_{\mathbf{r}'_n b}
\end{bmatrix} = \begin{bmatrix} \mathbf{h} \\
\mathbf{h}^*
\end{bmatrix}.
\]
\[h = \left[\begin{array}{c} h_0 & h_1 & \ldots & h_{L-1} \end{array} \right]^T; \]

\[V_n = \text{diag} \{ [1 - \bar{b}_{n-L+1}]^2 \ldots 1 - \bar{b}_{n-1}^2 \ 1 - \bar{b}_{n+1}^2 \ldots 1 - \bar{b}_{n+L-1}^2 \}. \]

Дифференцируя \(\epsilon_n^{WL} \) из (10) по переменной \(\alpha_n \) и приравнивая производную к нулю, получим коэффициенты вектора для оптимального фильтра и его результатирующий выход:

\[\alpha_{opt} = \begin{bmatrix} w \\ w^* \end{bmatrix} = 2C_{yy}^{-1}C_{by} = 2C_{yy}^{-1}C_{yb}; \]

\[z_n = \frac{1}{2} \alpha_{opt}^H y_n. \]

(12)

Заметим, что при использовании традиционного линейного МСКО-алгоритма вектор коэффициентов фильтра вычисляется только с помощью автокорреляции наблюденного сигнала \(C_{rr'} \) и кросскорреляции между наблюдаемым и прогнозируемым сигналами \(C_{rb}, \) т.е. \(w_n = C_{rr'}^{-1}C_{rb} = C_{rr'}^{-1}h. \) Псевдонавтоокорреляционная \(\tilde{C}_{rr'} \) и псевдокросскорреляционная \(\tilde{C}_{rb} \) матрицы в явном виде предполагаются равными нулю. Однако это допущение неприемлимо при передаче всплесковых данных по каналу с комплексными коэффициентами. Пренебрежение взаимно-зависимыми свойствами сигнала приводит к субоптимальным решениям. Из (11) и (12) следует, что возрастание вычисленной сложности с применением РПО вызвано обращением матрицы \(C_{yy} \) размера \(2L \times 2L, \) в то время как в традиционном МСКО-компенсаторе выполняется обращение матрицы \(C_{rr'} \) размера \(L \times L. \)

Программная оценка бита \(b_n, \) обозначенная \(\tilde{b}_n, \) вычисляется с использованием выхода РП-фильтра таким образом, что отпадает необходимость в устранении искажений и организации итерационного процесса. В [15] показано, что выход МСКО-фильтра \(z_n \) может быть аппроксимирован случайной гауссовой переменной со средним \(\mu \) и дисперсией \(\sigma_\eta^2, \) т. е. \(z_n = \mu b_n + \eta, \) где \(\eta \sim N(0, \sigma_\eta^2). \) Параметры \(\mu, \sigma_\eta^2 \) могут быть определены исходя из ожидаемой интерференции символов и шумового вектора канала:

\[\mu = E\{z_n b_n\} = E\left\{ \frac{1}{2} \alpha_{opt}^H \begin{bmatrix} H[b_n - \bar{b}_n] + v_n \\ H[b_n - \bar{b}_n]^* + v_n^* \end{bmatrix} b_n \right\} = \frac{1}{2} \alpha_{opt}^H C_{yy} b_n; \]

\[\sigma_\eta^2 = \text{var}\{z_n\} = E\{z_n^2\} - \mu^2 = \frac{1}{4} \alpha_{opt}^H C_{yy} \alpha_{opt} - \mu^2 = C_{yy}^{-1}C_{by} C_{yy}^{-1}C_{yb} - \mu^2 = \mu - \mu^2 = \]

Следовательно, условная функция плотности вероятности (ФПВ) выхода компенсатора может быть представлена в виде

\[f(z_n \mid b_m) = \frac{1}{\sqrt{2\pi\sigma_\eta}} \exp \left(-\frac{|z_n - \mu b_m|^2}{2\sigma_\eta^2} \right), \]
а ЛОП и расчётная оценка бита b_n рассчитываются как

$$
\lambda(b_n) = \ln \frac{f(z_n | b_n = +1)}{f(z_n | b_n = -1)} = \frac{2\Re[z_n]}{1 - \mu},
$$

$$
\bar{b}_n = \tanh(\lambda(b_n)/2).
$$

Далее сравним эффективность предложенного подхода со схемой линейной МСКО-турбокомпенсации, представленной в [15]. Заметим, что данные схемы идентичны при однопользовательском режиме работы системы. В моделировании использовался свёрточный код с половиной скоростью отхода максимальной свободной дистанции при кодовом ограничении длины 5, а также генератор полиномов (23, 35) в восемьчёрной форме. На каждом шаге испытаний Монте-Карло размер блока задавался равным 2044 информационным битам с сопровождающими эту дискретную посылку 4 служебными битами, что соответствует $2048 \times 2 = 4096$ кодовым битам. Далее информационные биты сжимаются компрессором случайного потока и передаются по каналу с МСИ. На рис. 9 показана сравнительная эффективность ШФБК-канала SUL-3. Графики получены путём усреднения результатов моделирования для 500 каналных реализаций. В каждом случае требовалось всего лишь три итерации, для того чтобы алгоритм сходился. Когда система стабилизируется, выигрыш в показателе качества при использовании РЛО составляет 0,5 дБ по сравнению с традиционным линейным МСКО-алгоритмом при частоте ошибочных битов (BER) в диапазоне от 10^{-3} до 10^{-4}.

Те же два метода сравниваются (рис. 10) для случая статического канала с пятью ячейками и импульсной характеристикой в виде

$$
h[n] = (2 - 0,4j)\delta[n] + (1,5 + 1,8j)\delta[n - 1] +
$$

$$
\delta[n - 2] + (1,2 - 1,3j)\delta[n - 3] + (0,8 + 1,6j)\delta[n - 4].
$$
Рис. 10. Сравнение алгоритмов турбовыравнивания для статического канала из 5 ячеек: линейный МСКО-турбокомпенсатор (●) и РЛ МСКО-турбокомпенсатор (○)

Канал нормализован так, что

\[P = \sum_{n=0}^{4} |h[n]|^2 = 1. \]

В каждом случае алгоритм сходится после четырёх итераций. В сравнении с начальной итерацией при одномоментной эквализации и Log-MAP-декодировании последовательная турбоэквализация даёт лучший результат. РЛ-турбокомпенсатор в основном превосходит по качеству линейный аналог, исключая точку \(E_b/N_0 = 4 \) дБ в области сходимости. Выигрыш в качестве наиболее очевиден на втором шаге.

Заключение. В данной работе применина техника расширенной линейной обработки сигнала для частотно-селективных каналов и предложено несколько РЛ-алгоритмов выравнивания, построенных на основе модификации критерия наименьших квадратов. Проведена оценка предложенных РЛ-алгоритмов как в одноканальной системе (один вход — один выход), так и в ШФБК-системе с РЛ ПВБК. Показано, что данные алгоритмы обладают лучшими показателями качества по сравнению с традиционными компенсаторами. Предложен РЛО-алгоритм турбовыравнивания, превосходящий по качеству турбокомпенсатор с традиционным фильтром. Данные алгоритмы с РЛО могут быть использованы на практике для более эффективного подавления МСИ и повышения производительности системы связи.

СПИСОК ЛИТЕРАТУРЫ

Поступила в редакцию 15 марта 2011 г.