УДК 536.46:621.43.056

Диагностика дисперсного состава жидкокапельных аэрозолей методом малоуглового рассеяния

В.Ф. Трофимов¹, В.А. Архипов², И.К. Жарова^{2*}

¹Национальный исследовательский Томский государственный университет 634050, г. Томск, пр. Ленина, 36 ²НИИ прикладной математики и механики Национального исследовательского Томского государственного университета 634050, г. Томск, пр. Ленина, 36

Поступила в редакцию 10.01.2014 г.

Представлены методика и результаты экспериментального исследования дисперсного состава жидкокапельного аэрозоля в факеле распыла эжекционных форсунок. Для определения функции распределения частиц по размерам использован метод малых углов индикатрисы рассеяния. Показано, что спектр размеров частиц в факеле распыла соответствует гамма-распределению.

Ключевые слова: жидкокапельный аэрозоль, эжекционная форсунка, факел распыла, индикатриса рассеяния, метод малых углов, гамма-распределение, экспериментальное исследование; liquid-drop aerosol, ejectiontype nozzle, spray jet, scattering function, small-angles method, gamma-distribution, experimental study.

Введение

В металлургии для производства в промышленных объемах высокодисперсных порошков из расплава алюминия наибольшее распространение получили технологии с использованием эжекшионных форсунок [1]. При этом выход высокодисперсной фракции порошка, используемой в качестве горючего компонента высокоэнергетических материалов, составляет не более 25% от распыляемой массы металла [2]. Одним из путей повышения дисперсности порошка является совершенствование существующей технологии распыливания за счет модификации форсуночного блока. Использование методов физического моделирования позволяет применить полученные в условиях холодных продувок результаты к анализу процессов диспергирования металлических расплавов [3].

Для диагностики структуры и дисперсности факела распыла наиболее перспективно применение бесконтактных оптических методов, в частности метода малоугловой индикатрисы рассеяния [4, 5]. Метод обладает рядом преимуществ, к числу которых относятся минимальный объем необходимой априорной информации, возможность измерения параметров капель в факеле распыла и определения функции распределения их по размерам.

В настоящей статье представлены экспериментальная установка, методика и результаты исследования дисперсного состава жидкокапельного аэрозоля в факеле распыла эжекционных форсунок в условиях холодных продувок. Проведен сравнительный анализ эффективности ряда технических решений по конструкции форсуночного узла.

Экспериментальная установка

Для исследования дисперсного состава жидкокапельных аэрозолей разработан пневмогидравлический стенд с системой оптической диагностики [3]. Стенд включает системы подачи, измерения и регулирования расходов жидкого и газообразного компонентов. Система подачи компонентов на исследуемую форсунку состоит из резервуара с жидкостью, компрессора и батареи баллонов со сжатым воздухом. Измерение расхода воздуха осуществляется ротаметром, расхода жидкости — мерной емкостью. Для измерения давления в системе подачи жидкости и воздуха используются образцовые манометры.

Распыливание жидкости происходит за срезом сопла форсунки под воздействием струи сжатого воздуха, истекающего из кольцевого зазора форсунки. Регулирование характеристик факела распыла обеспечивается путем изменения расхода и скорости воздуха на выходе из кольцевого зазора. Разработанный пневмогидравлический стенд обеспечивает проведение исследований модельных образцов форсунок в диапазонах изменения расхода жидкости (дистиллированной воды) до 10,8 кг/ч и воздуха — до 6,3 м³/ч. Диапазон рабочих давлений сжатого воздуха составляет 0,1÷1,0 МПа.

Для реализации метода малых углов индикатрисы рассеяния разработана экспериментальная установка (рис. 1).

^{*} Вячеслав Федорович Трофимов (trofvf@sibmail.com); Владимир Афанасьевич Архипов; Ирина Константиновна Жарова (zharova@niipmm.tsu.ru).

Рис. 1. Схема экспериментальной установки

Исследуемая форсунка 1 смонтирована на штативе, закрепленном на массивной станине 2. Факел распыла 3 форсунки 1 направлен вертикально вниз, распыливаемая жидкость собирается в приемный резервуар. Зондирующий луч лазера 4 направлен горизонтально в измерительный объем 5, расположенный на оси симметрии факела распыла 3. Расстояние от среза сопла форсунки 1 до измерительного объема 5 варьируется в диапазоне $h = 50 \div 150$ мм с помощью штатива (на схеме не показан). Это позволяет проводить измерение дисперсности капель распыливаемой жидкости в разных сечениях по длине факела распыла.

