УДК 541.11:661.183 DOI: 10.15372/KhUR20150217

Структурные особенности мезопористых углеродных материалов, синтезированных щелочной карбонизацией смесей фенол – фурфурол и гидрохинон – фурфурол

Ч. Н. БАРНАКОВ¹, А. В. САМАРОВ¹, Н. В. ШИКИНА², Д. Г. ЯКУБИК³

¹Институт углехимии и химического материаловедения Сибирского отделения РАН, проспект Советский, 18, Кемерово 650000 (Россия)

E-mail: barnakov@rambler.ru

²Институт катализа им. Г. К. Борескова Сибирского отделения РАН, проспект Академика Лаврентьева, 5, Новосибирск 630090 (Россия)

³Кемеровский государственный университет, ул. Красная, 6, Кемерово 650043 (Россия)

Аннотация

Комплексом физико-химических методов анализа (рентгенофазовый анализ, КР-спектроскопия, ПЭМи СЭМ-микроскопия, низкотемпературная адсорбция азота) изучены структурные характеристики преимущественно мезопористых углеродных материалов, синтезированных щелочной карбонизацией смесей гидрохинон – фурфурол и фенол – фурфурол. Показано, что структурные фрагменты синтезированных материалов состоят из случайно ориентированных графеновых плоскостей и их слоистых агрегатов. Средний размер кристаллически упорядоченных областей составляет 12–15 Å.

Ключевые слова: мезопористые углеродные материалы, структура, рентгенофазовый анализ, КР-спектроскопия, сорбционные характеристики

введение

В настоящее время пористые углеродные материалы (ПУМ) нашли широкое применение в качестве гемосорбентов [1], носителей катализаторов [2, 3], материалов для электродов энергонакопительных устройств [4], композиционных материалов [5], адсорбентов для хроматографии [6], хранения газов [7], извлечения тяжелых металлов [8] и обезвреживания технологических растворов [9]. Важным аспектом улучшения свойств высокопористых материалов является исследование общих закономерностей формирования их структурных и текстурных параметров, влияющих на сорбционные и электрохимические свойства. В большинстве работ в качестве исходных веществ (прекурсоров) для синтеза

ПУМ используются природные вещества (древесина, каменные и бурые угли, косточки плодов, скорлупа орехов и т. п.), что позволяет решать практически важную задачу переработки технологических отходов производств, улучшая экологическую ситуацию. Однако сложный состав и структура этих прекурсоров затрудняют понимание процесса формирования текстуры ПУМ и не позволяют установить взаимосвязь между условиями проведения синтеза и структурой углеродных материалов, которая определяет их сорбционные и электрохимические свойства. В связи с этим перспективным подходом было бы получение ПУМ из индивидуальных ароматических соединений [10-14]. Исследование карбонизации веществ с известным составом и структурой, возможно, позволит в дальнейшем выяснить механизм образования текстуры ПУМ и синтезировать углеродные материалы с заранее заданными свойствами.

В настоящей работе рассмотрены структурные особенности пористых углеродных материалов, синтезированных из смесей гидрохинон – фурфурол (Kem-5 и Kem-6) и фенол – фурфурол (Kem-7 и Kem-8).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез ПУМ с развитой мезопористостью проводили в два этапа. Сначала исходные вещества (прекурсоры) смешивали с эквимолярной смесью гидроксидов натрия и калия в соотношении 1 : 5 по массе. Полученную смесь подвергали плавлению при температуре ~250 °C в течение 3 ч. На втором этапе плав карбонизировали на воздухе при температуре 700-900 °C в течение определенного времени. Полученный карбонизат промывали водой до нейтральной среды и сушили до постоянной массы при температуре 105 °C [15].

По данной методике были получены четыре образца мезопористых ПУМ. Условия получения данных образцов представлены в табл. 1.

Регистрация рентгенограмм проведена на дифрактометре HZG-4 с CuK_{α} -излучением.

Спектры КР получены на Раман-спектрометре Horiba Jobin Yvon LabRAM HR800. В качестве источника света использовался гелий-неоновый лазер с основной линией накачки 633 нм.

Просвечивающая электронная микроскопия (ПЭМ) высокого разрешения является мощным инструментом для определения кристаллической структуры отдельных зерен материалов. Она активно используется для изучения пористых углеродных структур, где в большинстве случаев на изображении высокого разрешения наблюдается периодический полосчатый контраст, который может дать детальную информацию об ориентации кристаллитов в ПУМ [20].

Снимки электронной микроскопии высокого разрешения получены на просвечивающем электронном микроскопе JEM-2010 с разрешением по решетке 0.14 нм и ускоряющем напряжение 200 кВ.