Рассеянное в измерительном объеме излучение регистрируется приемной системой 6, которая размещена на консоли 7 на расстоянии $l_3 = 1260$ мм от центра измерительного объема 5. Консоль шарнирно закреплена на станине 2 с возможностью вращения в вертикальной плоскости с помощью подшипника 8. Поворот консоли на угол $\theta = \pm 10^{\circ}$ относительно направления зондирующего излучения осуществляется штативом 9 с микрометрическим винтом, что позволяет измерять индикатрису в данном диапазоне углов рассеяния. Для повышения точности измерения угла рассеяния используется лазерная указка 10, размещенная на консоли соосно с приемной системой. С помощью луча лазерной указки фиксируется расстояние l_1 на измерительной шкале 11, находящейся на расстоянии $l_2 = 2180$ мм от центра измерительного объема. Угол рассеяния определяется по соотношению

$$\theta = \operatorname{arctg} \frac{l_1}{l_2}.$$

Приемная система включает приемник излучения, расположенный в цилиндрическом текстолитовом корпусе. В корпусе последовательно размещены три диафрагмы диаметром 4 мм, удаленные от приемника на 10, 210 и 260 мм. На внутреннюю поверхность корпуса и на диафрагмы нанесено матовое черное покрытие для предотвращения фоновой засветки приемника излучения. Приемная система обеспечивает величину апертурного угла ~1°. Зондирующий лазер, приемная система и лазерная указка размещены на координатных столиках 12 с микрометрическими винтами для юстировки оптической установки.

Источником зондирующего излучения является лазерный модуль KLM-650/20 (длина волны излучения $\lambda = 0.65$ мкм, мощность — до 20 мВт). Питание лазера осуществляется от генератора 13 прямоугольных импульсов частотой 50 Гц и с регулируемым напряжением. В качестве приемника излучения используется германиевый фототранзистор ФТГ-4 с площадью фоточувствительного элемента 3 мм² и спектральным диапазоном 0,4÷1,9 мкм. Лазерное излучение, рассеянное факелом распыла, регистрируется приемником излучения, выходной сигнал которого подается на вход милливольтметра переменного напряжения 14 типа ВЗ-39 с входным сопротивлением 4 МОм. Сигнал с выхода вольтметра подается на вход запоминающего осциллографа 15 типа GDS-2064, предназначенного для измерения параметров сигналов в полосе частот до 60 МГц.

Перед началом измерений проводится градуировка рабочих диапазонов комплекса с помощью наборов цветных оптических стекол, поверенных на спектрофотометре СФ-26 для длины волны лазерного излучения. Рабочий диапазон чувствительности осциллографа в отсутствие факела распыла выбирается установкой набора стекол с необходимым коэффициентом пропускания, а также изменением мощности излучения лазера путем регулирования напряжения питания. Общий вид установки приведен на рис. 2.

Рис. 2. Общий вид экспериментальной установки

Методика определения функции распределения

Для определения дисперсного состава капель в факеле распыла форсунки применен метод измерения угловой индикатрисы рассеяния лазерного излучения. Теоретической основой метода является использование аналитического описания рассеяния света частицами, более крупными по сравнению с длиной волны излучения, под малыми углами к направлению падающего излучения. При выполнении условий рассеяния света независимыми частицами и его однократности интенсивность рассеянного полидисперсными частицами излучения может быть определена из уравнения теории дифракции [4, 6]:

$$I(\theta) = \left(\frac{\lambda}{2\pi}\right)^3 \frac{I_0}{\theta^2} \int_0^\infty \beta^2 f(\beta) J_1^2(\beta\theta) d\beta,$$
(1)

где λ — длина волны излучения; θ — угол рассеяния, рад; I_0 — интенсивность падающего на частицу излучения; $\beta = 2\pi r/\lambda$ — параметр дифракции; r — радиус частицы; $f(\beta)$ — дифференциальная функция счетного распределения частиц по размерам; J_1 — функции Бесселя первого рода первого порядка.

В [3] показано, что решение интегрального уравнения (1) для функции $f(\beta)$ имеет вид

$$f(\beta) = \left(\frac{\lambda}{2\pi}\right)^3 \frac{1}{\beta^2} \int_0^\infty D(\theta) H(\beta \theta) d\beta.$$
(2)

Ядро обращенного интегрального уравнения (2), зависящее от произведения (βθ), определяется выражением

$$H(\beta\theta) = -2\pi\beta\theta J_1(\beta\theta)Y(\beta\theta).$$

Здесь *Y*($\beta\theta$) — функция Неймана.