Адсорбционные характеристики синтезированных материалов определяли из изотерм адсорбции/десорбции азота при 77 К, снятых на установке Micromeritics ASAP-2400 после вакуумной тренировки при 180 °С и остаточном давлении не более $1 \cdot 10^{-2}$ мм рт. ст. По этим характеристикам рассчитывали удельную поверхность по БЭТ. Суммарный объем микро- и мезопор V_{Σ} (с характерным размером менее 100 нм) определяли по предельному значению адсорбции азота при относительном давлении $P/P_0 = 0.98$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенофазовый анализ

Сильное уширение рефлексов (рис. 1) указывает на высокую степень аморфности синтезированных углеродных материалов. Рефлекс 002 сдвинут в сторону малых углов (~22.5°) относительно рефлекса 002 (~26.5°) для идеального графита, что свидетельствует об увеличении межплоскостного расстояния в ПУМ. Кроме того, на рентгенограммах виден пик при 14°, свидетельствующий о наличии структур с межплоскостным расстоянием 6.61 Å.

По величине рефлексов 002 и 100, согласно [16], были оценены параметры, характе-

ТАБЛИЦА 1

Условия синтеза мезопористых углеродных материалов

Образцы	Соотношение прекурсоров, моль/моль	Условия синтеза
Kem-5	Гидрохинон + фурфурол (1:2)	T = 700 °C, $t = 60$ мин
Kem-6	Гидрохинон + фурфурол (1:1)	T = 700 °C, $t = 60$ мин
Kem-7	Фенол + фурфурол (1:2)	T = 900 °C, $t = 10$ мин
Kem-8	Фенол + фурфурол (1:1)	T = 900 °C, $t = 10$ мин

Примечание. Т – температура карбонизации, t – время карбонизации.

Рис. 1. Рентгенограммы трех образцов пористых углеродных материалов с развитой мезопористостью.

ризующие пространственно-однородные области с графитоподобной структурой (домены). Среднее межплоскостное расстояние, определенное по формуле Вульфа – Брегга, $d_{002} = 3.95$ Å сильно превышает таковое для графита ($d_{002} = 3.35$ Å). Средняя протяженность (длина) домена L_a , определенная по формуле Уоррена, составила 15 Å. Высота домена L_c , вычисленная по формуле Шеррера, составила 13 Å, что соответствует четырем графеновым слоям.

Спектроскопия комбинационного рассеяния

В спектрах КР исследованных образцов ПУМ в области $1000-1800 \text{ см}^{-1}$ наблюдаются

Рис. 2. КР-спектры трех образцов мезопористых углеродных материалов.

две сильные линии (рис. 2). Линия G (1580– 1600 см⁻¹) соответствует разрешенным колебаниям E_{2g} гексагональной решетки графита. Уширение линий в КР-спектре и появление дополнительной линии D (1310–1340 см⁻¹), которая соответствует колебательной моде A_{1g} , запрещенной правилами отбора для идеального графита, свидетельствует о наличии большого числа структурных дефектов. Обе линии относятся к sp^2 -гибридизированному углероду [17, 18]. Кроме того, асимметрия D-линии показывает наличие в области 1000 см⁻¹ линии, соответствующей рассеянию на колебаниях sp^3 -гибридизированного углерода (T-линия) [19].

Элементный анализ

Элементный анализ образцов ПУМ, выполненный по стандарту ISO 625-75, показал наличие углерода (79-89 мас. %), водорода (0.5-1.0 мас. %) и кислорода (4-9 мас. %) (табл. 2). Кроме того, по данным рентгенофлуоресцентного анализа, присутствуют также Al, Na, Si, Cl, Cu, Fe, Co.

Сканирующая электронная микроскопия

На приведенных фотографиях (рис. 3, *a*) видно, что фрагменты ПУМ образуют два типа частиц: 1) с хорошо сформированными гранями, для которых можно предположить наличие микро- и мезопор и 2) высокопористые, образованные, вероятно, при хаотичном слипании образующихся в ходе синтеза углеродных доменов; губчатая форма этих частиц свидетельствует о наличии в основном макро- и мезопор.

ТАБЛИЦА 2

Содержание основных элементов в исследованных ПУМ, %

Образцы	C	H	0
Kem-5	88.82	0.78	3.94
Kem-6	85.90	0.54	5.16
Kem-7	85.42	0.80	6.89
Kem-8	82.11	1.03	876

Рис. 3. СЭМ- (а) и ПЭМ-фотографии (б) образца Кет-5.

Просвечивающая электронная микроскопия

Анализ данных рис. 3, б показывает, что исследованные ПУМ представляют собой сильно разупорядоченные материалы, которые можно считать совокупностью хаотично расположенных по отношению друг к друг графеноподобных слоев и их агрегатов [21]. Просматриваются (особенно по краям) отдельные изогнутые плоскости. Можно предположить, что за счет изогнутости этих плоскостей образуются мезопоры, обеспечивающие высокие значения пористости исследованных ПУМ (табл. 3).

ТАБЛИЦА 3

Адсорбционные характеристики ПУМ с развитой мезопористостью

Образцы	$S_{\rm E ext{$>T}},~{ m m}^2/{ m r}$	V_{Σ} , cm ³ /r	S_{μ} , м $^2/r$	V_{μ} , см $^3/$ г	$S_{_{\rm Me30}}$, м $^2/r$
Kem-5	2900	3.68	600	0.31	2300
Kem-6	2600	3.39	900	0.47	1900
Kem-7	2500	3.20	1100	0.59	1400
Kem-8	1900	2.40	850	0.44	1050

Примечание. S_{БЭТ} – общая удельная поверхность ПУМ, измеренная по методу Брунауэра – Эммета – Тейлора; V₂ – общий объем пор; S_µ – площадь микропор; V_µ – объем микропор; S_{мезо} – площадь мезопор.

Рис. 4. Изотермы адсорбции-десорбции исследованных пористых углеродных материалов. *P*/*P*₀ – относительное давление.

Адсорбционные характеристики

Форма изотерм адсорбции-десорбции (рис. 4) по классификации ИЮПАК соответствует IV типу, характерному для мезопористых материалов, в которых взаимодействие адсорбат – адсорбент сильнее, чем взаимодействие адсорбат – адсорбат. Форма кривой гистерезиса по классификации ИЮПАК соответствует типу H3, характерному для пластинчатых агрегатов, образующих щелевые поры [22].

выводы

1. Синтезированные мезопористые углеродные материалы представляют собой структуры, состоящие из случайно ориентированных графеновых плоскостей и их слоистых агрегатов.

2. Размер кристаллически упорядоченных областей (агрегатов графеноподобных слоев) составляет 12–15 Å.

3. Форма изотерм адсорбции-десорбции указывает на наличие пластинчатых arperaтов, образующих щелевые поры.

СПИСОК ЛИТЕРАТУРЫ

- Mikhalovsky S. V., Nikolaev V. G.// Activated Carbon Surfaces in Environmental Remediation. 2006. Vol. 7. P. 529–561.
- 2 Ismagilov Z. R., Kerzhentsev M. A., Shikina N. V., Lisitsyn A. S., Okhlopkova L. B., Barnakov Ch. N., Sakashita M., Iijima T., Tadokoro K. // Catal. Today. 2005. Vol. 102–103. P. 58–66.
- З Бакланова О. Н., Лавренов А. В., Княжева О. А., Плаксин Г. В., Лихолобов В. А., Гуляева Т. И., Дроздов В. А. // Химия уст. разв. 2011. Т. 19, № 1. С. 23–30.
- 4 Mateishina Yu. G., Ulikhin A. S., Samarov A. V., Barnakov Ch. N., Uvarov N. F. // Solid State Ionics. 2013. Vol. 251. P. 59-61.
- 5 Kriangsak Kraiwattanawong, Noriaki Sano, Hajime Tamon // Carbon. 2011. Vol. 49, Issue 11. P. 3404-3411.
- 6 Leboda R., Jodyga A., Charmas B. // Mater. Chem. Phys. 1998. Vol. 55. P. 1–29.
- 7 Samarov A. V., Barnakov C. N., Kozlov A. P., Ismagilov Z. R. // Coke and Chem. 2012. No. 9. P. 353–357.
- 8 Шавинский Б. М., Левченко Л. М., Митькин В. Н., Галицкий А. А., Головизина Т. С. // Химия уст. разв. 2008. Т. 16, № 4. С. 449–454.
- 9 Маслий А. И. // Химия уст. разв. 2004. Т. 12, № 3. С. 275–286.
- 10 Самаров А. В., Барнаков Ч. Н., Козлов А. П., Исмагилов З. Р.// Химия тв. топлива. 2008. № 5. С. 21–28.
- 11 Барнаков Ч. Н., Козлов А. П. // Журн. неорган. химии. 2009. № 12. С. 1962–1966.
- 12 Пат. № 2307069 РФ, 2007.
- 13 JP Pat. No. 2005-135817, 2005.
- 14 Барнаков Ч. Н., Козлов А. П., Романенко А. И., Васенин Н. Т., Ануфриенко В. Ф., Исмагилов З. Р. // Кинетика и катализ. 2010. Т. 51, № 2. С. 1–4.
- 15 Пат. 2206394 РФ, 2003.
- 16 Саранчук В. И., Русчев Д., Семененко В. К., Галушко Л. Я., Маркова К., Пащенко Л. В., Темерова Г. П. Окисление и самовозгорание твердого топлива / под ред. В. А. Сапунова. Киев: Наук. думка, 1994. 264 с.
- 17 Cardona M. Resonance Phenomena/M. Cardona and G. Güntherodt (Eds.), Light Scattering in Solids II. Vol. 50, Topics in Applied Physics. Berlin: Springer, 1982. P. 19.
- 18 Maultzsch J., Reich S., Thomsen C.//Phys. Rev. B. 2001. Vol. 64. P. 121407(R).
- 19 Ferrari A. C., Robertson J. // Phys. Rev. B. Vol. 64. P. 075414.
- 20 Штанский В. //Рос. хим. журн. 2002. Т. XLVI, № 5. С. 81–89.
- 21 Tallo I., Thomberg T., Kontturi K., Alar Jgnes A., Lust E. // Carbon. November 2011. Vol. 49, Issue 13. P 4427-4433.
- 22 Sing K. S. W. // Pure Appl. Chem. 1982. Vol. 54. P. 2201-2218.