Измерительная информация об индикатрисе рассеяния содержится в функции

$$D(\theta) = \frac{d}{d\theta} \left[\frac{I(\theta)}{I_0} \theta^3 \right] = \left(\frac{\lambda}{2\pi} \right)^3 \int_0^\infty \beta^2 f(\beta) K(\beta \theta) d\beta,$$

где ядро

$$K(\beta\theta) = \frac{d}{d(\beta\theta)} \bigg[\beta\theta J_1^2(\beta\theta) - \frac{1}{\pi} \bigg].$$

Функцию распределения частиц по размерам по экспериментально измеренной индикатрисе рассеянного излучения определяют из решения обратной задачи оптики аэрозолей с использованием приведенных зависимостей. Восстановление функции распределения $f(\beta)$ по измеренной индикатрисе рассеяния $I(\theta)$ проводилось численно с помощью метода и алгоритма расчета, основанных на концепции подбора при решении серии прямых задач (метод прямого поиска) [7].

При обработке экспериментальной информации измеренный угол рассеяния (в градусах) переводился в радианы, а полученная из решения обратной задачи функция распределения $f(\beta)$ приводилась к зависимости f(r). В качестве аппроксимирующей функции для f(r) использовалось гамма-распределение

$$f(r) = ar^{\alpha} \exp(-br) \tag{3}$$

(*a*, *a*, *b* – параметры распределения).

Наряду с функцией распределения для описания дисперсных сред широко используются модальный радиус r_0 , соответствующий максимуму дифференциальной функции счетного распределения, а также осредненные радиусы частиц: r_{10} — среднеарифметический; r_{32} — средний объемно-поверхностный; r_{43} — среднемассовый и др. Значения осредненных характеристик определяются соотношением [8]:

где *m*, *n* — целые числа, означающие порядок момента функции распределения.

Трофимов В.Ф., Архипов В.А., Жарова И.К.

1104

Связь осредненных характеристик частиц с параметрами гамма-распределения определяется формулами [9]:

$$r_{10} = \frac{1+\alpha}{b}, \ r_{32} = \frac{3+\alpha}{b}, \ r_{43} = \frac{4+\alpha}{b}.$$
 (4)

При обработке результатов экспериментов помимо указанных средних размеров определялся медианный радиус r_m . Медианный радиус соответствует суммарной доле 50% массы частиц, радиусы которых равны или меньше r_m , от общей массы частиц.

Результаты экспериментального исследования

Для оценки влияния конструкции эжекционной форсунки на дисперсность капель в факеле распыла были проведены испытания шести вариантов модельных форсунок (табл. 1).

Т	а	б	Л	И	ц	а	
---	---	---	---	---	---	---	--

1

Модели форсунок и условия проведения холодных продувок

Модель форсунки	Конструктивные особенности	Давление, МПа	Расход воздуха,	Расход жидкости,
+ · P · J · · · ·			М3∕А	г/с
A1	Газовый тракт в форме конфузора	0,3	5,4	1,7
A2	Газовый тракт в форме сопла Лаваля	0,3	5,5	1,8
A3	Закрутка газово- го потока	0,3	5,23	1,7
A4	Наличие рассека- теля в форме центрального тела	0,15	3,6	1,2
A5	Канал для пода- чи жидкости, имеющий угло- вые точки (квад-	0.2	5 5	4 7
A6	Дополнительный ввод газа в канал подачи жидкости	0,5	3,4	1,7
	подачи жидкости	0,15	3,4	1,3

При проведении лазерной диагностики расстояние от среза сопла форсунки до центра измерительного объема выбиралось одинаковым для всех модельных форсунок h = 90 мм. Для всех исследованных форсунок по рассмотренному выше алгоритму получены дифференциальные функции счетного распределения капель по размерам (рис. 3).

Параметры гамма-распределений (3) для этих функций представлены в табл. 2.

В качестве типичного примера на рис. 4 для полученной функции распределений показаны измеренная и рассчитанная индикатрисы рассеяния (форсунка A6). Для наглядности индикатрисы рассеяния нормированы на максимальное значение:

$$\overline{I}(\theta) = \frac{I(\theta)}{I(\theta)_{\max}}$$

Рис. 3. Дифференциальные функции счетного распределения капель по размерам

Таблица 2

Параметры дифференциальной функции счетного распределения частиц жидкости по размерам

Модель форсунки	a	α	b
A1	0,271	5,1	1,82
A2	$4,96 \cdot 10^{-3}$	10,9	2,73
A3	0,576	1,1	0,79
A4	0,279	0,9	0,53
A5	0,274	5,0	1,79
A6	$4,46 \cdot 10^{-2}$	4,8	1,26

Из рис. 4 видно, что рассчитанные индикатрисы рассеяния хорошо согласуются с измеренными. Это свидетельствует об адекватности использования гамма-распределения для аппроксимации спектра размера частиц.

Для всех исследованных форсунок рассчитанные по уравнениям (4) средние радиусы капель приведены в табл. 3.

Для анализа однородности структуры дисперсных систем удобно использовать геометрическую характеристику дисперсной среды [9] — значение полуширины дифференциальной функции счетного

Диагностика дисперсного состава жидкокапельных аэрозолей методом малоуглового рассеяния 1105 10. Оптика атмосферы и океана, № 12. распределения частиц по размерам $\delta = 0.5(r_2 - r_1)$, где r_1 , r_2 – размеры частиц, соответствующие половине максимального значения функции f(r). На рис. 5 геометрические характеристики для моделей форсунок (A1–A6) представлены в виде диаграммы.

Таблица 3 Характеристики лисперсности факела распыла форсунок

	· · .	-		-	1 0
Модель	Средние радиусы капель, мкм				ïКМ
форсунки	r_0	r_{10}	r_{32}	r_{43}	r_m
A1	2,8	3,4	4,4	5,0	4,8
A2	4,0	4,4	5,1	5,5	5,5
A3	1,4	2,7	5,2	6,5	6,0
A4	1,8	3,8	7,8	9,8	8,6
A5	2,8	3,4	4,5	5,0	4,8
A6	3.8	4.6	6.2	7.0	6.7

Рис. 5. Медианный радиус капель в факеле распыла (*a*) и геометрические характеристики функции счетного распределения *f*(*r*) (*б*) для форсунок A1–A6

Заключение

Анализ результатов проведенных исследований позволяет сделать следующие выводы.

1. Разработанная методика экспериментального исследования характеристик жидкокапельных аэрозолей позволяет получить адекватные количественные данные о спектре размеров капель, образующихся в факеле распыла эжекционных форсунок.

2. При диспергировании жидкости эжекционными форсунками спектр размеров капель соответствует гамма-распределению.

3. Размеры образующихся капель существенно зависят от конструктивных особенностей эжекционной форсунки, что позволяет регулировать дисперсные характеристики и структуру факела распыла.

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках государственного задания № 2014/223 (код проекта 1567).

- 1. Ничипоренко О.С., Найда Ю.И., Медведовский А.Б. Распыленные металлические порошки. Киев: Наук. думка, 1980. 240 с.
- 2. Силаев А.Д., Дишман Б.Д. Диспергирование жидких металлов. М.: Металлургия, 1983. 144 с.
- 3. Архипов В.А., Бондарчук С.С., Евсевлеев М.Я., Жарова И.К., Жуков А.С., Змановский С.В., Козлов Е.А., Коноваленко А.И., Трофимов В.Ф. Экспериментальное исследование диспергирования жидкости эжекциюнными форсунками // Инженерно-физический журнал. 2013. Т. 86, № 6. С. 1229–1236.
- 4. Шифрин К.С., Колмаков И.Б. Вычисление спектра размеров частиц по текущим и интегральным значениям индикатрисы в области малых углов // Изв. АН СССР. Физ. атмосф. и океана. 1967. Т. 3, № 12. С. 1271–1279.
- 5. *Зуев В.Е., Наац И.Э.* Обратные задачи лазерного зондирования атмосферы. Новосибирск: Наука, 1982. 242 с.
- 6. Архипов В.А., Бондарчук С.С. Оптические методы диагностики гетерогенной плазмы продуктов сгорания. Томск: Изд-во Том. ун-та, 2012. 265 с.
- 7. Архипов В.А., Бондарчук С.С., Боровской И.Г., Шелупанов А.А. Технология прямого поиска при решении задач прикладной математики // Сб. научных трудов Института вычислительных технологий СО РАН. 1995. Т. 4, № 10. С. 19–25.
- Коузов П.А. Основы анализа дисперсного состава промышленных пылей и измельченных материалов. Л.: Химия, 1971. 280 с.
- 9. Архипов В.А., Бондарчук С.С., Коротких А.Г., Лернер М.И. Технология получения и характеристики нанопорошков алюминия // Горн. ж. Спец. вып. Цветные металлы. 2006. № 4. С. 58–65.

V.F. Trofimov, V.A. Arkhipov, I.K. Zharova. Diagnostics of liquid-drop aerosols dispersity by smallangles scattering method.

The methodology and results of an experimental study of liquid-drop aerosols dispersity in the ejectiontype nozzles spray jet are presented. Small-angle scattering method for the particle size distribution function obtaining was used. It is shown that the particle sizes spectrum in the spray jet corresponds to the gamma distribution.